Source code for qutip.entropy

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################

__all__ = ['entropy_vn', 'entropy_linear', 'entropy_mutual', 'negativity',
           'concurrence', 'entropy_conditional', 'entangling_power',
           'entropy_relative']

from numpy import conj, e, inf, imag, inner, real, sort, sqrt
from numpy.lib.scimath import log, log2
from qutip.qobj import ptrace
from qutip.states import ket2dm
from qutip.tensor import tensor
from qutip.operators import sigmay
from qutip.sparse import sp_eigs
from qutip.partial_transpose import partial_transpose


[docs]def entropy_vn(rho, base=e, sparse=False): """ Von-Neumann entropy of density matrix Parameters ---------- rho : qobj Density matrix. base : {e,2} Base of logarithm. sparse : {False,True} Use sparse eigensolver. Returns ------- entropy : float Von-Neumann entropy of `rho`. Examples -------- >>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1) >>> entropy_vn(rho,2) 1.0 """ if rho.type == 'ket' or rho.type == 'bra': rho = ket2dm(rho) vals = sp_eigs(rho.data, rho.isherm, vecs=False, sparse=sparse) nzvals = vals[vals != 0] if base == 2: logvals = log2(nzvals) elif base == e: logvals = log(nzvals) else: raise ValueError("Base must be 2 or e.") return float(real(-sum(nzvals * logvals)))
[docs]def entropy_linear(rho): """ Linear entropy of a density matrix. Parameters ---------- rho : qobj sensity matrix or ket/bra vector. Returns ------- entropy : float Linear entropy of rho. Examples -------- >>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1) >>> entropy_linear(rho) 0.5 """ if rho.type == 'ket' or rho.type == 'bra': rho = ket2dm(rho) return float(real(1.0 - (rho ** 2).tr()))
[docs]def concurrence(rho): """ Calculate the concurrence entanglement measure for a two-qubit state. Parameters ---------- state : qobj Ket, bra, or density matrix for a two-qubit state. Returns ------- concur : float Concurrence References ---------- .. [1] http://en.wikipedia.org/wiki/Concurrence_(quantum_computing) """ if rho.isket and rho.dims != [[2, 2], [1, 1]]: raise Exception("Ket must be tensor product of two qubits.") elif rho.isbra and rho.dims != [[1, 1], [2, 2]]: raise Exception("Bra must be tensor product of two qubits.") elif rho.isoper and rho.dims != [[2, 2], [2, 2]]: raise Exception("Density matrix must be tensor product of two qubits.") if rho.isket or rho.isbra: rho = ket2dm(rho) sysy = tensor(sigmay(), sigmay()) rho_tilde = (rho * sysy) * (rho.conj() * sysy) evals = rho_tilde.eigenenergies() # abs to avoid problems with sqrt for very small negative numbers evals = abs(sort(real(evals))) lsum = sqrt(evals[3]) - sqrt(evals[2]) - sqrt(evals[1]) - sqrt(evals[0]) return max(0, lsum)
def negativity(rho, subsys, method='tracenorm', logarithmic=False): """ Compute the negativity for a multipartite quantum system described by the density matrix rho. The subsys argument is an index that indicates which system to compute the negativity for. .. note:: Experimental. """ mask = [idx == subsys for idx, n in enumerate(rho.dims[0])] rho_pt = partial_transpose(rho, mask) if method == 'tracenorm': N = ((rho_pt.dag() * rho_pt).sqrtm().tr().real - 1)/2.0 elif method == 'eigenvalues': l = rho_pt.eigenenergies() N = ((abs(l)-l)/2).sum() else: raise ValueError("Unknown method %s" % method) if logarithmic: return log2(2 * N + 1) else: return N
[docs]def entropy_mutual(rho, selA, selB, base=e, sparse=False): """ Calculates the mutual information S(A:B) between selection components of a system density matrix. Parameters ---------- rho : qobj Density matrix for composite quantum systems selA : int/list `int` or `list` of first selected density matrix components. selB : int/list `int` or `list` of second selected density matrix components. base : {e,2} Base of logarithm. sparse : {False,True} Use sparse eigensolver. Returns ------- ent_mut : float Mutual information between selected components. """ if isinstance(selA, int): selA = [selA] if isinstance(selB, int): selB = [selB] if rho.type != 'oper': raise TypeError("Input must be a density matrix.") if (len(selA) + len(selB)) != len(rho.dims[0]): raise TypeError("Number of selected components must match " + "total number.") rhoA = ptrace(rho, selA) rhoB = ptrace(rho, selB) out = (entropy_vn(rhoA, base, sparse=sparse) + entropy_vn(rhoB, base, sparse=sparse) - entropy_vn(rho, base, sparse=sparse)) return out
[docs]def entropy_relative(rho, sigma, base=e, sparse=False, tol=1e-12): """ Calculates the relative entropy S(rho||sigma) between two density matrices. Parameters ---------- rho : :class:`qutip.Qobj` First density matrix (or ket which will be converted to a density matrix). sigma : :class:`qutip.Qobj` Second density matrix (or ket which will be converted to a density matrix). base : {e,2} Base of logarithm. Defaults to e. sparse : bool Flag to use sparse solver when determining the eigenvectors of the density matrices. Defaults to False. tol : float Tolerance to use to detect 0 eigenvalues or dot producted between eigenvectors. Defaults to 1e-12. Returns ------- rel_ent : float Value of relative entropy. Guaranteed to be greater than zero and should equal zero only when rho and sigma are identical. Examples -------- First we define two density matrices: >>> rho = qutip.ket2dm(qutip.ket("00")) >>> sigma = rho + qutip.ket2dm(qutip.ket("01")) >>> sigma = sigma.unit() Then we calculate their relative entropy using base 2 (i.e. ``log2``) and base e (i.e. ``log``). >>> qutip.entropy_relative(rho, sigma, base=2) 1.0 >>> qutip.entropy_relative(rho, sigma) 0.6931471805599453 References ---------- See Nielsen & Chuang, "Quantum Computation and Quantum Information", Section 11.3.1, pg. 511 for a detailed explanation of quantum relative entropy. """ if rho.isket: rho = ket2dm(rho) if sigma.isket: sigma = ket2dm(sigma) if not rho.isoper or not sigma.isoper: raise TypeError("Inputs must be density matrices.") if rho.dims != sigma.dims: raise ValueError("Inputs must have the same shape and dims.") if base == 2: log_base = log2 elif base == e: log_base = log else: raise ValueError("Base must be 2 or e.") # S(rho || sigma) = sum_i(p_i log p_i) - sum_ij(p_i P_ij log q_i) # # S is +inf if the kernel of sigma (i.e. svecs[svals == 0]) has non-trivial # intersection with the support of rho (i.e. rvecs[rvals != 0]). rvals, rvecs = sp_eigs(rho.data, rho.isherm, vecs=True, sparse=sparse) if any(abs(imag(rvals)) >= tol): raise ValueError("Input rho has non-real eigenvalues.") rvals = real(rvals) svals, svecs = sp_eigs(sigma.data, sigma.isherm, vecs=True, sparse=sparse) if any(abs(imag(svals)) >= tol): raise ValueError("Input sigma has non-real eigenvalues.") svals = real(svals) # Calculate inner products of eigenvectors and return +inf if kernel # of sigma overlaps with support of rho. P = abs(inner(rvecs, conj(svecs))) ** 2 if (rvals >= tol) @ (P >= tol) @ (svals < tol): return inf # Avoid -inf from log(0) -- these terms will be multiplied by zero later # anyway svals[abs(svals) < tol] = 1 nzrvals = rvals[abs(rvals) >= tol] # Calculate S S = nzrvals @ log_base(nzrvals) - rvals @ P @ log_base(svals) # the relative entropy is guaranteed to be >= 0, so we clamp the # calculated value to 0 to avoid small violations of the lower bound. return max(0, S)
[docs]def entropy_conditional(rho, selB, base=e, sparse=False): """ Calculates the conditional entropy :math:`S(A|B)=S(A,B)-S(B)` of a selected density matrix component. Parameters ---------- rho : qobj Density matrix of composite object selB : int/list Selected components for density matrix B base : {e,2} Base of logarithm. sparse : {False,True} Use sparse eigensolver. Returns ------- ent_cond : float Value of conditional entropy """ if rho.type != 'oper': raise TypeError("Input must be density matrix.") if isinstance(selB, int): selB = [selB] B = ptrace(rho, selB) out = (entropy_vn(rho, base, sparse=sparse) - entropy_vn(B, base, sparse=sparse)) return out
def participation_ratio(rho): """ Returns the effective number of states for a density matrix. The participation is unity for pure states, and maximally N, where N is the Hilbert space dimensionality, for completely mixed states. Parameters ---------- rho : qobj Density matrix Returns ------- pr : float Effective number of states in the density matrix """ if rho.type == 'ket' or rho.type == 'bra': return 1.0 else: return 1.0 / (rho ** 2).tr() def entangling_power(U): """ Calculate the entangling power of a two-qubit gate U, which is zero of nonentangling gates and 1 and 2/9 for maximally entangling gates. Parameters ---------- U : qobj Qobj instance representing a two-qubit gate. Returns ------- ep : float The entanglement power of U (real number between 0 and 1) References: Explorations in Quantum Computing, Colin P. Williams (Springer, 2011) """ if not U.isoper: raise Exception("U must be an operator.") if U.dims != [[2, 2], [2, 2]]: raise Exception("U must be a two-qubit gate.") from qutip.qip.operations.gates import swap a = (tensor(U, U).dag() * swap(N=4, targets=[1, 3]) * tensor(U, U) * swap(N=4, targets=[1, 3])) b = (tensor(swap() * U, swap() * U).dag() * swap(N=4, targets=[1, 3]) * tensor(swap() * U, swap() * U) * swap(N=4, targets=[1, 3])) return 5.0/9 - 1.0/36 * (a.tr() + b.tr()).real