Bibliography

BCSZ08
  1. Bruzda, V. Cappellini, H.-J. Sommers, K. Życzkowski, Random Quantum Operations, Phys. Lett. A 373, 320-324 (2009). doi:10.1016/j.physleta.2008.11.043.

Hav03

Havel, T. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. Journal of Mathematical Physics 44 2, 534 (2003). doi:10.1063/1.1518555.

Wat13

Watrous, J. Theory of Quantum Information, lecture notes.

Mez07
  1. Mezzadri, How to generate random matrices from the classical compact groups, Notices of the AMS 54 592-604 (2007). arXiv:math-ph/0609050.

Moh08
  1. Mohseni, A. T. Rezakhani, D. A. Lidar, Quantum-process tomography: Resource analysis of different strategies, Phys. Rev. A 77, 032322 (2008). doi:10.1103/PhysRevA.77.032322.

Gri98
  1. Grifoni, P. Hänggi, Driven quantum tunneling, Physics Reports 304, 299 (1998). doi:10.1016/S0370-1573(98)00022-2.

Gar03

Gardineer and Zoller, Quantum Noise (Springer, 2004).

Bre02

H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, 2002).

Coh92
  1. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, (Wiley, 1992).

WBC11

C. Wood, J. Biamonte, D. G. Cory, Tensor networks and graphical calculus for open quantum systems. arXiv:1111.6950

dAless08
  1. d’Alessandro, Introduction to Quantum Control and Dynamics, (Chapman & Hall/CRC, 2008).

Byrd95
    1. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput. 16, 1190 (1995). doi:10.1137/0916069

Flo12
    1. Floether, P. de Fouquieres, and S. G. Schirmer, Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics, New J. Phys. 14, 073023 (2012). doi:10.1088/1367-2630/14/7/073023

Lloyd14
  1. Lloyd and S. Montangero, Information theoretical analysis of quantum optimal control, Phys. Rev. Lett. 113, 010502 (2014). doi:10.1103/PhysRevLett.113.010502

Doria11
  1. Doria, T. Calarco & S. Montangero, Optimal Control Technique for Many-Body Quantum Dynamics, Phys. Rev. Lett. 106, 190501 (2011). doi:10.1103/PhysRevLett.106.190501

Caneva11
  1. Caneva, T. Calarco, & S. Montangero, Chopped random-basis quantum optimization, Phys. Rev. A 84, 022326 (2011). doi:10.1103/PhysRevA.84.022326

Rach15
  1. Rach, M. M. Müller, T. Calarco, and S. Montangero, Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape, Phys. Rev. A. 92, 062343 (2015). doi:10.1103/PhysRevA.92.062343

DYNAMO
  1. Machnes, U. Sander, S. J. Glaser, P. De Fouquieres, A. Gruslys, S. Schirmer, and T. Schulte-Herbrueggen, Comparing, Optimising and Benchmarking Quantum Control Algorithms in a Unifying Programming Framework, Phys. Rev. A. 84, 022305 (2010). arXiv:1011.4874

Wis09

Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control, (Cambridge University Press, 2009).