Source code for qutip.mesolve

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module provides solvers for the Lindblad master equation and von Neumann
equation.
"""

__all__ = ['mesolve', 'odesolve']

import os
import types
from functools import partial
import numpy as np
import scipy.sparse as sp
import scipy.integrate
import warnings

from qutip.qobj import Qobj, isket, isoper, issuper
from qutip.superoperator import spre, spost, liouvillian, mat2vec, vec2mat
from qutip.expect import expect_rho_vec
from qutip.solver import Options, Result, config
from qutip.cy.spmatfuncs import cy_ode_rhs, cy_ode_rho_func_td
from qutip.cy.codegen import Codegen
from qutip.cy.utilities import _cython_build_cleanup
from qutip.rhs_generate import rhs_generate
from qutip.states import ket2dm
from qutip.rhs_generate import _td_format_check, _td_wrap_array_str
from qutip.settings import debug

from qutip.sesolve import (_sesolve_list_func_td, _sesolve_list_str_td,
                           _sesolve_list_td, _sesolve_func_td, _sesolve_const)

from qutip.ui.progressbar import BaseProgressBar, TextProgressBar

if debug:
    import inspect


# -----------------------------------------------------------------------------
# pass on to wavefunction solver or master equation solver depending on whether
# any collapse operators were given.
#
[docs]def mesolve(H, rho0, tlist, c_ops, e_ops, args={}, options=None, progress_bar=None): """ Master equation evolution of a density matrix for a given Hamiltonian and set of collapse operators, or a Liouvillian. Evolve the state vector or density matrix (`rho0`) using a given Hamiltonian (`H`) and an [optional] set of collapse operators (`c_ops`), by integrating the set of ordinary differential equations that define the system. In the absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). If e_ops is a callback function, it is invoked for each time in `tlist` with time and the state as arguments, and the function does not use any return values. If either `H` or the Qobj elements in `c_ops` are superoperators, they will be treated as direct contributions to the total system Liouvillian. This allows to solve master equations that are not on standard Lindblad form by passing a custom Liouvillian in place of either the `H` or `c_ops` elements. **Time-dependent operators** For time-dependent problems, `H` and `c_ops` can be callback functions that takes two arguments, time and `args`, and returns the Hamiltonian or Liouvillian for the system at that point in time (*callback format*). Alternatively, `H` and `c_ops` can be a specified in a nested-list format where each element in the list is a list of length 2, containing an operator (:class:`qutip.qobj`) at the first element and where the second element is either a string (*list string format*), a callback function (*list callback format*) that evaluates to the time-dependent coefficient for the corresponding operator, or a NumPy array (*list array format*) which specifies the value of the coefficient to the corresponding operator for each value of t in tlist. *Examples* H = [[H0, 'sin(w*t)'], [H1, 'sin(2*w*t)']] H = [[H0, f0_t], [H1, f1_t]] where f0_t and f1_t are python functions with signature f_t(t, args). H = [[H0, np.sin(w*tlist)], [H1, np.sin(2*w*tlist)]] In the *list string format* and *list callback format*, the string expression and the callback function must evaluate to a real or complex number (coefficient for the corresponding operator). In all cases of time-dependent operators, `args` is a dictionary of parameters that is used when evaluating operators. It is passed to the callback functions as second argument. **Additional options** Additional options to mesolve can be set via the `options` argument, which should be an instance of :class:`qutip.solver.Options`. Many ODE integration options can be set this way, and the `store_states` and `store_final_state` options can be used to store states even though expectation values are requested via the `e_ops` argument. .. note:: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in superoperator form it will be added to the total Liouvillian of the problem with out further transformation. This allows for using mesolve for solving master equations that are not on standard Lindblad form. .. note:: On using callback function: mesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. mesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator in scipy which will raise an NotImplemented exception. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian, or a callback function for time-dependent Hamiltonians, or alternatively a system Liouvillian. rho0 : :class:`qutip.Qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_ops : list of :class:`qutip.Qobj` single collapse operator, or list of collapse operators, or a list of Liouvillian superoperators. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Options` with options for the solver. progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Returns ------- result: :class:`qutip.Result` An instance of the class :class:`qutip.Result`, which contains either an *array* `result.expect` of expectation values for the times specified by `tlist`, or an *array* `result.states` of state vectors or density matrices corresponding to the times in `tlist` [if `e_ops` is an empty list], or nothing if a callback function was given in place of operators for which to calculate the expectation values. """ if progress_bar is None: progress_bar = BaseProgressBar() elif progress_bar is True: progress_bar = TextProgressBar() # check whether c_ops or e_ops is is a single operator # if so convert it to a list containing only that operator if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # check for type (if any) of time-dependent inputs _, n_func, n_str = _td_format_check(H, c_ops) if options is None: options = Options() if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.reset() res = None # # dispatch the appropriate solver # if ((c_ops and len(c_ops) > 0) or (not isket(rho0)) or (isinstance(H, Qobj) and issuper(H)) or (isinstance(H, list) and isinstance(H[0], Qobj) and issuper(H[0]))): # # we have collapse operators # # # find out if we are dealing with all-constant hamiltonian and # collapse operators or if we have at least one time-dependent # operator. Then delegate to appropriate solver... # if isinstance(H, Qobj): # constant hamiltonian if n_func == 0 and n_str == 0: # constant collapse operators res = _mesolve_const(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_str > 0: # constant hamiltonian but time-dependent collapse # operators in list string format res = _mesolve_list_str_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_func > 0: # constant hamiltonian but time-dependent collapse # operators in list function format res = _mesolve_list_func_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): # function-callback style time-dependence: must have constant # collapse operators if n_str > 0: # or n_func > 0: raise TypeError("Incorrect format: function-format " + "Hamiltonian cannot be mixed with " + "time-dependent collapse operators.") else: res = _mesolve_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, list): # determine if we are dealing with list of [Qobj, string] or # [Qobj, function] style time-dependencies (for pure python and # cython, respectively) if n_func > 0: res = _mesolve_list_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: res = _mesolve_list_str_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: raise TypeError("Incorrect specification of Hamiltonian " + "or collapse operators.") else: # # no collapse operators: unitary dynamics # if n_func > 0: res = _sesolve_list_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif n_str > 0: res = _sesolve_list_str_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): res = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) else: res = _sesolve_const(H, rho0, tlist, e_ops, args, options, progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res # ----------------------------------------------------------------------------- # A time-dependent dissipative master equation on the list-function format #
def _mesolve_list_func_td(H_list, rho0, tlist, c_list, e_ops, args, opt, progress_bar): """ Internal function for solving the master equation. See mesolve for usage. """ if debug: print(inspect.stack()[0][3]) # # check initial state # if isket(rho0): rho0 = rho0 * rho0.dag() # # construct liouvillian in list-function format # L_list = [] if opt.rhs_with_state: constant_func = lambda x, y, z: 1.0 else: constant_func = lambda x, y: 1.0 # add all hamitonian terms to the lagrangian list for h_spec in H_list: if isinstance(h_spec, Qobj): h = h_spec h_coeff = constant_func elif isinstance(h_spec, list) and isinstance(h_spec[0], Qobj): h = h_spec[0] h_coeff = h_spec[1] else: raise TypeError("Incorrect specification of time-dependent " + "Hamiltonian (expected callback function)") if isoper(h): L_list.append([(-1j * (spre(h) - spost(h))).data, h_coeff, False]) elif issuper(h): L_list.append([h.data, h_coeff, False]) else: raise TypeError("Incorrect specification of time-dependent " + "Hamiltonian (expected operator or superoperator)") # add all collapse operators to the liouvillian list for c_spec in c_list: if isinstance(c_spec, Qobj): c = c_spec c_coeff = constant_func c_square = False elif isinstance(c_spec, list) and isinstance(c_spec[0], Qobj): c = c_spec[0] c_coeff = c_spec[1] c_square = True else: raise TypeError("Incorrect specification of time-dependent " + "collapse operators (expected callback function)") if isoper(c): L_list.append([liouvillian(None, [c], data_only=True), c_coeff, c_square]) elif issuper(c): L_list.append([c.data, c_coeff, c_square]) else: raise TypeError("Incorrect specification of time-dependent " + "collapse operators (expected operator or " + "superoperator)") # # setup integrator # initial_vector = mat2vec(rho0.full()).ravel() if opt.rhs_with_state: r = scipy.integrate.ode(drho_list_td_with_state) else: r = scipy.integrate.ode(drho_list_td) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) r.set_f_params(L_list, args) # # call generic ODE code # return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar) # # evaluate drho(t)/dt according to the master equation using the # [Qobj, function] style time dependence API # def drho_list_td(t, rho, L_list, args): L = L_list[0][0] * L_list[0][1](t, args) for n in range(1, len(L_list)): # # L_args[n][0] = the sparse data for a Qobj in super-operator form # L_args[n][1] = function callback giving the coefficient # if L_list[n][2]: L = L + L_list[n][0] * (L_list[n][1](t, args)) ** 2 else: L = L + L_list[n][0] * L_list[n][1](t, args) return L * rho def drho_list_td_with_state(t, rho, L_list, args): L = L_list[0][0] * L_list[0][1](t, rho, args) for n in range(1, len(L_list)): # # L_args[n][0] = the sparse data for a Qobj in super-operator form # L_args[n][1] = function callback giving the coefficient # if L_list[n][2]: L = L + L_list[n][0] * (L_list[n][1](t, rho, args)) ** 2 else: L = L + L_list[n][0] * L_list[n][1](t, rho, args) return L * rho # ----------------------------------------------------------------------------- # A time-dependent dissipative master equation on the list-string format for # cython compilation # def _mesolve_list_str_td(H_list, rho0, tlist, c_list, e_ops, args, opt, progress_bar): """ Internal function for solving the master equation. See mesolve for usage. """ if debug: print(inspect.stack()[0][3]) # # check initial state: must be a density matrix # if isket(rho0): rho0 = rho0 * rho0.dag() # # construct liouvillian # Lconst = 0 Ldata = [] Linds = [] Lptrs = [] Lcoeff = [] # loop over all hamiltonian terms, convert to superoperator form and # add the data of sparse matrix representation to for h_spec in H_list: if isinstance(h_spec, Qobj): h = h_spec if isoper(h): Lconst += -1j * (spre(h) - spost(h)) elif issuper(h): Lconst += h else: raise TypeError("Incorrect specification of time-dependent " + "Hamiltonian (expected operator or " + "superoperator)") elif isinstance(h_spec, list): h = h_spec[0] h_coeff = h_spec[1] if isoper(h): L = -1j * (spre(h) - spost(h)) elif issuper(h): L = h else: raise TypeError("Incorrect specification of time-dependent " + "Hamiltonian (expected operator or " + "superoperator)") Ldata.append(L.data.data) Linds.append(L.data.indices) Lptrs.append(L.data.indptr) Lcoeff.append(h_coeff) else: raise TypeError("Incorrect specification of time-dependent " + "Hamiltonian (expected string format)") # loop over all collapse operators for c_spec in c_list: if isinstance(c_spec, Qobj): c = c_spec if isoper(c): cdc = c.dag() * c Lconst += spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \ - 0.5 * spost(cdc) elif issuper(c): Lconst += c else: raise TypeError("Incorrect specification of time-dependent " + "Liouvillian (expected operator or " + "superoperator)") elif isinstance(c_spec, list): c = c_spec[0] c_coeff = c_spec[1] if isoper(c): cdc = c.dag() * c L = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) \ - 0.5 * spost(cdc) c_coeff = "(" + c_coeff + ")**2" elif issuper(c): L = c else: raise TypeError("Incorrect specification of time-dependent " + "Liouvillian (expected operator or " + "superoperator)") Ldata.append(L.data.data) Linds.append(L.data.indices) Lptrs.append(L.data.indptr) Lcoeff.append(c_coeff) else: raise TypeError("Incorrect specification of time-dependent " + "collapse operators (expected string format)") # add the constant part of the lagrangian if Lconst != 0: Ldata.append(Lconst.data.data) Linds.append(Lconst.data.indices) Lptrs.append(Lconst.data.indptr) Lcoeff.append("1.0") # the total number of liouvillian terms (hamiltonian terms + # collapse operators) n_L_terms = len(Ldata) # # setup ode args string: we expand the list Ldata, Linds and Lptrs into # and explicit list of parameters # string_list = [] for k in range(n_L_terms): string_list.append("Ldata[%d], Linds[%d], Lptrs[%d]" % (k, k, k)) for name, value in args.items(): if isinstance(value, np.ndarray): string_list.append(name) else: string_list.append(str(value)) parameter_string = ",".join(string_list) # # generate and compile new cython code if necessary # if not opt.rhs_reuse or config.tdfunc is None: if opt.rhs_filename is None: config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num) else: config.tdname = opt.rhs_filename cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args, config=config) cgen.generate(config.tdname + ".pyx") code = compile('from ' + config.tdname + ' import cy_td_ode_rhs', '<string>', 'exec') exec(code, globals()) config.tdfunc = cy_td_ode_rhs # # setup integrator # initial_vector = mat2vec(rho0.full()).ravel() r = scipy.integrate.ode(config.tdfunc) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) code = compile('r.set_f_params(' + parameter_string + ')', '<string>', 'exec') exec(code, locals(), args) # # call generic ODE code # return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar) # ----------------------------------------------------------------------------- # Master equation solver # def _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, opt, progress_bar): """ Evolve the density matrix using an ODE solver, for constant hamiltonian and collapse operators. """ if debug: print(inspect.stack()[0][3]) # # check initial state # if isket(rho0): # if initial state is a ket and no collapse operator where given, # fall back on the unitary schrodinger equation solver if len(c_op_list) == 0 and isoper(H): return _sesolve_const(H, rho0, tlist, e_ops, args, opt, progress_bar) # Got a wave function as initial state: convert to density matrix. rho0 = ket2dm(rho0) # # construct liouvillian # if opt.tidy: H = H.tidyup(opt.atol) L = liouvillian(H, c_op_list) # # setup integrator # initial_vector = mat2vec(rho0.full()).ravel() r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(L.data.data, L.data.indices, L.data.indptr) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) # # call generic ODE code # return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar) # # evaluate drho(t)/dt according to the master eqaution # [no longer used, replaced by cython function] # def _ode_rho_func(t, rho, L): return L * rho # ----------------------------------------------------------------------------- # Master equation solver for python-function time-dependence. # def _mesolve_func_td(L_func, rho0, tlist, c_op_list, e_ops, args, opt, progress_bar): """ Evolve the density matrix using an ODE solver with time dependent Hamiltonian. """ if debug: print(inspect.stack()[0][3]) # # check initial state # if isket(rho0): rho0 = ket2dm(rho0) # # construct liouvillian # new_args = None if len(c_op_list) > 0: L_data = liouvillian(None, c_op_list).data else: n, m = rho0.shape L_data = sp.csr_matrix((n ** 2, m ** 2), dtype=complex) if type(args) is dict: new_args = {} for key in args: if isinstance(args[key], Qobj): if isoper(args[key]): new_args[key] = ( -1j * (spre(args[key]) - spost(args[key]))).data else: new_args[key] = args[key].data else: new_args[key] = args[key] elif type(args) is list or type(args) is tuple: new_args = [] for arg in args: if isinstance(arg, Qobj): if isoper(arg): new_args.append((-1j * (spre(arg) - spost(arg))).data) else: new_args.append(arg.data) else: new_args.append(arg) if type(args) is tuple: new_args = tuple(new_args) else: if isinstance(args, Qobj): if isoper(args): new_args = (-1j * (spre(args) - spost(args))).data else: new_args = args.data else: new_args = args # # setup integrator # initial_vector = mat2vec(rho0.full()).ravel() if not opt.rhs_with_state: r = scipy.integrate.ode(cy_ode_rho_func_td) else: r = scipy.integrate.ode(_ode_rho_func_td_with_state) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) r.set_f_params(L_data, L_func, new_args) # # call generic ODE code # return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar) # # evaluate drho(t)/dt according to the master equation # def _ode_rho_func_td(t, rho, L0, L_func, args): L = L0 + L_func(t, args) return L * rho # # evaluate drho(t)/dt according to the master equation # def _ode_rho_func_td_with_state(t, rho, L0, L_func, args): L = L0 + L_func(t, rho, args) return L * rho # ----------------------------------------------------------------------------- # Generic ODE solver: shared code among the various ODE solver # ----------------------------------------------------------------------------- def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: _cython_build_cleanup(config.tdname) if opt.store_final_state: rho.data = vec2mat(r.y) output.final_state = Qobj(rho) return output # ----------------------------------------------------------------------------- # Old style API below. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Master equation solver: deprecated in 2.0.0. No support for time-dependent # collapse operators. Only used by the deprecated odesolve function. # def _mesolve_list_td(H_func, rho0, tlist, c_op_list, e_ops, args, opt, progress_bar): """ Evolve the density matrix using an ODE solver with time dependent Hamiltonian. """ if debug: print(inspect.stack()[0][3]) # # check initial state # if isket(rho0): # if initial state is a ket and no collapse operator where given, # fall back on the unitary schrodinger equation solver if len(c_op_list) == 0: return _sesolve_list_td(H_func, rho0, tlist, e_ops, args, opt, progress_bar) # Got a wave function as initial state: convert to density matrix. rho0 = ket2dm(rho0) # # construct liouvillian # if len(H_func) != 2: raise TypeError('Time-dependent Hamiltonian list must have two terms.') if not isinstance(H_func[0], (list, np.ndarray)) or len(H_func[0]) <= 1: raise TypeError('Time-dependent Hamiltonians must be a list ' + 'with two or more terms') if (not isinstance(H_func[1], (list, np.ndarray))) or \ (len(H_func[1]) != (len(H_func[0]) - 1)): raise TypeError('Time-dependent coefficients must be list with ' + 'length N-1 where N is the number of ' + 'Hamiltonian terms.') if opt.rhs_reuse and config.tdfunc is None: rhs_generate(H_func, args) lenh = len(H_func[0]) if opt.tidy: H_func[0] = [(H_func[0][k]).tidyup() for k in range(lenh)] L_func = [[liouvillian(H_func[0][0], c_op_list)], H_func[1]] for m in range(1, lenh): L_func[0].append(liouvillian(H_func[0][m], [])) # create data arrays for time-dependent RHS function Ldata = [L_func[0][k].data.data for k in range(lenh)] Linds = [L_func[0][k].data.indices for k in range(lenh)] Lptrs = [L_func[0][k].data.indptr for k in range(lenh)] # setup ode args string string = "" for k in range(lenh): string += ("Ldata[%d], Linds[%d], Lptrs[%d]," % (k, k, k)) if args: td_consts = args.items() for elem in td_consts: string += str(elem[1]) if elem != td_consts[-1]: string += (",") # run code generator if not opt.rhs_reuse or config.tdfunc is None: if opt.rhs_filename is None: config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num) else: config.tdname = opt.rhs_filename cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args, config=config) cgen.generate(config.tdname + ".pyx") code = compile('from ' + config.tdname + ' import cy_td_ode_rhs', '<string>', 'exec') exec(code, globals()) config.tdfunc = cy_td_ode_rhs # # setup integrator # initial_vector = mat2vec(rho0.full()).ravel() r = scipy.integrate.ode(config.tdfunc) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) code = compile('r.set_f_params(' + string + ')', '<string>', 'exec') exec(code) # # call generic ODE code # return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar) # ----------------------------------------------------------------------------- # pass on to wavefunction solver or master equation solver depending on whether # any collapse operators were given. # def odesolve(H, rho0, tlist, c_op_list, e_ops, args=None, options=None): """ Master equation evolution of a density matrix for a given Hamiltonian. Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by integrating the set of ordinary differential equations that define the system. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). For problems with time-dependent Hamiltonians, `H` can be a callback function that takes two arguments, time and `args`, and returns the Hamiltonian at that point in time. `args` is a list of parameters that is passed to the callback function `H` (only used for time-dependent Hamiltonians). Parameters ---------- H : :class:`qutip.qobj` system Hamiltonian, or a callback function for time-dependent Hamiltonians. rho0 : :class:`qutip.qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` list of collapse operators. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Options` with options for the ODE solver. Returns ------- output :array Expectation values of wavefunctions/density matrices for the times specified by `tlist`. Notes ----- On using callback function: odesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. odesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator to scipy who will raise an NotImplemented exception. Deprecated in QuTiP 2.0.0. Use :func:`mesolve` instead. """ warnings.warn("odesolve is deprecated since 2.0.0. Use mesolve instead.", DeprecationWarning) if debug: print(inspect.stack()[0][3]) if options is None: options = Options() if (c_op_list and len(c_op_list) > 0) or not isket(rho0): if isinstance(H, list): output = _mesolve_list_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) if isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _mesolve_func_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: output = _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: if isinstance(H, list): output = _sesolve_list_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) else: output = _sesolve_const(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if len(e_ops) > 0: return output.expect else: return output.states