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Frontmatter

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version
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J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum
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J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
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1.3 Funding

QuTiP is developed under the auspice of the non-profit organization:

QuTiP was partially supported by

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is
taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight,
a coupling between the system of interest and the external world. In addition, any measurement performed on
the system necessarily involves coupling to the measuring device, therefore introducing an additional source of
external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account
for the interactions between a system and its environment is an essential step in understanding the dynamics of
practical quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is not pos-
sible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum computer,
these simulations must be carried out using classical computing techniques, where the exponentially increasing
dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently simu-
lated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and most
recently nanomechanical systems, it is possible to design systems using a small number of effective oscillator and
spin components, excited by a limited number of quanta, that are amenable to classical simulation in a truncated
Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is an open-source framework written in the Python programming lan-
guage, designed for simulating the open quantum dynamics of systems such as those listed above. This framework
distinguishes itself from other available software solutions in providing the following advantages:
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• QuTiP relies entirely on open-source software. You are free to modify and use it as you wish with no
licensing fees or limitations.

• QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the
need to compile after modification.

• The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy,
Scipy, and Cython libraries, and are based on many of the same algorithms used in propriety software.

• QuTiP allows for solving the dynamics of Hamiltonians with (almost) arbitrary time-dependence, including
collapse operators.

• Time-dependent problems can be automatically compiled into C++-code at run-time for increased perfor-
mance.

• Takes advantage of the multiple processing cores found in essentially all modern computers.

• QuTiP was designed from the start to require a minimal learning curve for those users who have experience
using the popular quantum optics toolbox by Sze M. Tan.

• Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.

1.5 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems.
Anyone who contributes will be duly recognized. Even small contributions are noted. See Contributors for a list of
people who have helped in one way or another. If you are interested, please drop us a line at the QuTiP discussion
group webpage.

1.5. Contributing to QuTiP 5
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Chapter 2

Installation

2.1 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language.
The following packages are currently required:

Package Version Details
Python 2.7+ Version 3.5+ is highly recommended.
NumPy 1.8+ Not tested on lower versions.
SciPy 0.15+ Lower versions have missing features.
Matplotlib 1.2.1+ Some plotting does not work on lower versions.
Cython 0.21+ Needed for compiling some time-dependent Hamiltonians.
C++ Compiler GCC 4.7+, MS VS 2015 Needed for compiling Cython files.
Python Headers 2.7+ Linux only. Needed for compiling Cython files.

In addition, there are several optional packages that provide additional functionality:

Package Version Details
LaTeX TexLive 2009+ Needed if using LaTeX in matplotlib figures.
pytest 5.3+ For running the test suite.

We would not recommend installation into the system Python on Linux platforms, as it is likely that the required
libraries will be difficult to update to sufficiently recent versions. The system Python on Linux is used for system
things, changing its configuration could lead to highly undesirable results. We are recommending and supporting
Anaconda / Miniconda Python environments for QuTiP on all platformsx [It is also possible to install the Intel
Python Distribution via the conda installer in Anaconda].

2.2 Platform-independent Installation

QuTiP is designed to work best when using the Anaconda or Intel Python distributions that support the conda
package management system.

If you aleady have your conda environment set up, and have the conda-forge channel available, then you can
install QuTiP using:

conda install qutip

Otherwise refer to building-conda-environment

If you are using MS Windows, then you will probably want to refer to installation-on-MS-Windows

7
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2.2.1 Building your Conda environment

Important: There are no working conda-forge packages for Python 2.7 on Windows. On Windows you should
create a Python 3.5+ environment.

The default Anaconda environment has all the Python packages needed for running QuTiP. You may however
wish to install QuTiP in a Conda environment (env) other than the default Anaconda environment. You may wish
to install Miniconda instead if you need to be economical with disk space. However, if you are not familiar with
conda environments and only plan to use if for QuTiP, then you should probably work with a default Anaconda /
Miniconda environment.

To create a Conda env for QuTiP called qutip-env:

conda create -n qutip-env python=3

Note the python=3 can be ommited if you want the default Python version for the Anaconda / Miniconda install.

If you have created a specific conda environment, or you have installed Miniconda, then you will need to install
the required packages for QuTiP.

recommended:

conda install numpy scipy cython matplotlib pytest pytest-cov jupyter notebook
→˓spyder

minimum (recommended):

conda install numpy scipy cython pytest pytest-cov matplotlib

absolute mimimum:

conda install numpy scipy cython

The jupyter and notebook packages are for working with Jupyter notebooks (fka IPython notebooks). Spyder
is an IDE for scientific development with Python.

2.2.2 Adding the conda-forge channel

If you have conda 4.1.0 or later then, add the conda-forge channel with lowest priority using:

conda config --append channels conda-forge

Otherwise you should consider reinstalling Anaconda / Miniconda. In theory:

conda update conda

will update your conda to the latest version, but this can lead to breaking your default Ananconda enviroment.

Alternatively, this will add conda-forge as the highest priority channel.

conda config --add channels conda-forge

It is almost certainly better to have defaults as the highest priority channel. You can edit your .condarc
(user home folder) file manually, so that conda-forge is below defaults in the channels list.

8 Chapter 2. Installation
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2.3 Installing via pip

For other types of installation, it is often easiest to use the Python package manager pip.

pip install qutip

More detailed platform-dependent installation alternatives are given below.

2.4 Installing from Source

Official releases of QuTiP are available from the download section on the project’s web pages

http://www.qutip.org/download.html

and the latest source code is available in our Github repository

http://github.com/qutip

In general we recommend users to use the latest stable release of QuTiP, but if you are interested in helping us out
with development or wish to submit bug fixes, then use the latest development version from the Github repository.

Installing QuTiP from source requires that all the dependencies are satisfied. To install QuTiP from the source
code run:

python setup.py install

To install OPENMP support, if available, run:

python setup.py install --with-openmp

If you are wishing to contribute to the QuTiP project, then you will want to create your own fork of qutip, clone
this to a local folder, and ‘install’ it into your Python env using:

python setup.py develop --with-openmp

import qutip in this Python env will then load the code from your local fork, enabling you to test changes
interactively.

The sudo pre-command is typically not needed when installing into Anaconda type environments, as Anaconda
is usually installed in the users home directory. sudo will be needed (on Linux and OSX) for installing into
Python environments where the user does not have write access.

2.5 Installation on MS Windows

Important: Installation on Windows has changed substantially as of QuTiP 4.1. The only supported installation
configuration is using the Conda environment with Python 3.5+ and Visual Studio 2015.

We are recommending and supporting installation of QuTiP into a Conda environment. Other scientific Python
implementations such as Python-xy may also work, but are not supported.

As of QuTiP 4.1, recommended installation on Windows requires Python 3.5+, as well as Visual Studio 2015.
With this configuration, one can install QuTiP using any of the above mentioned receipes. Visual Studio 2015
is not required for the install of the conda-forge package, but it is required at runtime for the string format time-
dependence solvers. When installing Visual Studio 2015 be sure to select options for the C++ compiler.

The ‘Community’ edition of Visual Studio 2015 is free to download use, however it does require approx 10GB of
disk space, much of which does have to be on the system drive. If this is not feasible, then it is possible to run
QuTiP under Python 2.7.

2.3. Installing via pip 9
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2.5.1 Windows and Python 2.7

Important: Running QuTiP under Python 2.7 on Windows is not recommended or supported. However, it is
currently possible. There are no working conda-forge packages for Python 2.7 on Windows. You will have to
install via pip or from source in Python 2.7 on Windows. The ‘MS Visual C for Python 2.7’ compiler will not
work with QuTiP. You will have to use the g++ compiler in mingw32.

If you need to create a Python 2.7 conda environment see building-conda-environment, including adding-conda-
forge

Then run:

conda install mingwpy

To specify the use of the mingw compiler you will need to create the following file:

<path to my Python env>/Lib/distutils/distutils.cfg

with the following contents:

[build]
compiler=mingw32
[build_ext]
compiler=mingw32

<path to my Python env> will be something like C:\Ananconda2\ or C:\Ananconda2\envs\
qutip-env\ depending on where you installed Anaconda or Miniconda, and whether you created a specific
environment.

You can then install QuTiP using either the install-via_pip or install-get-it method.

2.6 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite of
tests scripts you must have the pytest testing library. After installing QuTiP, leave the installation directory, run
Python (or iPython), and call:

import qutip.testing as qt
qt.run()

If successful, these tests indicate that all of the QuTiP functions are working properly. If any errors occur, please
check that you have installed all of the required modules. See the next section on how to check the installed
versions of the QuTiP dependencies. If these tests still fail, then head on over to the QuTiP Discussion Board and
post a message detailing your particular issue.

2.7 Checking Version Information using the About Function

QuTiP includes an “about” function for viewing information about QuTiP and the important dependencies installed
on your system. To view this information:

In [1]: from qutip import *

In [2]: about()

10 Chapter 2. Installation
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Chapter 3

Users Guide

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide
is divided up into several sections, each highlighting a specific set of functionalities. In combination with the
examples that can be found on the project web page http://qutip.org/tutorials.html, this guide should provide a
more or less complete overview. In addition, the API documentation for each function is located at the end of this
guide.

3.1.1 Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems composed
of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever growing)
library of functions and classes; from qutip.states.basis to qutip.wigner. The general organization
of QuTiP, highlighting the important API available to the user, is shown in the figure-qutip_org

11
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Tree-diagram of the 361 user accessible functions and classes in QuTiP 4.4. A vector image of the code tree is in
qutip_tree.pdf.

3.2 Basic Operations on Quantum Objects

3.2.1 First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, we must first call the import statement:

In [1]: from qutip import *

that will load all of the user available functions. Often, we also need to import the NumPy and Matplotlib libraries
with:

12 Chapter 3. Users Guide
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In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

Note that, in the rest of the documentation, functions are written using qutip.module.function() notation which
links to the corresponding function in the QuTiP API: Functions. However, in calling import *, we have already
loaded all of the QuTiP modules. Therefore, we will only need the function name and not the complete path when
calling the function from the interpreter prompt, Python script, or Jupyter notebook.

3.2.2 The quantum object class

Introduction

The key difference between classical and quantum mechanics lies in the use of operators instead of numbers as
variables. Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics
of quantum systems we need a data structure that is capable of encapsulating the properties of a quantum operator
and ket/bra vectors. The quantum object class, qutip.Qobj, accomplishes this using matrix representation.

To begin, let us create a blank Qobj:

In [4]: Qobj()
Out[4]:
Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[0.]]

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1-
dimensional matrix consisting of a single zero entry.

Hint: By convention, Class objects in Python such as Qobj() differ from functions in the use of a beginning
capital letter.

We can create a Qobj with a user defined data set by passing a list or array of data into the Qobj:

In [5]: Qobj([[1],[2],[3],[4],[5]])
Out[5]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[1.]
[2.]
[3.]
[4.]
[5.]]

In [6]: x = np.array([[1, 2, 3, 4, 5]])

In [7]: Qobj(x)
Out[7]:
Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =
[[1. 2. 3. 4. 5.]]

In [8]: r = np.random.rand(4, 4)

In [9]: Qobj(r)
Out[9]:
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =

(continues on next page)
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(continued from previous page)

[[0.20357442 0.88873526 0.65825042 0.14998379]
[0.58809628 0.32734096 0.38274417 0.26404025]
[0.16646896 0.51620007 0.9151869 0.61009921]
[0.35544738 0.69216207 0.36788579 0.28856135]]

Notice how both the dims and shape change according to the input data. Although dims and shape appear to have
the same function, the difference will become quite clear in the section on tensor products and partial traces.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond
to commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-
level system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of
states:

States Command (#
means optional)

Inputs

Fock state ket vector basis(N,
#m)/fock(N,#m)

N = number of levels in Hilbert space, m = level con-
taining excitation (0 if no m given)

Fock density matrix (outer
product of basis)

fock_dm(N,#p) same as basis(N,m) / fock(N,m)

Coherent state coherent(N,
alpha)

alpha = complex number (eigenvalue) for requested co-
herent state

Coherent density matrix
(outer product)

coherent_dm(N,
alpha)

same as coherent(N,alpha)

Thermal density matrix (for
n particles)

thermal_dm(N,
n)

n = particle number expectation value

and operators:

14 Chapter 3. Users Guide
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Operators Command (#
means optional)

Inputs

Charge operator charge(N,M=-N) Diagonal operator with entries from M..0..N.
Commutator commutator(A,

B, kind)
Kind = ‘normal’ or ‘anti’.

Diagonals operator qdiags(N) Quantum object created from arrays of diagonals at
given offsets.

Displacement operator
(Single-mode)

displace(N,
alpha)

N=number of levels in Hilbert space, alpha = complex
displacement amplitude.

Higher spin operators jmat(j,#s) j = integer or half-integer representing spin, s = ‘x’, ‘y’,
‘z’, ‘+’, or ‘-‘

Identity qeye(N) N = number of levels in Hilbert space.
Lowering (destruction)
operator

destroy(N) same as above

Momentum operator momentum(N) same as above
Number operator num(N) same as above
Phase operator (Single-
mode)

phase(N, phi0) Single-mode Pegg-Barnett phase operator with ref phase
phi0.

Position operator position(N) same as above
Raising (creation) opera-
tor

create(N) same as above

Squeezing operator
(Single-mode)

squeeze(N, sp) N=number of levels in Hilbert space, sp = squeezing pa-
rameter.

Squeezing operator (Gen-
eralized)

squeezing(q1,
q2, sp)

q1,q2 = Quantum operators (Qobj) sp = squeezing pa-
rameter.

Sigma-X sigmax()
Sigma-Y sigmay()
Sigma-Z sigmaz()
Sigma plus sigmap()
Sigma minus sigmam()
Tunneling operator tunneling(N,m) Tunneling operator with elements of the form |𝑁 ><

𝑁 +𝑚| + |𝑁 +𝑚 >< 𝑁 |.

As an example, we give the output for a few of these functions:

In [10]: basis(5,3)
Out[10]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.]]

In [11]: coherent(5,0.5-0.5j)
Out[11]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.7788017 +0.j ]
[ 0.38939142-0.38939142j]
[ 0. -0.27545895j]
[-0.07898617-0.07898617j]
[-0.04314271+0.j ]]

In [12]: destroy(4)
Out[12]:
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False

(continues on next page)
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(continued from previous page)

Qobj data =
[[0. 1. 0. 0. ]
[0. 0. 1.41421356 0. ]
[0. 0. 0. 1.73205081]
[0. 0. 0. 0. ]]

In [13]: sigmaz()
Out[13]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]

In [14]: jmat(5/2.0,'+')
Out[14]:
Quantum object: dims = [[6], [6]], shape = (6, 6), type = oper, isherm = False
Qobj data =
[[0. 2.23606798 0. 0. 0. 0. ]
[0. 0. 2.82842712 0. 0. 0. ]
[0. 0. 0. 3. 0. 0. ]
[0. 0. 0. 0. 2.82842712 0. ]
[0. 0. 0. 0. 0. 2.23606798]
[0. 0. 0. 0. 0. 0. ]]

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be
accessed in the following way:

In [15]: q = destroy(4)

In [16]: q.dims
Out[16]: [[4], [4]]

In [17]: q.shape
Out[17]: (4, 4)

In general, the attributes (properties) of a Qobj object (or any Python class) can be retrieved using the Q.attribute
notation. In addition to the attributes shown with the print function, the Qobj class also has the following:

Property At-
tribute

Description

Data Q.
data

Matrix representing state or operator

Dimen-
sions

Q.
dims

List keeping track of shapes for individual components of a multipartite system (for
tensor products and partial traces).

Shape Q.
shape

Dimensions of underlying data matrix.

is Hermi-
tian?

Q.
isherm

Is the operator Hermitian or not?

Type Q.
type

Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?

16 Chapter 3. Users Guide



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Fig. 1: The Qobj Class viewed as a container for the properties need to characterize a quantum operator or state
vector.

For the destruction operator above:

In [18]: q.type
Out[18]: 'oper'

In [19]: q.isherm
Out[19]: False

In [20]: q.data
Out[20]:
<4x4 sparse matrix of type '<class 'numpy.complex128'>'

with 3 stored elements in Compressed Sparse Row format>

The data attribute returns a message stating that the data is a sparse matrix. All Qobj instances store their data as a
sparse matrix to save memory. To access the underlying dense matrix one needs to use the qutip.Qobj.full
function as described below.

Qobj Math

The rules for mathematical operations on Qobj instances are similar to standard matrix arithmetic:

In [21]: q = destroy(4)

In [22]: x = sigmax()

In [23]: q + 5
Out[23]:
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[5. 1. 0. 0. ]
[0. 5. 1.41421356 0. ]
[0. 0. 5. 1.73205081]
[0. 0. 0. 5. ]]

In [24]: x * x
Out[24]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 1.]]

(continues on next page)
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(continued from previous page)

In [25]: q ** 3
Out[25]:
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0. 2.44948974]
[0. 0. 0. 0. ]
[0. 0. 0. 0. ]
[0. 0. 0. 0. ]]

In [26]: x / np.sqrt(2)
Out[26]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.70710678]
[0.70710678 0. ]]

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

In [27]: q * x
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-27-57f05cd0899f> in <module>
----> 1 q * x

/miniconda3/envs/release/lib/python3.6/site-packages/qutip-4.5.0-py3.6-macosx-10.9-
→˓x86_64.egg/qutip/qobj.py in __mul__(self, other)

553
554 else:

--> 555 raise TypeError("Incompatible Qobj shapes")
556
557 elif isinstance(other, np.ndarray):

TypeError: Incompatible Qobj shapes

In addition, the logic operators is equal == and is not equal != are also supported.

3.2.3 Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qobj class instances.
For a general quantum object Q:
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Function Command Description
Check Her-
micity

Q.check_herm() Check if quantum object is Hermitian

Conjugate Q.conj() Conjugate of quantum object.
Cosine Q.cosm() Cosine of quantum object.
Dagger (ad-
joint)

Q.dag() Returns adjoint (dagger) of object.

Diagonal Q.diag() Returns the diagonal elements.
Diamond
Norm

Q.dnorm() Returns the diamond norm.

Eigenenergies Q.eigenenergies() Eigenenergies (values) of operator.
Eigenstates Q.eigenstates() Returns eigenvalues and eigenvectors.
Eliminate
States

Q.
eliminate_states(inds)

Returns quantum object with states in list inds removed.

Exponential Q.expm() Matrix exponential of operator.
Extract States Q.

extract_states(inds)
Qobj with states listed in inds only.

Full Q.full() Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate() Eigenval & eigket of Qobj groundstate.
Matrix Ele-
ment

Q.
matrix_element(bra,
ket)

Matrix element <bra|Q|ket>

Norm Q.norm() Returns L2 norm for states, trace norm for operators.
Overlap Q.overlap(state) Overlap between current Qobj and a given state.
Partial Trace Q.ptrace(sel) Partial trace returning components selected using ‘sel’ pa-

rameter.
Permute Q.permute(order) Permutes the tensor structure of a composite object in the

given order.
Projector Q.proj() Form projector operator from given ket or bra vector.
Sine Q.sinm() Sine of quantum operator.
Sqrt Q.sqrtm() Matrix sqrt of operator.
Tidyup Q.tidyup() Removes small elements from Qobj.
Trace Q.tr() Returns trace of quantum object.
Transform Q.transform(inpt) A basis transformation defined by matrix or list of kets

‘inpt’ .
Transpose Q.trans() Transpose of quantum object.
Truncate Neg Q.trunc_neg() Truncates negative eigenvalues
Unit Q.unit() Returns normalized (unit) vector Q/Q.norm().

In [28]: basis(5, 3)
Out[28]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.]]

In [29]: basis(5, 3).dag()
Out[29]:
Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =
[[0. 0. 0. 1. 0.]]

In [30]: coherent_dm(5, 1)
Out[30]:

(continues on next page)
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(continued from previous page)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]
[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]
[0.08826704 0.08822695 0.06263061 0.035077 0.0211765 ]]

In [31]: coherent_dm(5, 1).diag()
Out[31]: array([0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 ])

In [32]: coherent_dm(5, 1).full()
Out[32]:
array([[0.36791117+0.j, 0.36774407+0.j, 0.26105441+0.j, 0.14620658+0.j,

0.08826704+0.j],
[0.36774407+0.j, 0.36757705+0.j, 0.26093584+0.j, 0.14614018+0.j,
0.08822695+0.j],

[0.26105441+0.j, 0.26093584+0.j, 0.18523331+0.j, 0.10374209+0.j,
0.06263061+0.j],

[0.14620658+0.j, 0.14614018+0.j, 0.10374209+0.j, 0.05810197+0.j,
0.035077 +0.j],

[0.08826704+0.j, 0.08822695+0.j, 0.06263061+0.j, 0.035077 +0.j,
0.0211765 +0.j]])

In [33]: coherent_dm(5, 1).norm()
Out[33]: 1.0000000225514842

In [34]: coherent_dm(5, 1).sqrtm()
Out[34]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.36791119 0.36774406 0.2610544 0.14620658 0.08826704]
[0.36774406 0.36757705 0.26093584 0.14614018 0.08822695]
[0.2610544 0.26093584 0.18523332 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.03507701]
[0.08826704 0.08822695 0.06263061 0.03507701 0.0211765 ]]

In [35]: coherent_dm(5, 1).tr()
Out[35]: 1.0

In [36]: (basis(4, 2) + basis(4, 1)).unit()
Out[36]:
Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket
Qobj data =
[[0. ]
[0.70710678]
[0.70710678]
[0. ]]
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3.3 Manipulating States and Operators

3.3.1 Introduction

In the previous guide section Basic Operations on Quantum Objects, we saw how to create states and operators,
using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations
with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the
examples on the tutorials web page.

3.3.2 State Vectors (kets or bras)

Here we begin by creating a Fock qutip.states.basis vacuum state vector |0⟩ with in a Hilbert space with
5 number states, from 0 to 4:

In [1]: vac = basis(5, 0)

In [2]: vac
Out[2]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]
[0.]]

and then create a lowering operator (𝑎̂) corresponding to 5 number states using the qutip.operators.
destroy function:

In [3]: a = destroy(5)

In [4]: a
Out[4]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False
Qobj data =
[[0. 1. 0. 0. 0. ]
[0. 0. 1.41421356 0. 0. ]
[0. 0. 0. 1.73205081 0. ]
[0. 0. 0. 0. 2. ]
[0. 0. 0. 0. 0. ]]

Now lets apply the destruction operator to our vacuum state vac,

In [5]: a * vac
Out[5]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[0.]
[0.]]

We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes from
using the adjoint of the lowering operator, the raising operator 𝑎̂†:

In [6]: a.dag() * vac
Out[6]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

(continues on next page)
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(continued from previous page)

Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]]

The raising operator has in indeed raised the state vec from the vacuum to the |1⟩ state. Instead of using the dagger
Qobj.dag() method to raise the state, we could have also used the built in qutip.operators.create
function to make a raising operator:

In [7]: c = create(5)

In [8]: c * vac
Out[8]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]]

which does the same thing. We can raise the vacuum state more than once by successively apply the raising
operator:

In [9]: c * c * vac
Out[9]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0. ]
[0. ]
[1.41421356]
[0. ]
[0. ]]

or just taking the square of the raising operator
(︀
𝑎̂†
)︀2

:

In [10]: c ** 2 * vac
Out[10]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0. ]
[0. ]
[1.41421356]
[0. ]
[0. ]]

Applying the raising operator twice gives the expected
√
𝑛+ 1 dependence. We can use the product of 𝑐 * 𝑎 to

also apply the number operator to the state vector vac:

In [11]: c * a * vac
Out[11]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[0.]
[0.]]

or on the |1⟩ state:
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In [12]: c * a * (c * vac)
Out[12]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]]

or the |2⟩ state:

In [13]: c * a * (c**2 * vac)
Out[13]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0. ]
[0. ]
[2.82842712]
[0. ]
[0. ]]

Notice how in this last example, application of the number operator does not give the expected value 𝑛 = 2, but
rather 2

√
2. This is because this last state is not normalized to unity as 𝑐 |𝑛⟩ =

√
𝑛+ 1 |𝑛+ 1⟩. Therefore, we

should normalize our vector first:

In [14]: c * a * (c**2 * vac).unit()
Out[14]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[2.]
[0.]
[0.]]

Since we are giving a demonstration of using states and operators, we have done a lot more work than we should
have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state. Instead
we can use the qutip.states.basis (or qutip.states.fock) function to directly obtain the required
state:

In [15]: ket = basis(5, 2)

In [16]: print(ket)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[1.]
[0.]
[0.]]

Notice how it is automatically normalized. We can also use the built in qutip.operators.num operator:

In [17]: n = num(5)

In [18]: print(n)
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]

(continues on next page)
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[0. 0. 2. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 4.]]

Therefore, instead of c * a * (c ** 2 * vac).unit() we have:

In [19]: n * ket
Out[19]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[2.]
[0.]
[0.]]

We can also create superpositions of states:

In [20]: ket = (basis(5, 0) + basis(5, 1)).unit()

In [21]: print(ket)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.70710678]
[0.70710678]
[0. ]
[0. ]
[0. ]]

where we have used the qutip.Qobj.unit method to again normalize the state. Operating with the number
function again:

In [22]: n * ket
Out[22]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0. ]
[0.70710678]
[0. ]
[0. ]
[0. ]]

We can also create coherent states and squeezed states by applying the qutip.operators.displace and
qutip.operators.squeeze functions to the vacuum state:

In [23]: vac = basis(5, 0)

In [24]: d = displace(5, 1j)

In [25]: s = squeeze(5, 0.25 + 0.25j)

In [26]: d * vac
Out[26]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.60655682+0.j ]
[ 0. +0.60628133j]
[-0.4303874 +0.j ]
[ 0. -0.24104351j]
[ 0.14552147+0.j ]]
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In [27]: d * s * vac
Out[27]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.65893786+0.08139381j]
[ 0.10779462+0.51579735j]
[-0.37567217-0.01326853j]
[-0.02688063-0.23828775j]
[ 0.26352814+0.11512178j]]

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in qutip.
states.coherent function.

3.3.3 Density matrices

One of the main purpose of QuTiP is to explore the dynamics of open quantum systems, where the most general
state of a system is not longer a state vector, but rather a density matrix. Since operations on density matrices
operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product |𝜓⟩ ⟨𝜓| of a ket vector:

In [28]: ket = basis(5, 2)

In [29]: ket * ket.dag()
Out[29]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

A similar task can also be accomplished via the qutip.states.fock_dm or qutip.states.ket2dm
functions:

In [30]: fock_dm(5, 2)
Out[30]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

In [31]: ket2dm(ket)
Out[31]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

If we want to create a density matrix with equal classical probability of being found in the |2⟩ or |4⟩ number states
we can do the following:
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In [32]: 0.5 * ket2dm(basis(5, 4)) + 0.5 * ket2dm(basis(5, 2))
Out[32]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. ]
[0. 0. 0.5 0. 0. ]
[0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0.5]]

or use 0.5 * fock_dm(5, 2) + 0.5 * fock_dm(5, 4). There are also several other built-in func-
tions for creating predefined density matrices, for example qutip.states.coherent_dm and qutip.
states.thermal_dm which create coherent state and thermal state density matrices, respectively.

In [33]: coherent_dm(5, 1.25)
Out[33]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.20980701 0.26141096 0.23509686 0.15572585 0.13390765]
[0.26141096 0.32570738 0.29292109 0.19402805 0.16684347]
[0.23509686 0.29292109 0.26343512 0.17449684 0.1500487 ]
[0.15572585 0.19402805 0.17449684 0.11558499 0.09939079]
[0.13390765 0.16684347 0.1500487 0.09939079 0.0854655 ]]

In [34]: thermal_dm(5, 1.25)
Out[34]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.46927974 0. 0. 0. 0. ]
[0. 0.26071096 0. 0. 0. ]
[0. 0. 0.14483942 0. 0. ]
[0. 0. 0. 0.08046635 0. ]
[0. 0. 0. 0. 0.04470353]]

QuTiP also provides a set of distance metrics for determining how close two density matrix distri-
butions are to each other. Included are the trace distance qutip.metrics.tracedist, fidelity
qutip.metrics.fidelity , Hilbert-Schmidt distance qutip.metrics.hilbert_dist, Bures dis-
tance qutip.metrics.bures_dist, Bures angle qutip.metrics.bures_angle, and quantum
Hellinger distance qutip.metrics.hellinger_dist.

In [35]: x = coherent_dm(5, 1.25)

In [36]: y = coherent_dm(5, 1.25j) # <-- note the 'j'

In [37]: z = thermal_dm(5, 0.125)

In [38]: fidelity(x, x)
Out[38]: 1.0000000053282376

In [39]: tracedist(y, y)
Out[39]: 0.0

In [40]: hellinger_dist(y, y)
Out[40]: 0.0

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by 𝑇 =
√

1 − 𝐹 2, while

the quantum Hellinger distance (QHE) between two pure states |𝜓⟩ and |𝜑⟩ is given by𝑄𝐻𝐸 =

√︁
2 − 2 |⟨𝜓|𝜑⟩|2.

In [41]: tracedist(y, x)
Out[41]: 0.977156579211186
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In [42]: np.sqrt(1 - fidelity(y, x) ** 2)
Out[42]: 0.9771565700334389

For a pure state and a mixed state, 1 − 𝐹 2 ≤ 𝑇 which can also be verified:

In [43]: 1 - fidelity(x, z) ** 2
Out[43]: 0.778289048225615

In [44]: tracedist(x, z)
Out[44]: 0.855902832886259

3.3.4 Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to
qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit
system, we use the same qutip.states.basis, or qutip.states.fock, function with only two levels:

In [45]: spin = basis(2, 0)

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state
truncated to two energy levels?

In [46]: vac = basis(2, 0)

At this stage, there is no difference. This should not be surprising as we called the exact same function
twice. The difference between the two comes from the action of the spin operators qutip.operators.
sigmax, qutip.operators.sigmay , qutip.operators.sigmaz, qutip.operators.sigmap,
and qutip.operators.sigmam on these two-level states. For example, if vac corresponds to the vacuum
state of a harmonic oscillator, then, as we have already seen, we can use the raising operator to get the |1⟩ state:

In [47]: vac
Out[47]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]]

In [48]: c = create(2)

In [49]: c * vac
Out[49]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]
[1.]]

For a spin system, the operator analogous to the raising operator is the sigma-plus operator qutip.operators.
sigmap. Operating on the spin state gives:

In [50]: spin
Out[50]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]]

In [51]: sigmap() * spin
Out[51]:

(continues on next page)
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Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]
[0.]]

Now we see the difference! The qutip.operators.sigmap operator acting on the spin state returns the
zero vector. Why is this? To see what happened, let us use the qutip.operators.sigmaz operator:

In [52]: sigmaz()
Out[52]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]

In [53]: sigmaz() * spin
Out[53]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]]

In [54]: spin2 = basis(2, 1)

In [55]: spin2
Out[55]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]
[1.]]

In [56]: sigmaz() * spin2
Out[56]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.]
[-1.]]

The answer is now apparent. Since the QuTiP qutip.operators.sigmaz function uses the standard z-basis
representation of the sigma-z spin operator, the spin state corresponds to the |↑⟩ state of a two-level spin system
while spin2 gives the |↓⟩ state. Therefore, in our previous example sigmap() * spin, we raised the qubit
state out of the truncated two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin operators
remain in the conventional form. Second, when the spin system is in the |↑⟩ state:

In [57]: sigmaz() * spin
Out[57]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]]

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing,
and matrices start with the zeroth element). The |↓⟩ state therefore has a non-zero entry in the first index position.
This corresponds nicely with the quantum information definitions of qubit states, where the excited |↑⟩ state is
label as |0⟩, and the |↓⟩ state by |1⟩.

If one wants to create spin operators for higher spin systems, then the qutip.operators.jmat function
comes in handy.
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3.3.5 Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of
operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore,
in this section we demonstrate the use of the qutip.expect function. To begin:

In [58]: vac = basis(5, 0)

In [59]: one = basis(5, 1)

In [60]: c = create(5)

In [61]: N = num(5)

In [62]: expect(N, vac)
Out[62]: 0.0

In [63]: expect(N, one)
Out[63]: 1.0

In [64]: coh = coherent_dm(5, 1.0j)

In [65]: expect(N, coh)
Out[65]: 0.9970555745806596

In [66]: cat = (basis(5, 4) + 1.0j * basis(5, 3)).unit()

In [67]: expect(c, cat)
Out[67]: 0.9999999999999998j

The qutip.expect function also accepts lists or arrays of state vectors or density matrices for the second input:

In [68]: states = [(c**k * vac).unit() for k in range(5)] # must normalize

In [69]: expect(N, states)
Out[69]: array([0., 1., 2., 3., 4.])

In [70]: cat_list = [(basis(5, 4) + x * basis(5, 3)).unit() for x in [0, 1.0j, -1.
→˓0, -1.0j]]

In [71]: expect(c, cat_list)
Out[71]: array([ 0.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Notice how in this last example, all of the return values are complex numbers. This is because the qutip.
expect function looks to see whether the operator is Hermitian or not. If the operator is Hermitian, than the
output will always be real. In the case of non-Hermitian operators, the return values may be complex. Therefore,
the qutip.expect function will return an array of complex values for non-Hermitian operators when the input
is a list/array of states or density matrices.

Of course, the qutip.expect function works for spin states and operators:

In [72]: up = basis(2, 0)

In [73]: down = basis(2, 1)

In [74]: expect(sigmaz(), up)
Out[74]: 1.0

In [75]: expect(sigmaz(), down)
Out[75]: -1.0

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:
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In [76]: spin1 = basis(2, 0)

In [77]: spin2 = basis(2, 1)

In [78]: two_spins = tensor(spin1, spin2)

In [79]: sz1 = tensor(sigmaz(), qeye(2))

In [80]: sz2 = tensor(qeye(2), sigmaz())

In [81]: expect(sz1, two_spins)
Out[81]: 1.0

In [82]: expect(sz2, two_spins)
Out[82]: -1.0

3.3.6 Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density
operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the cor-
respondance between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space,
vec : ℒ(ℋ) → ℋ⊗ℋ [Hav03], [Wat13].

This isomorphism is implemented in QuTiP by the operator_to_vector and vector_to_operator
functions:

In [83]: psi = basis(2, 0)

In [84]: rho = ket2dm(psi)

In [85]: rho
Out[85]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

In [86]: vec_rho = operator_to_vector(rho)

In [87]: vec_rho
Out[87]:
Quantum object: dims = [[[2], [2]], [1]], shape = (4, 1), type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

In [88]: rho2 = vector_to_operator(vec_rho)

In [89]: (rho - rho2).norm()
Out[89]: 0.0

The type attribute indicates whether a quantum object is a vector corresponding to an operator
(operator-ket), or its Hermitian conjugate (operator-bra).

Note that QuTiP uses the column-stacking convention for the isomorphism between ℒ(ℋ) and ℋ⊗ℋ:

In [90]: import numpy as np

(continues on next page)
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In [91]: A = Qobj(np.arange(4).reshape((2, 2)))

In [92]: A
Out[92]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0. 1.]
[2. 3.]]

In [93]: operator_to_vector(A)
Out[93]:
Quantum object: dims = [[[2], [2]], [1]], shape = (4, 1), type = operator-ket
Qobj data =
[[0.]
[2.]
[1.]
[3.]]

Since ℋ ⊗ ℋ is a vector space, linear maps on this space can be represented as matrices, often called super-
operators. Using the Qobj, the spre and spost functions, supermatrices corresponding to left- and right-
multiplication respectively can be quickly constructed.

In [94]: X = sigmax()

In [95]: S = spre(X) * spost(X.dag()) # Represents conjugation by X.

Note that this is done automatically by the to_super function when given type='oper' input.

In [96]: S2 = to_super(X)

In [97]: (S - S2).norm()
Out[97]: 0.0

Quantum objects representing superoperators are denoted by type='super':

In [98]: S
Out[98]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True
Qobj data =
[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]]

Information about superoperators, such as whether they represent completely positive maps, is exposed through
the iscp, istp and iscptp attributes:

In [99]: S.iscp, S.istp, S.iscptp
Out[99]: (True, True, True)

In addition, dynamical generators on this extended space, often called Liouvillian superoperators, can be created
using the liouvillian function. Each of these takes a Hamilonian along with a list of collapse operators, and
returns a type="super" object that can be exponentiated to find the superoperator for that evolution.

In [100]: H = 10 * sigmaz()

In [101]: c1 = destroy(2)

In [102]: L = liouvillian(H, [c1])

(continues on next page)
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In [103]: L
Out[103]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = False
Qobj data =
[[ 0. +0.j 0. +0.j 0. +0.j 1. +0.j]
[ 0. +0.j -0.5+20.j 0. +0.j 0. +0.j]
[ 0. +0.j 0. +0.j -0.5-20.j 0. +0.j]
[ 0. +0.j 0. +0.j 0. +0.j -1. +0.j]]

In [104]: S = (12 * L).expm()

For qubits, a particularly useful way to visualize superoperators is to plot them in the Pauli basis, such that
𝑆𝜇,𝜈 = ⟨⟨𝜎𝜇|𝑆[𝜎𝜈 ]⟩⟩. Because the Pauli basis is Hermitian, 𝑆𝜇,𝜈 is a real number for all Hermitian-preserving
superoperators 𝑆, allowing us to plot the elements of 𝑆 as a Hinton diagram. In such diagrams, positive elements
are indicated by white squares, and negative elements by black squares. The size of each element is indicated by

the size of the corresponding square. For instance, let 𝑆[𝜌] = 𝜎𝑥𝜌𝜎
†
𝑥. Then 𝑆[𝜎𝜇] = 𝜎𝜇 ·

{︃
+1 𝜇 = 0, 𝑥

−1 𝜇 = 𝑦, 𝑧
. We

can quickly see this by noting that the 𝑌 and 𝑍 elements of the Hinton diagram for 𝑆 are negative:
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3.3.7 Choi, Kraus, Stinespring and 𝜒 Representations

In addition to the superoperator representation of quantum maps, QuTiP supports several other useful represen-
tations. First, the Choi matrix 𝐽(Λ) of a quantum map Λ is useful for working with ancilla-assisted process
tomography (AAPT), and for reasoning about properties of a map or channel. Up to normalization, the Choi
matrix is defined by acting Λ on half of an entangled pair. In the column-stacking convention,

𝐽(Λ) = (1⊗ Λ)[|1⟩⟩⟨⟨1|].

In QuTiP, 𝐽(Λ) can be found by calling the to_choi function on a type="super" Qobj.

In [105]: X = sigmax()

In [106]: S = sprepost(X, X)

In [107]: J = to_choi(S)

In [108]: print(J)
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]

In [109]: print(to_choi(spre(qeye(2))))
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True, superrep = choi
Qobj data =
[[1. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 1.]]

If a Qobj instance is already in the Choi superrep, then calling to_choi does nothing:

In [110]: print(to_choi(J))
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]

To get back to the superoperator representation, simply use the to_super function. As with to_choi,
to_super is idempotent:

In [111]: print(to_super(J) - S)
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

In [112]: print(to_super(S))
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True
Qobj data =

(continues on next page)
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[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]]

We can quickly obtain another useful representation from the Choi matrix by taking its eigendecomposition. In
particular, let {𝐴𝑖} be a set of operators such that 𝐽(Λ) =

∑︀
𝑖 |𝐴𝑖⟩⟩⟨⟨𝐴𝑖|. We can write 𝐽(Λ) in this way for any

hermicity-preserving map; that is, for any map Λ such that 𝐽(Λ) = 𝐽†(Λ). These operators then form the Kraus
representation of Λ. In particular, for any input 𝜌,

Λ(𝜌) =
∑︁
𝑖

𝐴𝑖𝜌𝐴
†
𝑖 .

Notice using the column-stacking identity that (𝐶T ⊗𝐴)|𝐵⟩⟩ = |𝐴𝐵𝐶⟩⟩, we have that∑︁
𝑖

(1⊗𝐴𝑖)(1⊗𝐴𝑖)
†|1⟩⟩⟨⟨1| =

∑︁
𝑖

|𝐴𝑖⟩⟩⟨⟨𝐴𝑖| = 𝐽(Λ).

The Kraus representation of a hermicity-preserving map can be found in QuTiP using the to_kraus function.

In [113]: I, X, Y, Z = qeye(2), sigmax(), sigmay(), sigmaz()

In [114]: S = sum([sprepost(P, P) for P in (I, X, Y, Z)]) / 4
.....: print(S)
.....:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True
Qobj data =
[[0.5 0. 0. 0.5]
[0. 0. 0. 0. ]
[0. 0. 0. 0. ]
[0.5 0. 0. 0.5]]

In [115]: J = to_choi(S)
.....: print(J)
.....:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True, superrep = choi
Qobj data =
[[0.5 0. 0. 0. ]
[0. 0.5 0. 0. ]
[0. 0. 0.5 0. ]
[0. 0. 0. 0.5]]

In [116]: print(J.eigenstates()[1])
[Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]
Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket

Qobj data =
[[0.]
[1.]
[0.]
[0.]]
Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket

Qobj data =
[[0.]
[0.]

(continues on next page)
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[1.]
[0.]]
Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket

Qobj data =
[[0.]
[0.]
[0.]
[1.]]]

In [117]: K = to_kraus(S)
.....: print(K)
.....:

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 0. ]
[0. 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = False
Qobj data =
[[0. 0. ]
[0.70710678 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = False
Qobj data =
[[0. 0.70710678]
[0. 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = True
Qobj data =
[[0. 0. ]
[0. 0.70710678]]]

As with the other representation conversion functions, to_kraus checks the superrep attribute of its input,
and chooses an appropriate conversion method. Thus, in the above example, we can also call to_kraus on J.

In [118]: KJ = to_kraus(J)
.....: print(KJ)
.....:

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 0. ]
[0. 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = False
Qobj data =
[[0. 0. ]
[0.70710678 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = False
Qobj data =
[[0. 0.70710678]
[0. 0. ]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
→˓= oper, isherm = True
Qobj data =
[[0. 0. ]
[0. 0.70710678]]]

In [119]: for A, AJ in zip(K, KJ):
.....: print(A - AJ)
.....:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.]]

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

(continues on next page)
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[[0. 0.]
[0. 0.]]

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.]]

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.]]

The Stinespring representation is closely related to the Kraus representation, and consists of a pair of operators 𝐴
and 𝐵 such that for all operators 𝑋 acting on ℋ,

Λ(𝑋) = Tr2(𝐴𝑋𝐵†),

where the partial trace is over a new index that corresponds to the index in the Kraus summation. Conversion to
Stinespring is handled by the to_stinespring function.

In [120]: a = create(2).dag()

In [121]: S_ad = sprepost(a * a.dag(), a * a.dag()) + sprepost(a, a.dag())
.....: S = 0.9 * sprepost(I, I) + 0.1 * S_ad
.....: print(S)
.....:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = False
Qobj data =
[[1. 0. 0. 0.1]
[0. 0.9 0. 0. ]
[0. 0. 0.9 0. ]
[0. 0. 0. 0.9]]

In [122]: A, B = to_stinespring(S)
.....: print(A)
.....: print(B)
.....:

Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ 0. 0.31622777]
[ 0.15151842 0. ]
[ 0. -0.93506452]
[ 0. 0. ]
[ 0. -0.16016975]]

Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ 0. 0.31622777]
[ 0.15151842 0. ]
[ 0. -0.93506452]
[ 0. 0. ]
[ 0. -0.16016975]]

Notice that a new index has been added, such that𝐴 and𝐵 have dimensions [[2, 3], [2]], with the length-3
index representing the fact that the Choi matrix is rank-3 (alternatively, that the map has three Kraus operators).

In [123]: to_kraus(S)
Out[123]:
[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

(continues on next page)
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[[0.98845443 0. ]
[0. 0.93506452]],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[-0.15151842 0. ]
[ 0. 0.16016975]],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0. 0.31622777]
[0. 0. ]]]

In [124]: print(to_choi(S).eigenenergies())
[0. 0.04861218 0.1 1.85138782]

Finally, the last superoperator representation supported by QuTiP is the 𝜒-matrix representation,

Λ(𝜌) =
∑︁
𝛼,𝛽

𝜒𝛼,𝛽𝐵𝛼𝜌𝐵
†
𝛽 ,

where {𝐵𝛼} is a basis for the space of matrices acting on ℋ. In QuTiP, this basis is taken to be the Pauli basis
𝐵𝛼 = 𝜎𝛼/

√
2. Conversion to the 𝜒 formalism is handled by the to_chi function.

In [125]: chi = to_chi(S)
.....: print(chi)
.....:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = True, superrep = chi
Qobj data =
[[3.7+0.j 0. +0.j 0. +0.j 0.1+0.j ]
[0. +0.j 0.1+0.j 0. +0.1j 0. +0.j ]
[0. +0.j 0. -0.1j 0.1+0.j 0. +0.j ]
[0.1+0.j 0. +0.j 0. +0.j 0.1+0.j ]]

One convenient property of the 𝜒 matrix is that the average gate fidelity with the identity map can be read off
directly from the 𝜒00 element:

In [126]: print(average_gate_fidelity(S))
0.9499999999999998

In [127]: print(chi[0, 0] / 4)
(0.925+0j)

Here, the factor of 4 comes from the dimension of the underlying Hilbert space ℋ. As with the superoperator
and Choi representations, the 𝜒 representation is denoted by the superrep, such that to_super, to_choi,
to_kraus, to_stinespring and to_chi all convert from the 𝜒 representation appropriately.

3.3.8 Properties of Quantum Maps

In addition to converting between the different representations of quantum maps, QuTiP also provides attributes
to make it easy to check if a map is completely positive, trace preserving and/or hermicity preserving. Each of
these attributes uses superrep to automatically perform any needed conversions.

In particular, a quantum map is said to be positive (but not necessarily completely positive) if it maps all positive
operators to positive operators. For instance, the transpose map Λ(𝜌) = 𝜌T is a positive map. We run into
problems, however, if we tensor Λ with the identity to get a partial transpose map.

In [128]: rho = ket2dm(bell_state())

In [129]: rho_out = partial_transpose(rho, [0, 1])

(continues on next page)
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.....: print(rho_out.eigenenergies())

.....:
[-0.5 0.5 0.5 0.5]

Notice that even though we started with a positive map, we got an operator out with negative eigenvalues. Com-
plete positivity addresses this by requiring that a map returns positive operators for all positive operators, and does
so even under tensoring with another map. The Choi matrix is very useful here, as it can be shown that a map is
completely positive if and only if its Choi matrix is positive [Wat13]. QuTiP implements this check with the iscp
attribute. As an example, notice that the snippet above already calculates the Choi matrix of the transpose map
by acting it on half of an entangled pair. We simply need to manually set the dims and superrep attributes to
reflect the structure of the underlying Hilbert space and the chosen representation.

In [130]: J = rho_out

In [131]: J.dims = [[[2], [2]], [[2], [2]]]
.....: J.superrep = 'choi'
.....:

In [132]: print(J.iscp)
False

This confirms that the transpose map is not completely positive. On the other hand, the transpose map does satisfy
a weaker condition, namely that it is hermicity preserving. That is, Λ(𝜌) = (Λ(𝜌))† for all 𝜌 such that 𝜌 = 𝜌†. To
see this, we note that (𝜌T)† = 𝜌*, the complex conjugate of 𝜌. By assumption, 𝜌 = 𝜌† = (𝜌*)T, though, such that
Λ(𝜌) = Λ(𝜌†) = 𝜌*. We can confirm this by checking the ishp attribute:

In [133]: print(J.ishp)
True

Next, we note that the transpose map does preserve the trace of its inputs, such that Tr(Λ[𝜌]) = Tr(𝜌) for all 𝜌.
This can be confirmed by the istp attribute:

In [134]: print(J.istp)
False

Finally, a map is called a quantum channel if it always maps valid states to valid states. Formally, a map is a
channel if it is both completely positive and trace preserving. Thus, QuTiP provides a single attribute to quickly
check that this is true.

In [135]: print(J.iscptp)
False

In [136]: print(to_super(qeye(2)).iscptp)
True

3.4 Using Tensor Products and Partial Traces

3.4.1 Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator,
etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system
components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the
coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function qutip.tensor.tensor is used to accomplish this task. This function takes as argument
a collection:
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>>> tensor(op1, op2, op3)

or a list:

>>> tensor([op1, op2, op3])

of state vectors or operators and returns a composite quantum object for the combined Hilbert space. The function
accepts an arbitray number of states or operators as argument. The type returned quantum object is the same as
that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product
of the two single-qubit ground state vectors:

In [1]: tensor(basis(2, 0), basis(2, 0))
Out[1]:
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

or equivalently using the list format:

In [2]: tensor([basis(2, 0), basis(2, 0)])
Out[2]:
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]]

This is straightforward to generalize to more qubits by adding more component state vectors in the argument list
to the qutip.tensor.tensor function, as illustrated in the following example:

In [3]: tensor((basis(2, 0) + basis(2, 1)).unit(),
...: (basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))
...:

Out[3]:
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =
[[0.5]
[0. ]
[0.5]
[0. ]
[0.5]
[0. ]
[0.5]
[0. ]]

This state is slightly more complicated, describing two qubits in a superposition between the up and down states,
while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list of
operators for each component system to the qutip.tensor.tensor function. For example, to form the
operator that represents the simultaneous action of the 𝜎𝑥 operator on two qubits:

In [4]: tensor(sigmax(), sigmax())
Out[4]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =

(continues on next page)
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[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]]

To create operators in a combined Hilbert space that only act only on a single component, we take the tensor prod-
uct of the operator acting on the subspace of interest, with the identity operators corresponding to the components
that are to be unchanged. For example, the operator that represents 𝜎𝑧 on the first qubit in a two-qubit system,
while leaving the second qubit unaffected:

In [5]: tensor(sigmaz(), identity(2))
Out[5]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. -1. 0.]
[ 0. 0. 0. -1.]]

3.4.2 Example: Constructing composite Hamiltonians

The qutip.tensor.tensor function is extensively used when constructing Hamiltonians for composite sys-
tems. Here we’ll look at some simple examples.

Two coupled qubits

First, let’s consider a system of two coupled qubits. Assume that both qubit has equal energy splitting, and that
the qubits are coupled through a 𝜎𝑥 ⊗ 𝜎𝑥 interaction with strength g = 0.05 (in units where the bare qubit energy
splitting is unity). The Hamiltonian describing this system is:

In [6]: H = tensor(sigmaz(), identity(2)) + tensor(identity(2),
...: sigmaz()) + 0.05 * tensor(sigmax(), sigmax())
...:

In [7]: H
Out[7]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 2. 0. 0. 0.05]
[ 0. 0. 0.05 0. ]
[ 0. 0.05 0. 0. ]
[ 0.05 0. 0. -2. ]]

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

In [8]: H = (tensor(sigmaz(), identity(2), identity(2)) +
...: tensor(identity(2), sigmaz(), identity(2)) +
...: tensor(identity(2), identity(2), sigmaz()) +
...: 0.5 * tensor(sigmax(), sigmax(), identity(2)) +
...: 0.25 * tensor(identity(2), sigmax(), sigmax()))
...:

In [9]: H
Out[9]:

(continues on next page)
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Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm
→˓= True
Qobj data =
[[ 3. 0. 0. 0.25 0. 0. 0.5 0. ]
[ 0. 1. 0.25 0. 0. 0. 0. 0.5 ]
[ 0. 0.25 1. 0. 0.5 0. 0. 0. ]
[ 0.25 0. 0. -1. 0. 0.5 0. 0. ]
[ 0. 0. 0.5 0. 1. 0. 0. 0.25]
[ 0. 0. 0. 0.5 0. -1. 0.25 0. ]
[ 0.5 0. 0. 0. 0. 0.25 -1. 0. ]
[ 0. 0.5 0. 0. 0.25 0. 0. -3. ]]

A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-
Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field
(a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_c, respectively, and
the atom-cavity interaction strength g, the Jaynes-Cumming Hamiltonian can be constructed as:

In [10]: N = 10

In [11]: omega_a = 1.0

In [12]: omega_c = 1.25

In [13]: g = 0.05

In [14]: a = tensor(identity(2), destroy(N))

In [15]: sm = tensor(destroy(2), identity(N))

In [16]: sz = tensor(sigmaz(), identity(N))

In [17]: H = 0.5 * omega_a * sz + omega_c * a.dag() * a + g * (a.dag() * sm + a *
→˓sm.dag())

Here N is the number of Fock states included in the cavity mode.

3.4.3 Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of
freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when
one is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves
tracing over the environment leaving only the system of interest. In QuTiP the class method qutip.Qobj.
ptrace is used to take partial traces. qutip.Qobj.ptrace acts on the qutip.Qobj instance for which
it is called, and it takes one argument sel, which is a list of integers that mark the component systems that
should be kept. All other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained
via:

In [18]: psi = tensor(basis(2, 0), basis(2, 1))

In [19]: psi.ptrace(0)
Out[19]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]

(continues on next page)
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[0. 0.]]

In [20]: psi.ptrace(1)
Out[20]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 1.]]

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite
system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

In [21]: psi = tensor((basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))

In [22]: psi
Out[22]:
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.70710678]
[0. ]
[0.70710678]
[0. ]]

In [23]: psi.ptrace(0)
Out[23]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.5]]

In [24]: rho = tensor(ket2dm((basis(2, 0) + basis(2, 1)).unit()), fock_dm(2, 0))

In [25]: rho
Out[25]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.5 0. 0.5 0. ]
[0. 0. 0. 0. ]
[0.5 0. 0.5 0. ]
[0. 0. 0. 0. ]]

In [26]: rho.ptrace(0)
Out[26]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.5]]

3.4.4 Superoperators and Tensor Manipulations

As described in Superoperators and Vectorized Operators, superoperators are operators that act on Liouville
space, the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec :
ℒ(ℋ) → ℋ ⊗ ℋ [Hav03], [Wat13]. To represent superoperators acting on ℒ(ℋ1 ⊗ ℋ2) thus takes some ten-
sor rearrangement to get the desired ordering ℋ1 ⊗ℋ2 ⊗ℋ1 ⊗ℋ2.

In particular, this means that qutip.tensor does not act as one might expect on the results of qutip.
to_super:
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In [27]: A = qeye([2])

In [28]: B = qeye([3])

In [29]: to_super(tensor(A, B)).dims
Out[29]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

In [30]: tensor(to_super(A), to_super(B)).dims
Out[30]: [[[2], [2], [3], [3]], [[2], [2], [3], [3]]]

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter
case, however, each of the Hilbert space indices is listed independently and in the wrong order.

The qutip.super_tensor function performs the needed rearrangement, providing the most direct
analog to qutip.tensor on the underlying Hilbert space. In particular, for any two type="oper"
Qobjs A and B, to_super(tensor(A, B)) == super_tensor(to_super(A), to_super(B))
and operator_to_vector(tensor(A, B)) == super_tensor(operator_to_vector(A),
operator_to_vector(B)). Returning to the previous example:

In [31]: super_tensor(to_super(A), to_super(B)).dims
Out[31]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

The qutip.composite function automatically switches between qutip.tensor and qutip.
super_tensor based on the type of its arguments, such that composite(A, B) returns an appropriate
Qobj to represent the composition of two systems.

In [32]: composite(A, B).dims
Out[32]: [[2, 3], [2, 3]]

In [33]: composite(to_super(A), to_super(B)).dims
Out[33]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator repre-
sentations [WBC11]. In particular, the tensor_contract function allows for contracting one or more pairs
of indices. As detailed in the channel contraction tutorial, this can be used to find superoperators that represent
partial trace maps. Using this functionality, we can construct some quite exotic maps, such as a map from 3 × 3
operators to 2 × 2 operators:

In [34]: tensor_contract(composite(to_super(A), to_super(B)), (1, 3), (4, 6)).dims
Out[34]: [[[2], [2]], [[3], [3]]]

3.5 Time Evolution and Quantum System Dynamics

3.5.1 Dynamics Simulation Results

Important: In QuTiP 2, the results from all of the dynamics solvers are returned as Odedata objects. This unified
and significantly simplified postprocessing of simulation results from different solvers, compared to QuTiP 1.
However, this change also results in the loss of backward compatibility with QuTiP version 1.x. In QuTiP 3, the
Odedata class has been renamed to Result, but for backwards compatibility an alias between Result and Odedata
is provided.
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The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used
for returning the simulation results to the user. This object is a qutip.solver.Result class that stores all
the crucial data needed for analyzing and plotting the results of a simulation. Like the qutip.Qobj class, the
Result class has a collection of properties for storing information. However, in contrast to the Qobj class, this
structure contains no methods, and is therefore nothing but a container object. A generic Result object result
contains the following properties for storing simulation data:

Property Description
result.solver String indicating which solver was used to generate the data.
result.times List/array of times at which simulation data is calculated.
result.expect List/array of expectation values, if requested.
result.states List/array of state vectors/density matrices calculated at times, if requested.
result.
num_expect

The number of expectation value operators in the simulation.

result.
num_collapse

The number of collapse operators in the simulation.

result.ntraj Number of Monte Carlo trajectories run.
result.
col_times

Times at which state collapse occurred. Only for Monte Carlo solver.

result.
col_which

Which collapse operator was responsible for each collapse in in col_times. Only
used by Monte Carlo solver.

result.seeds Seeds used in generating random numbers for Monte Carlo solver.

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not
worry about the simulation details at this stage. Like all solvers, the Monte Carlo solver used in this example
returns an Result object, here called simply result. To see what is contained inside result we can use the
print function:

>>> print(result)
Result object with mcsolve data.
---------------------------------
expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

The first line tells us that this data object was generated from the Monte Carlo solver mcsolve (discussed in
Monte Carlo Solver). The next line (not the --- line of course) indicates that this object contains expectation value
data. Finally, the last line gives the number of expectation value and collapse operators used in the simulation,
along with the number of Monte Carlo trajectories run. Note that the number of trajectories ntraj is only
displayed when using the Monte Carlo solver.

Now we have all the information needed to analyze the simulation results. To access the data for the two expecta-
tion values one can do:

>>> expt0 = result.expect[0]
>>> expt1 = result.expect[1]

Recall that Python uses C-style indexing that begins with zero (i.e., [0] => 1st collapse operator data). Together
with the array of times at which these expectation values are calculated:

>>> times = result.times

we can plot the resulting expectation values:
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>>> plot(times, expt0, times, expt1)
>>> show()

State vectors, or density matrices, as well as col_times and col_which, are accessed in a similar manner,
although typically one does not need an index (i.e [0]) since there is only one list for each of these components.
The one exception to this rule is if you choose to output state vectors from the Monte Carlo solver, in which case
there are ntraj number of state vector arrays.

Saving and Loading Result Objects

The main advantage in using the Result class as a data storage object comes from the simplicity in which sim-
ulation data can be stored and later retrieved. The qutip.fileio.qsave and qutip.fileio.qload
functions are designed for this task. To begin, let us save the data object from the previous section into a file
called “cavity+qubit-data” in the current working directory by calling:

>>> qsave(result, 'cavity+qubit-data')

All of the data results are then stored in a single file of the same name with a “.qu” extension. Therefore, everything
needed to later this data is stored in a single file. Loading the file is just as easy as saving:

>>> stored_result = qload('cavity+qubit-data')
Loaded Result object:
Result object with mcsolve data.
---------------------------------
expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

where stored_result is the new name of the Result object. We can then extract the data and plot in the same
manner as before:

expt0 = stored_result.expect[0]
expt1 = stored_result.expect[1]
times = stored_result.times
plot(times, expt0, times, expt1)
show()

Also see Saving QuTiP Objects and Data Sets for more information on saving quantum objects, as well as arrays
for use in other programs.

3.5.2 Lindblad Master Equation Solver

Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrödinger equation

𝑖~
𝜕

𝜕𝑡
Ψ = 𝐻̂Ψ, (3.1)

where Ψ is the wave function, 𝐻̂ the Hamiltonian, and ~ is Planck’s constant. In general, the Schrödinger equation
is a partial differential equation (PDE) where both Ψ and 𝐻̂ are functions of space and time. For computational
purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian,
and to write the equation in matrix and vector form

𝑖~
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩

where |𝜓⟩ is the state vector and 𝐻 is the matrix representation of the Hamiltonian. This matrix equation can, in
principle, be solved by diagonalizing the Hamiltonian matrix 𝐻 . In practice, however, it is difficult to perform
this diagonalization unless the size of the Hilbert space (dimension of the matrix 𝐻) is small. Analytically, it is
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a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider
dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows
even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance
of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.

The Schrödinger equation, which governs the time-evolution of closed quantum systems, is defined by its Hamil-
tonian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how
Hamiltonians and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-
dissipative) time-evolution of an arbitrary state vector |𝜓0⟩ (psi0) using the QuTiP function qutip.mesolve.
It evolves the state vector and evaluates the expectation values for a set of operators expt_ops at the points
in time in the list times, using an ordinary differential equation solver. Alternatively, we can use the function
qutip.essolve, which uses the exponential-series technique to calculate the time evolution of a system. The
qutip.mesolve and qutip.essolve functions take the same arguments and it is therefore easy switch
between the two solvers.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up
state is calculated, and the expectation values of the 𝜎𝑧 operator evaluated, with the following code

In [1]: H = 2 * np.pi * 0.1 * sigmax()

In [2]: psi0 = basis(2, 0)

In [3]: times = np.linspace(0.0, 10.0, 20)

In [4]: result = sesolve(H, psi0, times, [sigmaz()])

The brackets in the fourth argument is an empty list of collapse operators, since we consider unitary evolution
in this example. See the next section for examples on how dissipation is included by defining a list of collapse
operators.

The function returns an instance of qutip.solver.Result, as described in the previous section Dynamics
Simulation Results. The attribute expect in result is a list of expectation values for the operators that are
included in the list in the fifth argument. Adding operators to this list results in a larger output list returned by the
function (one array of numbers, corresponding to the times in times, for each operator)

In [5]: result = sesolve(H, psi0, times, [sigmaz(), sigmay()])

In [6]: result.expect
Out[6]:
[array([ 1. , 0.78914057, 0.24548559, -0.40169513, -0.8794735 ,

-0.98636142, -0.67728219, -0.08258023, 0.54694721, 0.94581685,
0.94581769, 0.54694945, -0.08257765, -0.67728015, -0.98636097,
-0.87947476, -0.40169736, 0.24548326, 0.78913896, 1. ]),

array([ 0.00000000e+00, -6.14212640e-01, -9.69400240e-01, -9.15773457e-01,
-4.75947849e-01, 1.64593874e-01, 7.35723339e-01, 9.96584419e-01,
8.37167094e-01, 3.24700624e-01, -3.24698160e-01, -8.37165632e-01,
-9.96584633e-01, -7.35725221e-01, -1.64596567e-01, 4.75945525e-01,
9.15772479e-01, 9.69400830e-01, 6.14214701e-01, 2.77159958e-06])]

The resulting list of expectation values can easily be visualized using matplotlib’s plotting functions:

In [7]: H = 2 * np.pi * 0.1 * sigmax()

In [8]: psi0 = basis(2, 0)

In [9]: times = np.linspace(0.0, 10.0, 100)

In [10]: result = sesolve(H, psi0, times, [sigmaz(), sigmay()])

In [11]: fig, ax = subplots()

(continues on next page)
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In [12]: ax.plot(result.times, result.expect[0]);

In [13]: ax.plot(result.times, result.expect[1]);

In [14]: ax.set_xlabel('Time');

In [15]: ax.set_ylabel('Expectation values');

In [16]: ax.legend(("Sigma-Z", "Sigma-Y"));

In [17]: show()

If an empty list of operators is passed as fifth parameter, the qutip.mesolve function returns a qutip.
solver.Result instance that contains a list of state vectors for the times specified in times

In [18]: times = [0.0, 1.0]

In [19]: result = mesolve(H, psi0, times, [], [])

In [20]: result.states
Out[20]:
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]], Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket

Qobj data =
[[0.80901699+0.j ]
[0. -0.58778526j]]]
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Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are
stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions
between energy levels, and to introduce uncertainty in the phase difference between states of the system. The
state of an open quantum system is therefore described in terms of ensemble averaged states using the density
matrix formalism. A density matrix 𝜌 describes a probability distribution of quantum states |𝜓𝑛⟩, in a matrix
representation 𝜌 =

∑︀
𝑛 𝑝𝑛 |𝜓𝑛⟩ ⟨𝜓𝑛|, where 𝑝𝑛 is the classical probability that the system is in the quantum state

|𝜓𝑛⟩. The time evolution of a density matrix 𝜌 is the topic of the remaining portions of this section.

The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to
expand the scope of the system to include the environment. The combined quantum system is then closed, and its
evolution is governed by the von Neumann equation

𝜌̇tot(𝑡) = − 𝑖

~
[𝐻tot, 𝜌tot(𝑡)], (3.2)

the equivalent of the Schrödinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian

𝐻tot = 𝐻sys +𝐻env +𝐻int,

includes the original system Hamiltonian𝐻sys, the Hamiltonian for the environment𝐻env, and a term representing
the interaction between the system and its environment 𝐻int. Since we are only interested in the dynamics of the
system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and
thereby obtain a master equation for the motion of the original system density matrix. The most general trace-
preserving and completely positive form of this evolution is the Lindblad master equation for the reduced density
matrix 𝜌 = Trenv[𝜌tot]

𝜌̇(𝑡) = − 𝑖

~
[𝐻(𝑡), 𝜌(𝑡)] +

∑︁
𝑛

1

2

[︀
2𝐶𝑛𝜌(𝑡)𝐶+

𝑛 − 𝜌(𝑡)𝐶+
𝑛 𝐶𝑛 − 𝐶+

𝑛 𝐶𝑛𝜌(𝑡)
]︀

(3.3)

where the 𝐶𝑛 =
√
𝛾𝑛𝐴𝑛 are collapse operators, and 𝐴𝑛 are the operators through which the environment couples

to the system in 𝐻int, and 𝛾𝑛 are the corresponding rates. The derivation of Eq. (3.13) may be found in several
sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at
the master equation in the form of Eq. (3.13) from physical arguments, and hence perform a calculation in QuTiP:

• Separability: At 𝑡 = 0 there are no correlations between the system and its environment such that the total
density matrix can be written as a tensor product 𝜌𝐼tot(0) = 𝜌𝐼(0) ⊗ 𝜌𝐼env(0).

• Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable throughout
the evolution. These assumptions are justified if the interaction is weak, and if the environment is much
larger than the system. In summary, 𝜌tot(𝑡) ≈ 𝜌(𝑡) ⊗ 𝜌env.

• Markov approximation The time-scale of decay for the environment 𝜏env is much shorter than the smallest
time-scale of the system dynamics 𝜏sys ≫ 𝜏env. This approximation is often deemed a “short-memory
environment” as it requires that environmental correlation functions decay on a time-scale fast compared to
those of the system.

• Secular approximation Stipulates that elements in the master equation corresponding to transition frequen-
cies satisfy |𝜔𝑎𝑏 − 𝜔𝑐𝑑| ≪ 1/𝜏sys, i.e., all fast rotating terms in the interaction picture can be neglected. It
also ignores terms that lead to a small renormalization of the system energy levels. This approximation is
not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is
required for arriving at the Lindblad form (3.13) which is used in qutip.mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.13)
governs the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In
order to ensure that these approximations are not violated, it is important that the decay rates 𝛾𝑛 be smaller than the
minimum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include,
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for example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate
energy levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as relax-
ation and dephasing, it is common to use master equations. In QuTiP, the same function (qutip.mesolve) is
used for evolution both according to the Schrödinger equation and to the master equation, even though these two
equations of motion are very different. The qutip.mesolve function automatically determines if it is suffi-
cient to use the Schrödinger equation (if no collapse operators were given) or if it has to use the master equation
(if collapse operators were given). Note that to calculate the time evolution according to the Schrödinger equation
is easier and much faster (for large systems) than using the master equation, so if possible the solver will fall back
on using the Schrödinger equation.

What is new in the master equation compared to the Schrödinger equation are processes that describe dissipation
in the quantum system due to its interaction with an environment. These environmental interactions are defined
by the operators through which the system couples to the environment, and rates that describe the strength of the
processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process is called a
collapse operator. A list of collapse operators (c_ops) is passed as the fourth argument to the qutip.mesolve
function in order to define the dissipation processes in the master equation. When the c_ops isn’t empty, the
qutip.mesolve function will use the master equation instead of the unitary Schrödinger equation.

Using the example with the spin dynamics from the previous section, we can easily add a relaxation process (de-
scribing the dissipation of energy from the spin to its environment), by adding np.sqrt(0.05) * sigmax()
to the previously empty list in the fourth parameter to the qutip.mesolve function:

In [21]: times = np.linspace(0.0, 10.0, 100)

In [22]: result = mesolve(H, psi0, times, [np.sqrt(0.05) * sigmax()], [sigmaz(),
→˓sigmay()])

In [23]: fig, ax = subplots()

In [24]: ax.plot(times, result.expect[0]);

In [25]: ax.plot(times, result.expect[1]);

In [26]: ax.set_xlabel('Time');

In [27]: ax.set_ylabel('Expectation values');

In [28]: ax.legend(("Sigma-Z", "Sigma-Y"));

In [29]: show()
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Here, 0.05 is the rate and the operator 𝜎𝑥 (qutip.operators.sigmax) describes the dissipation process.

Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity through
a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the atom
initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines
following code

In [30]: times = np.linspace(0.0, 10.0, 200)

In [31]: psi0 = tensor(fock(2,0), fock(10, 5))

In [32]: a = tensor(qeye(2), destroy(10))

In [33]: sm = tensor(destroy(2), qeye(10))

In [34]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)
....:

In [35]: result = mesolve(H, psi0, times, [np.sqrt(0.1)*a], [a.dag()*a, sm.
→˓dag()*sm])

In [36]: figure()
Out[36]: <Figure size 640x480 with 0 Axes>

In [37]: plot(times, result.expect[0])
Out[37]: [<matplotlib.lines.Line2D at 0x1a25f2b710>]

In [38]: plot(times, result.expect[1])
Out[38]: [<matplotlib.lines.Line2D at 0x1a259aab70>]

In [39]: xlabel('Time')
Out[39]: Text(0.5,0,'Time')

In [40]: ylabel('Expectation values')
Out[40]: Text(0,0.5,'Expectation values')

(continues on next page)
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In [41]: legend(("cavity photon number", "atom excitation probability"))
Out[41]: <matplotlib.legend.Legend at 0x1a26094860>

In [42]: show()

3.5.3 Monte Carlo Solver

Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quan-
tum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating
an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a
series of quantum jumps in the system wave function, conditioned on the increase in information gained about the
state of the system via the environmental measurements. In general, this evolution is governed by the Schrödinger
equation with a non-Hermitian effective Hamiltonian

𝐻eff = 𝐻sys −
𝑖~
2

∑︁
𝑖

𝐶+
𝑛 𝐶𝑛, (3.4)

where again, the 𝐶𝑛 are collapse operators, each corresponding to a separate irreversible process with rate 𝛾𝑛.
Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave
function, that to first-order in a small time 𝛿𝑡, is given by ⟨𝜓(𝑡+ 𝛿𝑡)|𝜓(𝑡+ 𝛿𝑡)⟩ = 1 − 𝛿𝑝 where

𝛿𝑝 = 𝛿𝑡
∑︁
𝑛

⟨︀
𝜓(𝑡)|𝐶+

𝑛 𝐶𝑛|𝜓(𝑡)
⟩︀
, (3.5)

and 𝛿𝑡 is such that 𝛿𝑝 ≪ 1. With a probability of remaining in the state |𝜓(𝑡+ 𝛿𝑡)⟩ given by 1 − 𝛿𝑝, the
corresponding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum
jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave
function undergoes a jump into a state defined by projecting |𝜓(𝑡)⟩ using the collapse operator 𝐶𝑛 corresponding
to the measurement

|𝜓(𝑡+ 𝛿𝑡)⟩ = 𝐶𝑛 |𝜓(𝑡)⟩ /
⟨︀
𝜓(𝑡)|𝐶+

𝑛 𝐶𝑛|𝜓(𝑡)
⟩︀1/2

. (3.6)
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If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the 𝑖th-operator
𝐶𝑖 is given by

𝑃𝑖(𝑡) =
⟨︀
𝜓(𝑡)|𝐶+

𝑖 𝐶𝑖|𝜓(𝑡)
⟩︀
/𝛿𝑝. (3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to
simulate a single realization of a quantum system. Starting from a pure state |𝜓(0)⟩:

• I: Choose a random number 𝑟 between zero and one, representing the probability that a quantum jump
occurs.

• II: Integrate the Schrödinger equation, using the effective Hamiltonian (3.4) until a time 𝜏 such that the
norm of the wave function satisfies ⟨𝜓(𝜏) |𝜓(𝜏)⟩ = 𝑟, at which point a jump occurs.

• III: The resultant jump projects the system at time 𝜏 into one of the renormalized states given by Eq. (3.6).
The corresponding collapse operator 𝐶𝑛 is chosen such that 𝑛 is the smallest integer satisfying:

𝑛∑︁
𝑖=1

𝑃𝑛(𝜏) ≥ 𝑟 (3.8)

where the individual 𝑃𝑛 are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition,
normalized to unity.

• IV: Using the renormalized state from step III as the new initial condition at time 𝜏 , draw a new random
number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the qutip.mcsolve function. It takes nearly the same
arguments as the qutip.mesolve function for master-equation evolution, except that the initial state must
be a ket vector, as oppose to a density matrix, and there is an optional keyword parameter ntraj that defines
the number of stochastic trajectories to be simulated. By default, ntraj=500 indicating that 500 Monte Carlo
trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let’s again consider the case of a
two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this case
we invoke the qutip.mcsolve function instead of qutip.mesolve

In [1]: times = np.linspace(0.0, 10.0, 200)

In [2]: psi0 = tensor(fock(2, 0), fock(10, 5))

In [3]: a = tensor(qeye(2), destroy(10))

In [4]: sm = tensor(destroy(2), qeye(10))

In [5]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + 2 * np.pi * 0.25
→˓* (sm * a.dag() + sm.dag() * a)

In [6]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag()
→˓* sm])
10.0%. Run time: 1.06s. Est. time left: 00:00:00:09
20.0%. Run time: 2.10s. Est. time left: 00:00:00:08
30.0%. Run time: 3.14s. Est. time left: 00:00:00:07
40.0%. Run time: 4.21s. Est. time left: 00:00:00:06
50.0%. Run time: 5.29s. Est. time left: 00:00:00:05
60.0%. Run time: 6.45s. Est. time left: 00:00:00:04
70.0%. Run time: 7.62s. Est. time left: 00:00:00:03
80.0%. Run time: 8.80s. Est. time left: 00:00:00:02
90.0%. Run time: 9.91s. Est. time left: 00:00:00:01
100.0%. Run time: 11.04s. Est. time left: 00:00:00:00
Total run time: 11.14s

(continues on next page)
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In [7]: figure()
Out[7]: <Figure size 640x480 with 0 Axes>

In [8]: plot(times, data.expect[0], times, data.expect[1])
Out[8]:
[<matplotlib.lines.Line2D at 0x1a26510b00>,
<matplotlib.lines.Line2D at 0x1a26510048>]

In [9]: title('Monte Carlo time evolution')
Out[9]: Text(0.5,1,'Monte Carlo time evolution')

In [10]: xlabel('Time')
Out[10]: Text(0.5,0,'Time')

In [11]: ylabel('Expectation values')
Out[11]: Text(0,0.5,'Expectation values')

In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0x1a2601f208>

In [13]: show()

The advantage of the Monte Carlo method over the master equation approach is that only the state vector is
required to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system
this becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such
systems. For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and
initial states takes almost 7 times longer using the master equation rather than Monte Carlo approach with the
default number of trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory
as well. However, for small systems, the added overhead of averaging a large number of stochastic trajectories
to obtain the open system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit
of the minor (in this case) memory saving. Master equation methods are therefore generally more efficient when
Hilbert space sizes are on the order of a couple of hundred states or smaller.

Like the master equation solver qutip.mesolve, the Monte Carlo solver returns a qutip.solver.Result
object consisting of expectation values, if the user has defined expectation value operators in the 5th argument to
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mcsolve, or state vectors if no expectation value operators are given. If state vectors are returned, then the
qutip.solver.Result returned by qutip.mcsolve will be an array of length ntraj, with each element
containing an array of ket-type qobjs with the same number of elements as times. Furthermore, the output
qutip.solver.Result object will also contain a list of times at which collapse occurred, and which collapse
operators did the collapse, in the col_times and col_which properties, respectively.

Changing the Number of Trajectories

As mentioned earlier, by default, the mcsolve function runs 500 trajectories. This value was chosen because it
gives good accuracy, Monte Carlo errors scale as 1/𝑛 where 𝑛 is the number of trajectories, and simultaneously
does not take an excessive amount of time to run. However, like many other options in QuTiP you are free to
change the number of trajectories to fit your needs. If we want to run 1000 trajectories in the above example, we
can simply modify the call to mcsolve like:

In [14]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag()
→˓* sm], ntraj=1000)
10.0%. Run time: 2.18s. Est. time left: 00:00:00:19
20.0%. Run time: 4.34s. Est. time left: 00:00:00:17
30.0%. Run time: 6.60s. Est. time left: 00:00:00:15
40.0%. Run time: 8.84s. Est. time left: 00:00:00:13
50.0%. Run time: 11.07s. Est. time left: 00:00:00:11
60.0%. Run time: 13.39s. Est. time left: 00:00:00:08
70.0%. Run time: 16.12s. Est. time left: 00:00:00:06
80.0%. Run time: 18.32s. Est. time left: 00:00:00:04
90.0%. Run time: 20.55s. Est. time left: 00:00:00:02
100.0%. Run time: 22.86s. Est. time left: 00:00:00:00
Total run time: 22.90s

where we have added the keyword argument ntraj=1000 at the end of the inputs. Now, the Monte Carlo solver
will calculate expectation values for both operators, a.dag() * a, sm.dag() * sm averaging over 1000
trajectories. Sometimes one is also interested in seeing how the Monte Carlo trajectories converge to the master
equation solution by calculating expectation values over a range of trajectory numbers. If, for example, we want
to average over 1, 10, 100, and 1000 trajectories, then we can input this into the solver using:

In [15]: ntraj = [1, 10, 100, 1000]

Keep in mind that the input list must be in ascending order since the total number of trajectories run by mcsolve
will be calculated using the last element of ntraj. In this case, we need to use an extra index when getting
the expectation values from the qutip.solver.Result object returned by mcsolve. In the above example
using:

In [16]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag()
→˓* sm], ntraj=[1, 10, 100, 1000])
10.0%. Run time: 2.39s. Est. time left: 00:00:00:21
20.0%. Run time: 5.09s. Est. time left: 00:00:00:20
30.0%. Run time: 7.60s. Est. time left: 00:00:00:17
40.0%. Run time: 9.92s. Est. time left: 00:00:00:14
50.0%. Run time: 12.48s. Est. time left: 00:00:00:12
60.0%. Run time: 14.84s. Est. time left: 00:00:00:09
70.0%. Run time: 17.22s. Est. time left: 00:00:00:07
80.0%. Run time: 19.68s. Est. time left: 00:00:00:04
90.0%. Run time: 21.98s. Est. time left: 00:00:00:02
100.0%. Run time: 24.40s. Est. time left: 00:00:00:00
Total run time: 24.50s

we can extract the relevant expectation values using:

In [17]: expt1 = data.expect[0]

In [18]: expt10 = data.expect[1]

(continues on next page)
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In [19]: expt100 = data.expect[2]

In [20]: expt1000 = data.expect[3]

The Monte Carlo solver also has many available options that can be set using the qutip.solver.Options
class as discussed in Setting Options for the Dynamics Solvers.

Reusing Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In order to solve a given simulation as fast as possible, the solvers in QuTiP take the given input operators and
break them down into simpler components before passing them on to the ODE solvers. Although these operations
are reasonably fast, the time spent organizing data can become appreciable when repeatedly solving a system over,
for example, many different initial conditions. In cases such as this, the Hamiltonian and other operators may be
reused after the initial configuration, thus speeding up calculations. Note that, unless you are planning to reuse the
data many times, this functionality will not be very useful.

To turn on the “reuse” functionality we must set the rhs_reuse=True flag in the qutip.solver.Options:

In [21]: options = Options(rhs_reuse=True)

A full account of this feature is given in Setting Options for the Dynamics Solvers. Using the previous example, we
will calculate the dynamics for two different initial states, with the Hamiltonian data being reused on the second
call

In [22]: times = np.linspace(0.0, 10.0, 200)

In [23]: psi0 = tensor(fock(2, 0), fock(10, 5))

In [24]: a = tensor(qeye(2), destroy(10))

In [25]: sm = tensor(destroy(2), qeye(10))

In [26]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)
....:

In [27]: data1 = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.
→˓dag() * sm])
10.0%. Run time: 1.27s. Est. time left: 00:00:00:11
20.0%. Run time: 2.39s. Est. time left: 00:00:00:09
30.0%. Run time: 3.58s. Est. time left: 00:00:00:08
40.0%. Run time: 5.01s. Est. time left: 00:00:00:07
50.0%. Run time: 6.26s. Est. time left: 00:00:00:06
60.0%. Run time: 7.40s. Est. time left: 00:00:00:04
70.0%. Run time: 8.52s. Est. time left: 00:00:00:03
80.0%. Run time: 9.60s. Est. time left: 00:00:00:02
90.0%. Run time: 10.71s. Est. time left: 00:00:00:01
100.0%. Run time: 11.83s. Est. time left: 00:00:00:00
Total run time: 11.85s

In [28]: psi1 = tensor(fock(2, 0), coherent(10, 2 - 1j))

In [29]: opts = Options(rhs_reuse=True) # Run a second time, reusing RHS

(continues on next page)
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In [30]: data2 = mcsolve(H, psi1, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.
→˓dag() * sm], options=opts)
10.0%. Run time: 2.08s. Est. time left: 00:00:00:18
20.0%. Run time: 4.09s. Est. time left: 00:00:00:16
30.0%. Run time: 6.09s. Est. time left: 00:00:00:14
40.0%. Run time: 8.05s. Est. time left: 00:00:00:12
50.0%. Run time: 10.10s. Est. time left: 00:00:00:10
60.0%. Run time: 12.15s. Est. time left: 00:00:00:08
70.0%. Run time: 14.20s. Est. time left: 00:00:00:06
80.0%. Run time: 16.21s. Est. time left: 00:00:00:04
90.0%. Run time: 18.26s. Est. time left: 00:00:00:02
100.0%. Run time: 20.32s. Est. time left: 00:00:00:00
Total run time: 20.35s

In [31]: figure()
Out[31]: <Figure size 640x480 with 0 Axes>

In [32]: plot(times, data1.expect[0], times, data1.expect[1], lw=2)
Out[32]:
[<matplotlib.lines.Line2D at 0x1a25f56048>,
<matplotlib.lines.Line2D at 0x1a25f563c8>]

In [33]: plot(times, data2.expect[0], '--', times, data2.expect[1], '--', lw=2)
Out[33]:
[<matplotlib.lines.Line2D at 0x1a2672e828>,
<matplotlib.lines.Line2D at 0x1a2672eeb8>]

In [34]: title('Monte Carlo time evolution')
Out[34]: Text(0.5,1,'Monte Carlo time evolution')

In [35]: xlabel('Time', fontsize=14)
Out[35]: Text(0.5,0,'Time')

In [36]: ylabel('Expectation values', fontsize=14)
Out[36]: Text(0,0.5,'Expectation values')

In [37]: legend(("cavity photon number", "atom excitation probability"))
Out[37]: <matplotlib.legend.Legend at 0x1a25e76dd8>

In [38]: show()
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In addition to the initial state, one may reuse the Hamiltonian data when changing the number of trajectories
ntraj or simulation times times. The reusing of Hamiltonian data is also supported for time-dependent Hamil-
tonians. See Solving Problems with Time-dependent Hamiltonians for further details.

3.5.4 Stochastic Solver - Photocurrent

Photocurrent method, like monte-carlo method, allows for simulating an individual realization of the system evo-
lution under continuous measurement.

Closed system

Photocurrent evolution have the state evolve deterministically between quantum jumps. During the deterministic
part, the system evolve by schrodinger equation with a non-hermitian, norm conserving effective Hamiltonian.

𝐻eff = 𝐻sys +
𝑖~
2

(︃
−
∑︁
𝑛

𝐶+
𝑛 𝐶𝑛 + |𝐶𝑛𝜓|2

)︃
. (3.9)

With 𝐶𝑛, the collapse operators. This effective Hamiltonian is equivalent to the monte-carlo effective Hamiltonian
with an extra term to keep the state normalized. At each time step of 𝛿𝑡, the wave function has a probability

𝛿𝑝𝑛 =
⟨︀
𝜓(𝑡)|𝐶+

𝑛 𝐶𝑛|𝜓(𝑡)
⟩︀
𝛿𝑡 (3.10)

of making a quantum jump. 𝛿𝑡 must be chosen small enough to keep that probability small 𝛿𝑝 << 1. If multiple
jumps happen at the same time step, the state become unphysical. Each jump result in a sharp variation of the
state by,

𝛿𝜓 =

(︂
𝐶𝑛𝜓

|𝐶𝑛𝜓|
− 𝜓

)︂
(3.11)

The basic photocurrent method directly integrates these equations to the first-order. Starting from a state |𝜓(0)⟩,
it evolves the state according to

𝛿𝜓(𝑡) = −𝑖𝐻sys𝜓(𝑡)𝛿𝑡+
∑︁
𝑛

(︃
−𝐶

+
𝑛 𝐶𝑛

2
𝜓(𝑡)𝛿𝑡+

|𝐶𝑛𝜓|2

2
𝛿𝑡+ 𝛿𝑁𝑛

(︂
𝐶𝑛𝜓

|𝐶𝑛𝜓|
− 𝜓

)︂)︃
, (3.12)
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for each time-step. Here 𝛿𝑁 = 1 with a probability of 𝛿𝜔 and 𝛿𝑁𝑛 = 0 with a probability of 1 − 𝛿𝜔.

Trajectories obtained with this algorithm are equivalent to those obtained with monte-carlo evolution (up to
𝑂(𝛿𝑡2)). In most cases, qutip.mcsolve is more efficient than qutip.photocurrent_sesolve.

Open system

Photocurrent approach allows to obtain trajectories for a system with both measured and dissipative interaction
with the bath. The system evolves according to the master equation between jumps with a modified liouvillian

𝐿eff(𝜌(𝑡)) = 𝐿sys(𝜌(𝑡)) +
∑︁
𝑛

(︀
tr
(︀
C+

n Cn𝜌C+
n Cn

)︀
− C+

n Cn𝜌C+
n Cn

)︀
, (3.13)

with the probability of jumps in a time step 𝛿𝑡 given by

𝛿𝑝 = tr
(︀
C𝜌C+

)︀
𝛿t. (3.14)

After a jump, the density matrix become

𝜌′ =
𝐶𝜌𝐶+

tr (C𝜌C+)
.

The evolution of the system at each time step if thus given by

𝜌(𝑡+ 𝛿𝑡) = 𝜌(𝑡) + 𝐿eff(𝜌)𝛿𝑡+ 𝛿𝑁

(︂
𝐶𝜌𝐶+

tr (C𝜌C+)
− 𝜌

)︂
. (3.15)

3.5.5 Stochastic Solver

Homodyne detection

Homodyne detection is an extension of the photocurrent method where the output is mixed with a strong external
source allowing to get information about the phase of the system. With this method, the resulting detection rate
depends is

: 𝑙𝑎𝑏𝑒𝑙 : 𝑗𝑢𝑚𝑝𝑟𝑎𝑡𝑒

𝜏 = 𝑡𝑟
(︀
(𝛾2 + 𝛾(𝐶 + 𝐶†) + 𝐶†𝐶)𝜌

)︀
With 𝛾, the strength of the external beam and𝐶 the collapse operator. When the beam is very strong (𝛾 >> 𝐶†𝐶),
the rate becomes a constant term plus a term proportional to the quadrature of the system.

Closed system

In closed systems, the resulting stochastic differential equation is

𝛿𝜓(𝑡) = −𝑖𝐻𝜓(𝑡)𝛿𝑡−
∑︁
𝑛

(︂
𝐶+

𝑛 𝐶𝑛

2
− 𝑒𝑛

2
𝐶𝑛 +

𝑒2𝑛
8

)︂
𝜓𝛿𝑡+

∑︁
𝑛

(︁
𝐶𝑛 − 𝑒𝑛

2

)︁
𝜓𝛿𝜔 (3.16)

with

: 𝑙𝑎𝑏𝑒𝑙 : 𝑗𝑢𝑚𝑝𝑟𝑎𝑡𝑒

𝑒𝑛 =
⟨︀
𝜓(𝑡)|𝐶𝑛 + 𝐶+

𝑛 |𝜓(𝑡)
⟩︀

Here 𝛿𝜔 is a Wiener increment.

In QuTiP, this is available with the function ssesolve.
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In [1]: times = np.linspace(0.0, 10.0, 201)

In [2]: psi0 = tensor(fock(2, 0), fock(10, 5))

In [3]: a = tensor(qeye(2), destroy(10))

In [4]: sm = tensor(destroy(2), qeye(10))

In [5]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + 2 * np.pi * 0.25
→˓* (sm * a.dag() + sm.dag() * a)

In [6]: data = ssesolve(H, psi0, times, sc_ops=[np.sqrt(0.1) * a], e_ops=[a.dag()
→˓* a, sm.dag() * sm], method="homodyne")
Total run time: 0.01s

In [7]: figure()
Out[7]: <Figure size 640x480 with 0 Axes>

In [8]: plot(times, data.expect[0], times, data.expect[1])
Out[8]:
[<matplotlib.lines.Line2D at 0x1a2602d748>,
<matplotlib.lines.Line2D at 0x1a2602d860>]

In [9]: title('Homodyne time evolution')
Out[9]: Text(0.5,1,'Homodyne time evolution')

In [10]: xlabel('Time')
Out[10]: Text(0.5,0,'Time')

In [11]: ylabel('Expectation values')
Out[11]: Text(0,0.5,'Expectation values')

In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0x1a22d20fd0>

In [13]: show()
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Open system

In open systems, 2 types of collapse operators are considered, 𝑆𝑖 represent the dissipation in the environment, 𝐶𝑖

are monitored operators. The deterministic part of the evolution is the liouvillian with both types of collapses

𝐿(𝜌(𝑡)) = −𝑖[𝐻(𝑡), 𝜌(𝑡)] +
∑︁
𝑛

𝐷(𝑆𝑛, 𝜌) +
∑︁
𝑖

𝐷(𝐶𝑖, 𝜌), (3.17)

with

𝐷(𝐶, 𝜌) =
1

2

[︀
2𝐶𝜌(𝑡)𝐶+ − 𝜌(𝑡)𝐶+𝐶 − 𝐶+𝐶𝜌(𝑡)

]︀
. (3.18)

The stochastic part is given by

𝑑2 =
(︀
𝐶𝜌(𝑡) + 𝜌(𝑡)𝐶+ − tr

(︀
C × 𝜌+ 𝜌× C+

)︀
𝜌(t)

)︀
, (3.19)

resulting in the stochastic differential equation

𝛿𝜌(𝑡) = 𝐿(𝜌(𝑡))𝛿𝑡+ 𝑑2𝛿𝜔 (3.20)

The function smesolve covert these cases in QuTiP.

Heterodyne detection

With heterodyne detection, two measurements are made in order to obtain information about 2 orthogonal quadra-
tures at once.

3.5.6 Solving Problems with Time-dependent Hamiltonians

Methods for Writing Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described
by time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamilto-
nian, or the collapse operators describing coupling to the environment, and sometimes both components might de-
pend on time. The time-evolutions solvers qutip.mesolve, qutip.mcsolve, qutip.sesolve, qutip.
brmesolve qutip.ssesolve, qutip.photocurrent_sesolve, qutip.smesolve, and qutip.
photocurrent_mesolve are all capable of handling time-dependent Hamiltonians and collapse terms. There
are, in general, three different ways to implement time-dependent problems in QuTiP:

1. Function based: Hamiltonian / collapse operators expressed using [qobj, func] pairs, where the time-
dependent coefficients of the Hamiltonian (or collapse operators) are expressed using Python functions.

2. String (Cython) based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, string]
pairs, where the time-dependent coefficients are represented as strings. The resulting Hamiltonian is then
compiled into C code using Cython and executed.

3. Array Based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, np.array] pairs.
The arrays are 1 dimensional and dtype are complex or float. They must contain one value for each time in
the tlist given to the solver. Cubic spline interpolation will be used between the given times.

4. Hamiltonian function (outdated): The Hamiltonian is itself a Python function with time-dependence.
Collapse operators must be time independent using this input format.

Give the multiple choices of input style, the first question that arrises is which option to choose? In short, the
function based method (option #1) is the most general, allowing for essentially arbitrary coefficients expressed
via user defined functions. However, by automatically compiling your system into C++ code, the second option
(string based) tends to be more efficient and will run faster [This is also the only format that is supported in
the qutip.brmesolve solver]. Of course, for small system sizes and evolution times, the difference will
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be minor. Although this method does not support all time-dependent coefficients that one can think of, it does
support essentially all problems that one would typically encounter. Time-dependent coefficients using any of the
following functions, or combinations thereof (including constants) can be compiled directly into C++-code:

'abs', 'acos', 'acosh', 'arg', 'asin', 'asinh', 'atan', 'atanh', 'conj',
'cos', 'cosh','exp', 'erf', 'zerf', 'imag', 'log', 'log10', 'norm', 'pi',
'proj', 'real', 'sin', 'sinh', 'sqrt', 'tan', 'tanh'

In addition, QuTiP supports cubic spline based interpolation functions [Modeling Non-Analytic and/or Experi-
mental Time-Dependent Parameters using Interpolating Functions].

If you require mathematical functions other than those listed above, it is possible to call any of the functions in
the NumPy library using the prefix np. before the function name in the string, i.e 'np.sin(t)' and scipy.
special imported as spe. This includes a wide range of functionality, but comes with a small overhead created
by going from C++->Python->C++.

Finally option #4, expressing the Hamiltonian as a Python function, is the original method for time dependence in
QuTiP 1.x. However, this method is somewhat less efficient then the previously mentioned methods. However, in
contrast to the other options this method can be used in implementing time-dependent Hamiltonians that cannot
be expressed as a function of constant operators with time-dependent coefficients.

A collection of examples demonstrating the simulation of time-dependent problems can be found on the tutorials
web page.

Function Based Time Dependence

A very general way to write a time-dependent Hamiltonian or collapse operator is by using Python functions as
the time-dependent coefficients. To accomplish this, we need to write a Python function that returns the time-
dependent coefficient. Additionally, we need to tell QuTiP that a given Hamiltonian or collapse operator should
be associated with a given Python function. To do this, one needs to specify operator-function pairs in list format:
[Op, py_coeff], where Op is a given Hamiltonian or collapse operator and py_coeff is the name of the
Python function representing the coefficient. With this format, the form of the Hamiltonian for both mesolve
and mcsolve is:

>>> H = [H0, [H1, py_coeff1], [H2, py_coeff2], ...]

where H0 is a time-independent Hamiltonian, while H1,``H2``, are time dependent. The same format can be used
for collapse operators:

>>> c_ops = [[C0, py_coeff0], C1, [C2, py_coeff2], ...]

Here we have demonstrated that the ordering of time-dependent and time-independent terms does not matter. In
addition, any or all of the collapse operators may be time dependent.

Note: While, in general, you can arrange time-dependent and time-independent terms in any order you like, it is
best to place all time-independent terms first.

As an example, we will look at an example that has a time-dependent Hamiltonian of the form 𝐻 = 𝐻0− 𝑓(𝑡)𝐻1

where 𝑓(𝑡) is the time-dependent driving strength given as 𝑓(𝑡) = 𝐴 exp
[︁
− (𝑡/𝜎)

2
]︁
. The follow code sets up the

problem

In [1]: ustate = basis(3, 0)

In [2]: excited = basis(3, 1)

In [3]: ground = basis(3, 2)

In [4]: N = 2 # Set where to truncate Fock state for cavity

(continues on next page)
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(continued from previous page)

In [5]: sigma_ge = tensor(qeye(N), ground * excited.dag()) # |g><e|

In [6]: sigma_ue = tensor(qeye(N), ustate * excited.dag()) # |u><e|

In [7]: a = tensor(destroy(N), qeye(3))

In [8]: ada = tensor(num(N), qeye(3))

In [9]: c_ops = [] # Build collapse operators

In [10]: kappa = 1.5 # Cavity decay rate

In [11]: c_ops.append(np.sqrt(kappa) * a)

In [12]: gamma = 6 # Atomic decay rate

In [13]: c_ops.append(np.sqrt(5*gamma/9) * sigma_ue) # Use Rb branching ratio of 5/
→˓9 e->u

In [14]: c_ops.append(np.sqrt(4*gamma/9) * sigma_ge) # 4/9 e->g

In [15]: t = np.linspace(-15, 15, 100) # Define time vector

In [16]: psi0 = tensor(basis(N, 0), ustate) # Define initial state

In [17]: state_GG = tensor(basis(N, 1), ground) # Define states onto which to
→˓project

In [18]: sigma_GG = state_GG * state_GG.dag()

In [19]: state_UU = tensor(basis(N, 0), ustate)

In [20]: sigma_UU = state_UU * state_UU.dag()

In [21]: g = 5 # coupling strength

In [22]: H0 = -g * (sigma_ge.dag() * a + a.dag() * sigma_ge) # time-independent
→˓term

In [23]: H1 = (sigma_ue.dag() + sigma_ue) # time-dependent term

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify a
single Python function for the coefficient 𝑓(𝑡). In this case, one can simply do

In [24]: def H1_coeff(t, args):
....: return 9 * np.exp(-(t / 5.) ** 2)
....:

In this case, the return value dependents only on time. However, when specifying Python functions for coefficients,
the function must have (t,args) as the input variables, in that order. Having specified our coefficient function,
we can now specify the Hamiltonian in list format and call the solver (in this case qutip.mesolve)

In [25]: H = [H0,[H1,H1_coeff]]

In [26]: output = mesolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])

We can call the Monte Carlo solver in the exact same way (if using the default ntraj=500):

In [27]: output = mcsolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])
10.0%. Run time: 0.32s. Est. time left: 00:00:00:02
20.0%. Run time: 0.61s. Est. time left: 00:00:00:02

(continues on next page)
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(continued from previous page)

30.0%. Run time: 0.91s. Est. time left: 00:00:00:02
40.0%. Run time: 1.19s. Est. time left: 00:00:00:01
50.0%. Run time: 1.49s. Est. time left: 00:00:00:01
60.0%. Run time: 1.78s. Est. time left: 00:00:00:01
70.0%. Run time: 2.07s. Est. time left: 00:00:00:00
80.0%. Run time: 2.35s. Est. time left: 00:00:00:00
90.0%. Run time: 2.64s. Est. time left: 00:00:00:00
100.0%. Run time: 2.93s. Est. time left: 00:00:00:00
Total run time: 3.04s

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however
will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we
can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

In [28]: kappa = 0.5

In [29]: def col_coeff(t, args): # coefficient function
....: return np.sqrt(kappa * np.exp(-t))
....:

In [30]: N = 10 # number of basis states

In [31]: a = destroy(N)

In [32]: H = a.dag() * a # simple HO

In [33]: psi0 = basis(N, 9) # initial state

In [34]: c_ops = [[a, col_coeff]] # time-dependent collapse term

In [35]: times = np.linspace(0, 10, 100)

In [36]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a])

Using the args variable

In the previous example we hardcoded all of the variables, driving amplitude 𝐴 and width 𝜎, with their numerical
values. This is fine for problems that are specialized, or that we only want to run once. However, in many cases,
we would like to change the parameters of the problem in only one location (usually at the top of the script), and
not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this using
the keyword args as an input to the solvers. For instance, instead of explicitly writing 9 for the amplitude and 5
for the width of the gaussian driving term, we can make us of the args variable

In [37]: def H1_coeff(t, args):
....: return args['A'] * np.exp(-(t/args['sigma'])**2)
....:

or equivalently,

In [38]: def H1_coeff(t, args):
....: A = args['A']
....: sig = args['sigma']
....: return A * np.exp(-(t / sig) ** 2)
....:

where args is a Python dictionary of key: value pairs args = {'A': a, 'sigma': b}where a and
b are the two parameters for the amplitude and width, respectively. Of course, we can always hardcode the values
in the dictionary as well args = {'A': 9, 'sigma': 5}, but there is much more flexibility by using
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variables in args. To let the solvers know that we have a set of args to pass we append the args to the end of
the solver input:

In [39]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args={'A': 9,
→˓'sigma': 5})

or to keep things looking pretty

In [40]: args = {'A': 9, 'sigma': 5}

In [41]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args=args)

Once again, the Monte Carlo solver qutip.mcsolve works in an identical manner.

String Format Method

Note: You must have Cython installed on your computer to use this format. See Installation for instructions on
installing Cython.

The string-based time-dependent format works in a similar manner as the previously discussed Python function
method. That being said, the underlying code does something completely different. When using this format,
the strings used to represent the time-dependent coefficients, as well as Hamiltonian and collapse operators, are
rewritten as Cython code using a code generator class and then compiled into C code. The details of this meta-
programming will be published in due course. however, in short, this can lead to a substantial reduction in time
for complex time-dependent problems, or when simulating over long intervals.

Like the previous method, the string-based format uses a list pair format [Op, str] where str is now a string
representing the time-dependent coefficient. For our first example, this string would be '9 * exp(-(t / 5.)

** 2)'. The Hamiltonian in this format would take the form:

In [42]: H = [H0, [H1, '9 * exp(-(t / 5) ** 2)']]

Notice that this is a valid Hamiltonian for the string-based format as exp is included in the above list of suitable
functions. Calling the solvers is the same as before:

In [43]: output = mesolve(H, psi0, t, c_ops, [a.dag() * a])

We can also use the args variable in the same manner as before, however we must rewrite our string term to read:
'A * exp(-(t / sig) ** 2)'

In [44]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]

In [45]: args = {'A': 9, 'sig': 5}

In [46]: output = mesolve(H, psi0, times, c_ops, [a.dag()*a], args=args)

Important: Naming your args variables exp, sin, pi etc. will cause errors when using the string-based
format.

Collapse operators are handled in the exact same way.
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Modeling Non-Analytic and/or Experimental Time-Dependent Parameters using Interpolating
Functions

Note: New in QuTiP 4.1

Sometimes it is necessary to model a system where the time-dependent parameters are non-analytic functions, or
are derived from experimental data (i.e. a collection of data points). In these situations, one can use interpolating
functions as an approximate functional form for input into a time-dependent solver. QuTiP includes it own custom
cubic spline interpolation class qutip.interpolate.Cubic_Spline to provide this functionality. To see
how this works, lets first generate some noisy data:

In [47]: t = np.linspace(-15, 15, 100)

In [48]: func = lambda t: 9*np.exp(-(t / 5)** 2)

In [49]: noisy_func = lambda t: func(t)+(0.05*func(t))*np.random.randn(t.shape[0])

In [50]: noisy_data = noisy_func(t)

In [51]: plt.figure()
Out[51]: <Figure size 640x480 with 0 Axes>

In [52]: plt.plot(t, func(t))
Out[52]: [<matplotlib.lines.Line2D at 0x1a27962208>]

In [53]: plt.plot(t, noisy_data, 'o')
Out[53]: [<matplotlib.lines.Line2D at 0x1a27962780>]

In [54]: plt.show()

To turn these data points into a function we call the QuTiP qutip.interpolate.Cubic_Spline class
using the first and last domain time points, t[0] and t[-1], respectively, as well as the entire array of data
points:
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In [55]: S = Cubic_Spline(t[0], t[-1], noisy_data)

In [56]: plt.figure()
Out[56]: <Figure size 640x480 with 0 Axes>

In [57]: plt.plot(t, func(t))
Out[57]: [<matplotlib.lines.Line2D at 0x1a280b51d0>]

In [58]: plt.plot(t, noisy_data, 'o')
Out[58]: [<matplotlib.lines.Line2D at 0x1a280b5828>]

In [59]: plt.plot(t, S(t), lw=2)
Out[59]: [<matplotlib.lines.Line2D at 0x1a280ad4a8>]

In [60]: plt.show()

Note that, at present, only equally spaced real or complex data sets can be accommodated. This cubic spline class
S can now be pasted to any of the mesolve, mcsolve, or sesolve functions where one would normally input
a time-dependent function or string-representation. Taking the problem from the previous section as an example.
We would make the replacement:

H = [H0, [H1, '9 * exp(-(t / 5) ** 2)']]

to

H = [H0, [H1, S]]

When combining interpolating functions with other Python functions or strings, the interpolating class will au-
tomatically pick the appropriate method for calling the class. That is to say that, if for example, you have other
time-dependent terms that are given in the string-format, then the cubic spline representation will also be passed
in a string-compatible format. In the string-format, the interpolation function is compiled into c-code, and thus is
quite fast. This is the default method if no other time-dependent terms are present.
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Accesing the state from solver

New in QuTiP 4.4

The state of the system, the ket vector or the density matrix, is available to time-dependent Hamiltonian and
collapse operators in args. Some keys of the argument dictionary are understood by the solver to be values to be
updated with the evolution of the system. The state can be obtained in 3 forms: Qobj, vector (1d np.array),
matrix (2d np.array), expectation values and collapse can also be obtained.

Here psi0 is the initial value used for tests before the evolution begins. qutip.brmesolve does not support
these arguments.

Reusing Time-Dependent Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

When repeatedly simulating a system where only the time-dependent variables, or initial state change, it is possible
to reuse the Hamiltonian data stored in QuTiP and there by avoid spending time needlessly preparing the Hamil-
tonian and collapse terms for simulation. To turn on the the reuse features, we must pass a qutip.Options
object with the rhs_reuse flag turned on. Instructions on setting flags are found in Setting Options for the
Dynamics Solvers. For example, we can do

In [61]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]

In [62]: args = {'A': 9, 'sig': 5}

In [63]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args)
10.0%. Run time: 0.23s. Est. time left: 00:00:00:02
20.0%. Run time: 0.40s. Est. time left: 00:00:00:01
30.0%. Run time: 0.62s. Est. time left: 00:00:00:01
40.0%. Run time: 0.81s. Est. time left: 00:00:00:01
50.0%. Run time: 0.99s. Est. time left: 00:00:00:00
60.0%. Run time: 1.18s. Est. time left: 00:00:00:00
70.0%. Run time: 1.40s. Est. time left: 00:00:00:00
80.0%. Run time: 2.05s. Est. time left: 00:00:00:00
90.0%. Run time: 2.36s. Est. time left: 00:00:00:00
100.0%. Run time: 2.56s. Est. time left: 00:00:00:00
Total run time: 2.63s

In [64]: opts = Options(rhs_reuse=True)

In [65]: args = {'A': 10, 'sig': 3}

In [66]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args,
→˓options=opts)
10.0%. Run time: 0.22s. Est. time left: 00:00:00:01
20.0%. Run time: 0.41s. Est. time left: 00:00:00:01
30.0%. Run time: 0.59s. Est. time left: 00:00:00:01
40.0%. Run time: 0.79s. Est. time left: 00:00:00:01
50.0%. Run time: 0.99s. Est. time left: 00:00:00:00
60.0%. Run time: 1.21s. Est. time left: 00:00:00:00
70.0%. Run time: 1.50s. Est. time left: 00:00:00:00
80.0%. Run time: 2.10s. Est. time left: 00:00:00:00
90.0%. Run time: 2.62s. Est. time left: 00:00:00:00
100.0%. Run time: 2.91s. Est. time left: 00:00:00:00
Total run time: 3.02s

The second call to qutip.mcsolve does not reorganize the data, and in the case of the string format, does not
recompile the Cython code. For the small system here, the savings in computation time is quite small, however, if
you need to call the solvers many times for different parameters, this savings will obviously start to add up.
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Running String-Based Time-Dependent Problems using Parfor

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In this section we discuss running string-based time-dependent problems using the qutip.parfor function. As
the qutip.mcsolve function is already parallelized, running string-based time dependent problems inside of
parfor loops should be restricted to the qutip.mesolve function only. When using the string-based format, the
system Hamiltonian and collapse operators are converted into C code with a specific file name that is automatically
genrated, or supplied by the user via the rhs_filename property of the qutip.Options class. Because the
qutip.parfor function uses the built-in Python multiprocessing functionality, in calling the solver inside a
parfor loop, each thread will try to generate compiled code with the same file name, leading to a crash. To get
around this problem you can call the qutip.rhs_generate function to compile simulation into C code before
calling parfor. You must then set the qutip.Odedata object rhs_reuse=True for all solver calls inside
the parfor loop that indicates that a valid C code file already exists and a new one should not be generated. As an
example, we will look at the Landau-Zener-Stuckelberg interferometry example that can be found in the notebook
“Time-dependent master equation: Landau-Zener-Stuckelberg inteferometry” in the tutorials section of the QuTiP
web site.

To set up the problem, we run the following code:

In [67]: delta = 0.1 * 2 * np.pi # qubit sigma_x coefficient

In [68]: w = 2.0 * 2 * np.pi # driving frequency

In [69]: T = 2 * np.pi / w # driving period

In [70]: gamma1 = 0.00001 # relaxation rate

In [71]: gamma2 = 0.005 # dephasing rate

In [72]: eps_list = np.linspace(-10.0, 10.0, 51) * 2 * np.pi # epsilon

In [73]: A_list = np.linspace(0.0, 20.0, 51) * 2 * np.pi # Amplitude

In [74]: sx = sigmax(); sz = sigmaz(); sm = destroy(2); sn = num(2)

In [75]: c_ops = [np.sqrt(gamma1) * sm, np.sqrt(gamma2) * sz] # relaxation and
→˓dephasing

In [76]: H0 = -delta / 2.0 * sx

In [77]: H1 = [sz, '-eps / 2.0 + A / 2.0 * sin(w * t)']

In [78]: H_td = [H0, H1]

In [79]: Hargs = {'w': w, 'eps': eps_list[0], 'A': A_list[0]}

where the last code block sets up the problem using a string-based Hamiltonian, and Hargs is a dictionary of
arguments to be passed into the Hamiltonian. In this example, we are going to use the qutip.propagator
and qutip.propagator.propagator_steadystate to find expectation values for different values of 𝜖
and 𝐴 in the Hamiltonian 𝐻 = − 1

2∆𝜎𝑥 − 1
2𝜖𝜎𝑧 −

1
2𝐴 sin(𝜔𝑡).

We must now tell the qutip.mesolve function, that is called by qutip.propagator to reuse a pre-
generated Hamiltonian constructed using the qutip.rhs_generate command:

In [80]: opts = Options(rhs_reuse=True)

In [81]: rhs_generate(H_td, c_ops, Hargs, name='lz_func')

Here, we have given the generated file a custom name lz_func, however this is not necessary as a generic name
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will automatically be given. Now we define the function task that is called by qutip.parallel.parfor
with the m-index parallelized in loop over the elements of p_mat[m,n]:

In [82]: def task(args):
....: m, eps = args
....: p_mat_m = np.zeros(len(A_list))
....: for n, A in enumerate(A_list):
....: # change args sent to solver, w is really a constant though.
....: Hargs = {'w': w, 'eps': eps,'A': A}
....: U = propagator(H_td, T, c_ops, Hargs, opts) #<- IMPORTANT LINE
....: rho_ss = propagator_steadystate(U)
....: p_mat_m[n] = expect(sn, rho_ss)
....: return [m, p_mat_m]
....:

Notice the Options opts in the call to the qutip.propagator function. This is tells the qutip.mesolve
function used in the propagator to call the pre-generated file lz_func. If this were missing then the routine
would fail.

3.5.7 Bloch-Redfield master equation

Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the
density matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlaying
microscopic physical model. The Lindblad operators (collapse operators) describe phenomenological processes,
such as for example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model.
In many situations the collapse operators and their corresponding rates have clear physical interpretation, such as
dephasing and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple to
an environment in some well-defined manner (through a physically motivated system-environment interaction
operator), it is often desirable to derive the master equation from more fundamental physical principles, and relate
it to for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It
starts from a combined system-environment perspective, and derives a perturbative master equation for the system
alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the
dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it
does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties
of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be
used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in
a sense more robust – it always results in a physical density matrix – although some collapse operators might not
be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02].
Here we present only a brief version of the derivation, with the intention of introducing the notation and how it
relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment
(bath): 𝐻 = 𝐻S +𝐻B +𝐻I, where 𝐻 is the total system+bath Hamiltonian, 𝐻S and 𝐻B are the system and bath
Hamiltonians, respectively, and 𝐻I is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from
the von-Neumann equation of motion for the combined system (𝜌̇ = −𝑖~−1[𝐻, 𝜌]). In the interaction picture the
result is

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −~−2

∫︁ 𝑡

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝜏), 𝜌𝑆(𝜏) ⊗ 𝜌𝐵 ]], (3.21)
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where the additional assumption that the total system-bath density matrix can be factorized as 𝜌(𝑡) ≈ 𝜌𝑆(𝑡)⊗ 𝜌𝐵 .
This assumption is known as the Born approximation, and it implies that there never is any entanglement between
the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak
system-bath interaction.

The master equation (3.21) is non-Markovian, i.e., the change in the density matrix at a time 𝑡 depends on states
at all times 𝜏 < 𝑡, making it intractable to solve both theoretically and numerically. To make progress towards a
manageable master equation, we now introduce the Markovian approximation, in which 𝜌(𝑠) is replaced by 𝜌(𝑡)
in Eq. (3.21). The result is the Redfield equation

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −~−2

∫︁ 𝑡

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝜏), 𝜌𝑆(𝑡) ⊗ 𝜌𝐵 ]], (3.22)

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit depen-
dence on the initial state. By extending the integration to infinity and substituting 𝜏 → 𝑡 − 𝜏 , a fully Markovian
master equation is obtained:

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −~−2

∫︁ ∞

0

𝑑𝜏 Tr𝐵 [𝐻𝐼(𝑡), [𝐻𝐼(𝑡− 𝜏), 𝜌𝑆(𝑡) ⊗ 𝜌𝐵 ]]. (3.23)

The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics
changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a “short-
memory” bath, which results in Markovian system dynamics).

The master equation (3.23) is still on a too general form to be suitable for numerical implementation. We therefore
assume that the system-bath interaction takes the form𝐻𝐼 =

∑︀
𝛼𝐴𝛼⊗𝐵𝛼 and where𝐴𝛼 are system operators and

𝐵𝛼 are bath operators. This allows us to write master equation in terms of system operators and bath correlation
functions:

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = −~−2

∑︁
𝛼𝛽

∫︁ ∞

0

𝑑𝜏 {𝑔𝛼𝛽(𝜏) [𝐴𝛼(𝑡)𝐴𝛽(𝑡− 𝜏)𝜌𝑆(𝑡) −𝐴𝛼(𝑡− 𝜏)𝜌𝑆(𝑡)𝐴𝛽(𝑡)]

𝑔𝛼𝛽(−𝜏) [𝜌𝑆(𝑡)𝐴𝛼(𝑡− 𝜏)𝐴𝛽(𝑡) −𝐴𝛼(𝑡)𝜌𝑆(𝑡)𝐴𝛽(𝑡− 𝜏)]} ,

where 𝑔𝛼𝛽(𝜏) = Tr𝐵 [𝐵𝛼(𝑡)𝐵𝛽(𝑡− 𝜏)𝜌𝐵 ] = ⟨𝐵𝛼(𝜏)𝐵𝛽(0)⟩, since the bath state 𝜌𝐵 is a steady state.

In the eigenbasis of the system Hamiltonian, where 𝐴𝑚𝑛(𝑡) = 𝐴𝑚𝑛𝑒
𝑖𝜔𝑚𝑛𝑡, 𝜔𝑚𝑛 = 𝜔𝑚 − 𝜔𝑛 and 𝜔𝑚 are the

eigenfrequencies corresponding the eigenstate |𝑚⟩, we obtain in matrix form in the Schrödinger picture

𝑑

𝑑𝑡
𝜌𝑎𝑏(𝑡) = −𝑖𝜔𝑎𝑏𝜌𝑎𝑏(𝑡) − ~−2

∑︁
𝛼,𝛽

sec∑︁
𝑐,𝑑

∫︁ ∞

0

𝑑𝜏

{︃
𝑔𝛼𝛽(𝜏)

[︃
𝛿𝑏𝑑
∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛽
𝑛𝑐𝑒

𝑖𝜔𝑐𝑛𝜏 −𝐴𝛼
𝑎𝑐𝐴

𝛽
𝑑𝑏𝑒

𝑖𝜔𝑐𝑎𝜏

]︃

+ 𝑔𝛼𝛽(−𝜏)

[︃
𝛿𝑎𝑐
∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛽
𝑛𝑏𝑒

𝑖𝜔𝑛𝑑𝜏 −𝐴𝛼
𝑎𝑐𝐴

𝛽
𝑑𝑏𝑒

𝑖𝜔𝑏𝑑𝜏

]︃}︃
𝜌𝑐𝑑(𝑡),

where the “sec” above the summation symbol indicate summation of the secular terms which satisfy |𝜔𝑎𝑏−𝜔𝑐𝑑| ≪
𝜏decay. This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-
Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function 𝑔(𝜏) in
terms of the noise-power spectrum of the environment 𝑆(𝜔) =

∫︀∞
−∞ 𝑑𝜏𝑒𝑖𝜔𝜏𝑔(𝜏):∫︁ ∞

0

𝑑𝜏 𝑔𝛼𝛽(𝜏)𝑒𝑖𝜔𝜏 =
1

2
𝑆𝛼𝛽(𝜔) + 𝑖𝜆𝛼𝛽(𝜔), (3.24)

where 𝜆𝑎𝑏(𝜔) is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is

𝑑

𝑑𝑡
𝜌𝑎𝑏(𝑡) = −𝑖𝜔𝑎𝑏𝜌𝑎𝑏(𝑡) +

sec∑︁
𝑐,𝑑

𝑅𝑎𝑏𝑐𝑑𝜌𝑐𝑑(𝑡), (3.25)

where

𝑅𝑎𝑏𝑐𝑑 = −~−2

2

∑︁
𝛼,𝛽

{︃
𝛿𝑏𝑑
∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛽
𝑛𝑐𝑆𝛼𝛽(𝜔𝑐𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛽
𝑑𝑏𝑆𝛼𝛽(𝜔𝑐𝑎)

+ 𝛿𝑎𝑐
∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛽
𝑛𝑏𝑆𝛼𝛽(𝜔𝑑𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛽
𝑑𝑏𝑆𝛼𝛽(𝜔𝑑𝑏)

}︃
,
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is the Bloch-Redfield tensor.

The Bloch-Redfield master equation in the form Eq. (3.25) is suitable for numerical implementation. The input
parameters are the system Hamiltonian 𝐻 , the system operators through which the environment couples to the
system 𝐴𝛼, and the noise-power spectrum 𝑆𝛼𝛽(𝜔) associated with each system-environment interaction term.

To simplify the numerical implementation we assume that 𝐴𝛼 are Hermitian and that cross-correlations between
different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is imple-
mented in QuTiP is

𝑅𝑎𝑏𝑐𝑑 = −~−2

2

∑︁
𝛼

{︃
𝛿𝑏𝑑
∑︁
𝑛

𝐴𝛼
𝑎𝑛𝐴

𝛼
𝑛𝑐𝑆𝛼(𝜔𝑐𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛼
𝑑𝑏𝑆𝛼(𝜔𝑐𝑎)

+ 𝛿𝑎𝑐
∑︁
𝑛

𝐴𝛼
𝑑𝑛𝐴

𝛼
𝑛𝑏𝑆𝛼(𝜔𝑑𝑛) −𝐴𝛼

𝑎𝑐𝐴
𝛼
𝑑𝑏𝑆𝛼(𝜔𝑑𝑏)

}︃
.

Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.26) can be calculated using the function qutip.
bloch_redfield.bloch_redfield_tensor. It takes two mandatory arguments: The system Hamilto-
nian𝐻 , a nested list of operator𝐴𝛼, spectral density functions 𝑆𝛼(𝜔) pairs that characterize the coupling between
system and bath. The spectral density functions are Python callback functions that takes the (angular) frequency
as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let’s consider a two-level atom

𝐻 = −1

2
∆𝜎𝑥 − 1

2
𝜖0𝜎𝑧 (3.26)

that couples to an Ohmic bath through the 𝜎𝑥 operator. The corresponding Bloch-Redfield tensor can be calculated
in QuTiP using the following code

In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; gamma1 = 0.5

In [2]: H = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()

In [3]: def ohmic_spectrum(w):
...: if w == 0.0: # dephasing inducing noise
...: return gamma1
...: else: # relaxation inducing noise
...: return gamma1 / 2 * (w / (2 * np.pi)) * (w > 0.0)
...:

In [4]: R, ekets = bloch_redfield_tensor(H, [[sigmax(), ohmic_spectrum]])

In [5]: R
Out[5]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
→˓isherm = False
Qobj data =
[[ 0. +0.j 0. +0.j 0. +0.j

0.24514517+0.j ]
[ 0. +0.j -0.16103412-6.4076169j 0. +0.j
0. +0.j ]

[ 0. +0.j 0. +0.j -0.16103412+6.4076169j
0. +0.j ]

[ 0. +0.j 0. +0.j 0. +0.j
-0.24514517+0.j ]]

Note that it is also possible to add Lindblad dissipation superoperators in the Bloch-Refield tensor by passing
the operators via the c_ops keyword argument like you would in the qutip.mesolve or qutip.mcsolve
functions. For convenience, the function qutip.bloch_redfield.bloch_redfield_tensor also re-
turns a list of eigenkets ekets, since they are calculated in the process of calculating the Bloch-Redfield tensor R,
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and the ekets are usually needed again later when transforming operators between the computational basis and the
eigenbasis.

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.25), can be
calculated using the QuTiP function qutip.bloch_redfield.bloch_redfield_solve. It takes five
mandatory arguments: the Bloch-Redfield tensor R, the list of eigenkets ekets, the initial state psi0 (as a ket
or density matrix), a list of times tlist for which to evaluate the expectation values, and a list of operators
e_ops for which to evaluate the expectation values at each time step defined by tlist. For example, to evaluate
the expectation values of the 𝜎𝑥, 𝜎𝑦 , and 𝜎𝑧 operators for the example above, we can use the following code:

In [6]: import matplotlib.pyplot as plt

In [7]: tlist = np.linspace(0, 15.0, 1000)

In [8]: psi0 = rand_ket(2)

In [9]: e_ops = [sigmax(), sigmay(), sigmaz()]

In [10]: expt_list = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops)

In [11]: sphere = Bloch()

In [12]: sphere.add_points([expt_list[0], expt_list[1], expt_list[2]])

In [13]: sphere.vector_color = ['r']

In [14]: sphere.add_vectors(np.array([delta, 0, eps0]) / np.sqrt(delta ** 2 + eps0
→˓** 2))

In [15]: sphere.make_sphere()

In [16]: plt.show()

The two steps of calculating the Bloch-Redfield tensor and evolving according to the corresponding master equa-
tion can be combined into one by using the function qutip.bloch_redfield.brmesolve, which takes
same arguments as qutip.mesolve and qutip.mcsolve, save for the additional nested list of operator-
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spectrum pairs that is called a_ops.

In [17]: output = brmesolve(H, psi0, tlist, a_ops=[[sigmax(),ohmic_spectrum]], e_
→˓ops=e_ops)

where the resulting output is an instance of the class qutip.solver.Result.

Time-dependent Bloch-Redfield Dynamics

Note: New in QuTiP 4.2.

Warning: It takes ~3-5 seconds (~30 if using Visual Studio) to compile a time-dependent Bloch-Redfield
problem. Therefore, if you are doing repeated simulations by varying parameters, then it is best to pass
options = Options(rhs_reuse=True) to the solver.

If you have not done so already, please read the section: Solving Problems with Time-dependent Hamiltonians.

As we have already discussed, the Bloch-Redfield master equation requires transforming into the eigenbasis of the
system Hamiltonian. For time-independent systems, this transformation need only be done once. However, for
time-dependent systems, one must move to the instantaneous eigenbasis at each time-step in the evolution, thus
greatly increasing the computational complexity of the dynamics. In addition, the requirement for computing all
the eigenvalues severely limits the scalability of the method. Fortunately, this eigen decomposition occurs at the
Hamiltonian level, as opposed to the super-operator level, and thus, with efficient programming, one can tackle
many systems that are commonly encountered.

The time-dependent Bloch-Redfield solver in QuTiP relies on the efficient numerical computations afforded by the
string-based time-dependent format, and Cython compilation. As such, all the time-dependent terms, and noise
power spectra must be expressed in the string format. To begin, lets consider the previous example, but formatted
to call the time-dependent solver:

In [18]: ohmic = "{gamma1} / 2.0 * (w / (2 * pi)) * (w > 0.0)".
→˓format(gamma1=gamma1)

In [19]: output = brmesolve(H, psi0, tlist, a_ops=[[sigmax(),ohmic]], e_ops=e_ops)

Although the problem itself is time-independent, the use of a string as the noise power spectrum tells the solver to
go into time-dependent mode. The string is nearly identical to the Python function format, except that we replaced
np.pi with pi to avoid calling Python in our Cython code, and we have hard coded the gamma1 argument into
the string as limitations prevent passing arguments into the time-dependent Bloch-Redfield solver.

For actual time-dependent Hamiltonians, the Hamiltonian itself can be passed into the solver like any other
string-based Hamiltonian, as thus we will not discuss this topic further. Instead, here the focus is on time-
dependent bath coupling terms. To this end, suppose that we have a dissipative harmonic oscillator, where
the white-noise dissipation rate decreases exponentially with time 𝜅(𝑡) = 𝜅(0) exp(−𝑡). In the Lindblad or
monte-carlo solvers, this could be implemented as a time-dependent collapse operator list c_ops = [[a,
'sqrt(kappa*exp(-t))']]. In the Bloch-Redfield solver, the bath coupling terms must be Hermitian.
As such, in this example, our coupling operator is the position operator a+a.dag(). In addition, we do not need
the sqrt operation that occurs in the c_ops definition. The complete example, and comparison to the analytic
expression is:

In [20]: N = 10 # number of basis states to consider

In [21]: a = destroy(N)

In [22]: H = a.dag() * a

(continues on next page)
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(continued from previous page)

In [23]: psi0 = basis(N, 9) # initial state

In [24]: kappa = 0.2 # coupling to oscillator

In [25]: a_ops = [[a+a.dag(), '{kappa}*exp(-t)*(w>=0)'.format(kappa=kappa)]]

In [26]: tlist = np.linspace(0, 10, 100)

In [27]: out = brmesolve(H, psi0, tlist, a_ops, e_ops=[a.dag() * a])

In [28]: actual_answer = 9.0 * np.exp(-kappa * (1.0 - np.exp(-tlist)))

In [29]: plt.figure()
Out[29]: <Figure size 640x480 with 0 Axes>

In [30]: plt.plot(tlist, out.expect[0])
Out[30]: [<matplotlib.lines.Line2D at 0x1a273ac2e8>]

In [31]: plt.plot(tlist, actual_answer)
Out[31]: [<matplotlib.lines.Line2D at 0x1a273dd128>]

In [32]: plt.show()

In many cases, the bath-coupling operators can take the form𝐴 = 𝑓(𝑡)𝑎+𝑓(𝑡)*𝑎+. In this case, the above format
for inputting the a_ops is not sufficient. Instead, one must construct a nested-list of tuples to specify this time-
dependence. For example consider a white-noise bath that is coupled to an operator of the form exp(1j*t)*a
+ exp(-1j*t)* a.dag(). In this example, the a_ops list would be:

In [33]: a_ops = [ [ (a, a.dag()), ('{0} * (w >= 0)'.format(kappa), 'exp(1j*t)',
→˓'exp(-1j*t)') ] ]

where the first tuple element (a, a.dag()) tells the solver which operators make up the full Hermi-
tian coupling operator. The second tuple ('{0} * (w >= 0)'.format(kappa), 'exp(1j*t)',
'exp(-1j*t)'), gives the noise power spectrum, and time-dependence of each operator. Note that the noise
spectrum must always come first in this second tuple. A full example is:
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In [34]: N = 10

In [35]: w0 = 1.0 * 2 * np.pi

In [36]: g = 0.05 * w0

In [37]: kappa = 0.15

In [38]: times = np.linspace(0, 25, 1000)

In [39]: a = destroy(N)

In [40]: H = w0 * a.dag() * a + g * (a + a.dag())

In [41]: psi0 = ket2dm((basis(N, 4) + basis(N, 2) + basis(N, 0)).unit())

In [42]: a_ops = [[ (a, a.dag()), ('{0} * (w >= 0)'.format(kappa), 'exp(1j*t)',
→˓'exp(-1j*t)') ]]

In [43]: e_ops = [a.dag() * a, a + a.dag()]

In [44]: res_brme = brmesolve(H, psi0, times, a_ops, e_ops)

In [45]: plt.figure()
Out[45]: <Figure size 640x480 with 0 Axes>

In [46]: plt.plot(times,res_brme.expect[0], label=r'$a^{+}a$')
Out[46]: [<matplotlib.lines.Line2D at 0x1a26409320>]

In [47]: plt.plot(times,res_brme.expect[1], label=r'$a+a^{+}$')
Out[47]: [<matplotlib.lines.Line2D at 0x1a26417048>]

In [48]: plt.legend()
Out[48]: <matplotlib.legend.Legend at 0x1a27374358>

In [49]: plt.show()
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Further examples on time-dependent Bloch-Redfield simulations can be found in the online tutorials.

3.5.8 Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly
by numerical integration of the Schrödinger or Master equation, using the time-dependent Hamiltonian. But they
can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems
can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing the
system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms of these
master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians. However,
in many relevant cases, in particular for weak driving, the standard master equations still turns out to be useful for
many time-dependent problems. But a more rigorous approach would be to rederive the master equation taking
the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master equation
is one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).

Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving time-
dependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give
a brief summary of quantum Floquet theory.

Floquet theory for unitary evolution

The Schrödinger equation with a time-dependent Hamiltonian 𝐻(𝑡) is

𝐻(𝑡)Ψ(𝑡) = 𝑖~
𝜕

𝜕𝑡
Ψ(𝑡), (3.27)

where Ψ(𝑡) is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e.,
the Hamiltonian satisfies 𝐻(𝑡) = 𝐻(𝑡+ 𝑇 ) where 𝑇 is the period. According to the Floquet theorem, there exist
solutions to (3.27) on the form

Ψ𝛼(𝑡) = exp(−𝑖𝜖𝛼𝑡/~)Φ𝛼(𝑡), (3.28)

where Ψ𝛼(𝑡) are the Floquet states (i.e., the set of wave function solutions to the Schrödinger equation), Φ𝛼(𝑡) =
Φ𝛼(𝑡+𝑇 ) are the periodic Floquet modes, and 𝜖𝛼 are the quasienergy levels. The quasienergy levels are constants
in time, but only uniquely defined up to multiples of 2𝜋/𝑇 (i.e., unique value in the interval [0, 2𝜋/𝑇 ]).

If we know the Floquet modes (for 𝑡 ∈ [0, 𝑇 ]) and the quasienergies for a particular𝐻(𝑡), we can easily decompose
any initial wavefunction Ψ(𝑡 = 0) in the Floquet states and immediately obtain the solution for arbitrary 𝑡

Ψ(𝑡) =
∑︁
𝛼

𝑐𝛼Ψ𝛼(𝑡) =
∑︁
𝛼

𝑐𝛼 exp(−𝑖𝜖𝛼𝑡/~)Φ𝛼(𝑡), (3.29)

where the coefficients 𝑐𝛼 are determined by the initial wavefunction Ψ(0) =
∑︀

𝛼 𝑐𝛼Ψ𝛼(0).

This formalism is useful for finding Ψ(𝑡) for a given 𝐻(𝑡) only if we can obtain the Floquet modes Φ𝑎(𝑡) and
quasienergies 𝜖𝛼 more easily than directly solving (3.27). By substituting (3.28) into the Schrödinger equation
(3.27) we obtain an eigenvalue equation for the Floquet modes and quasienergies

ℋ(𝑡)Φ𝛼(𝑡) = 𝜖𝛼Φ𝛼(𝑡), (3.30)

where ℋ(𝑡) = 𝐻(𝑡) − 𝑖~𝜕𝑡. This eigenvalue problem could be solved analytically or numerically, but in QuTiP
we use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield
et al., Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrödinger equation
(3.27), which by definition satisfies

𝑈(𝑇 + 𝑡, 𝑡)Ψ(𝑡) = Ψ(𝑇 + 𝑡).
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Inserting the Floquet states from (3.28) into this expression results in

𝑈(𝑇 + 𝑡, 𝑡) exp(−𝑖𝜖𝛼𝑡/~)Φ𝛼(𝑡) = exp(−𝑖𝜖𝛼(𝑇 + 𝑡)/~)Φ𝛼(𝑇 + 𝑡),

or, since Φ𝛼(𝑇 + 𝑡) = Φ𝛼(𝑡),

𝑈(𝑇 + 𝑡, 𝑡)Φ𝛼(𝑡) = exp(−𝑖𝜖𝛼𝑇/~)Φ𝛼(𝑡) = 𝜂𝛼Φ𝛼(𝑡),

which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the
Floquet modes and quasienergies 𝜖𝛼 = −~ arg(𝜂𝛼)/𝑇 by numerically calculating 𝑈(𝑇 + 𝑡, 𝑡) and diagonalizing
it. In particular this method is useful to find Φ𝛼(0) by calculating and diagonalize 𝑈(𝑇, 0).

The Floquet modes at arbitrary time 𝑡 can then be found by propagating Φ𝛼(0) to Φ𝛼(𝑡) using the wave function
propagator 𝑈(𝑡, 0)Ψ𝛼(0) = Ψ𝛼(𝑡), which for the Floquet modes yields

𝑈(𝑡, 0)Φ𝛼(0) = exp(−𝑖𝜖𝛼𝑡/~)Φ𝛼(𝑡),

so that Φ𝛼(𝑡) = exp(𝑖𝜖𝛼𝑡/~)𝑈(𝑡, 0)Φ𝛼(0). Since Φ𝛼(𝑡) is periodic we only need to evaluate it for 𝑡 ∈ [0, 𝑇 ], and
from Φ𝛼(𝑡 ∈ [0, 𝑇 ]) we can directly evaluate Φ𝛼(𝑡), Ψ𝛼(𝑡) and Ψ(𝑡) for arbitrary large 𝑡.

Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state decomposi-
tion, etc., given a time-dependent Hamiltonian on the callback format, list-string format and list-callback format
(see, e.g., qutip.mesolve for details).

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

𝐻(𝑡) = −1

2
∆𝜎𝑥 − 1

2
𝜖0𝜎𝑧 +

1

2
𝐴 sin(𝜔𝑡)𝜎𝑧. (3.31)

In QuTiP we can define this Hamiltonian as follows:

In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; A = 2.5 * 2*np.pi; omega = 1.
→˓0 * 2*np.pi

In [2]: H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()

In [3]: H1 = A/2.0 * sigmaz()

In [4]: args = {'w': omega}

In [5]: H = [H0, [H1, 'sin(w * t)']]

The 𝑡 = 0 Floquet modes corresponding to the Hamiltonian (3.31) can then be calculated using the qutip.
floquet.floquet_modes function, which returns lists containing the Floquet modes and the quasienergies

In [6]: T = 2*pi / omega

In [7]: f_modes_0, f_energies = floquet_modes(H, T, args)

In [8]: f_energies
Out[8]: array([-2.83131212, 2.83131212])

In [9]: f_modes_0
Out[9]:
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.72964231+0.j ]
[-0.39993746+0.554682j]],

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.39993746+0.554682j]
[0.72964231+0.j ]]]
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For some problems interesting observations can be draw from the quasienergy levels alone. Consider for example
the quasienergies for the driven two-level system introduced above as a function of the driving amplitude, calcu-
lated and plotted in the following example. For certain driving amplitudes the quasienergy levels cross. Since the
the quasienergies can be associated with the time-scale of the long-term dynamics due that the driving, degenerate
quasienergies indicates a “freezing” of the dynamics (sometimes known as coherent destruction of tunneling).

In [10]: delta = 0.2 * 2*np.pi; eps0 = 0.0 * 2*np.pi

In [11]: omega = 1.0 * 2*np.pi; A_vec = np.linspace(0, 10, 100) * omega;

In [12]: T = (2*pi)/omega

In [13]: tlist = np.linspace(0.0, 10 * T, 101)

In [14]: psi0 = basis(2,0)

In [15]: q_energies = np.zeros((len(A_vec), 2))

In [16]: H0 = delta/2.0 * sigmaz() - eps0/2.0 * sigmax()

In [17]: args = {'w': omega}

In [18]: for idx, A in enumerate(A_vec):
....: H1 = A/2.0 * sigmax()
....: H = [H0, [H1, lambda t, args: sin(args['w']*t)]]
....: f_modes, f_energies = floquet_modes(H, T, args, True)
....: q_energies[idx,:] = f_energies
....:

In [19]: figure()
Out[19]: <Figure size 640x480 with 0 Axes>

In [20]: plot(A_vec/omega, q_energies[:,0] / delta, 'b', A_vec/omega, q_energies[:,
→˓1] / delta, 'r')
Out[20]:
[<matplotlib.lines.Line2D at 0x1a2656b0f0>,
<matplotlib.lines.Line2D at 0x1a2656bdd8>]

In [21]: xlabel(r'$A/\omega$')
Out[21]: Text(0.5,0,'$A/\\omega$')

In [22]: ylabel(r'Quasienergy / $\Delta$')
Out[22]: Text(0,0.5,'Quasienergy / $\\Delta$')

In [23]: title(r'Floquet quasienergies')
Out[23]: Text(0.5,1,'Floquet quasienergies')

In [24]: show()
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Given the Floquet modes at 𝑡 = 0, we obtain the Floquet mode at some later time 𝑡 using the function qutip.
floquet.floquet_mode_t:

In [25]: f_modes_t = floquet_modes_t(f_modes_0, f_energies, 2.5, H, T, args)

In [26]: f_modes_t
Out[26]:
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[-0.89630512-0.23191946j]
[ 0.37793106-0.00431336j]],

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[-0.37793106-0.00431336j]
[-0.89630512+0.23191946j]]]

The purpose of calculating the Floquet modes is to find the wavefunction solution to the original problem (3.31)
given some initial state |𝜓0⟩. To do that, we first need to decompose the initial state in the Floquet states, using
the function qutip.floquet.floquet_state_decomposition

In [27]: psi0 = rand_ket(2)

In [28]: f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

In [29]: f_coeff
Out[29]:
[(-0.04212222693457046+0.16111352613182564j),
(-0.7148489229323456+0.679160634222794j)]

and given this decomposition of the initial state in the Floquet states we can easily evaluate the wave-
function that is the solution to (3.31) at an arbitrary time 𝑡 using the function qutip.floquet.
floquet_wavefunction_t

In [30]: t = 10 * np.random.rand()

In [31]: psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T,
→˓args)

(continues on next page)
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In [32]: psi_t
Out[32]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.11713293+0.84859646j]
[0.46372377+0.22610657j]]

The following example illustrates how to use the functions introduced above to calculate and plot the time-
evolution of (3.31).

from qutip import *
from scipy import *

delta = 0.2 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.5 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 10 * T, 101)
psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmaz()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

# find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)

# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

# calculate the wavefunctions using the from the floquet modes
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):

psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args)
p_ex[n] = expect(num(2), psi_t)

# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]

# plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
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Pre-computing the Floquet modes for one period

When evaluating the Floquet states or the wavefunction at many points in time it is useful to pre-compute the
Floquet modes for the first period of the driving with the required resolution. In QuTiP the function qutip.
floquet.floquet_modes_table calculates a table of Floquet modes which later can be used together
with the function qutip.floquet.floquet_modes_t_lookup to efficiently lookup the Floquet mode at
an arbitrary time. The following example illustrates how the example from the previous section can be solved
more efficiently using these functions for pre-computing the Floquet modes.

from qutip import *
from scipy import *

delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.25 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 10 * T, 101)
psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

# find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)

# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)

# calculate the wavefunctions using the from the floquet modes
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args)
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):

f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
psi_t = floquet_wavefunction(f_modes_t, f_energies, f_coeff, t)
p_ex[n] = expect(num(2), psi_t)

# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]

(continues on next page)
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# plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
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Note that the parameters and the Hamiltonian used in this example is not the same as in the previous section, and
hence the different appearance of the resulting figure.

For convenience, all the steps described above for calculating the evolution of a quantum system using the Floquet
formalisms are encapsulated in the function qutip.floquet.fsesolve. Using this function, we could have
achieved the same results as in the examples above using:

output = fsesolve(H, psi0, times, [num(2)], args)
p_ex = output.expect[0]

Floquet theory for dissipative evolution

A driven system that is interacting with its environment is not necessarily well described by the standard Lindblad
master equation, since its dissipation process could be time-dependent due to the driving. In such cases a rigorious
approach would be to take the driving into account when deriving the master equation. This can be done in many
different ways, but one way common approach is to derive the master equation in the Floquet basis. That approach
results in the so-called Floquet-Markov master equation, see Grifoni et al., Physics Reports 304, 299 (1998) for
details.
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The Floquet-Markov master equation in QuTiP

The QuTiP function qutip.floquet.fmmesolve implements the Floquet-Markov master equation. It cal-
culates the dynamics of a system given its initial state, a time-dependent hamiltonian, a list of operators through
which the system couples to its environment and a list of corresponding spectral-density functions that describes
the environment. In contrast to the qutip.mesolve and qutip.mcsolve, and the qutip.floquet.
fmmesolve does characterize the environment with dissipation rates, but extract the strength of the coupling to
the environment from the noise spectral-density functions and the instantaneous Hamiltonian parameters (similar
to the Bloch-Redfield master equation solver qutip.bloch_redfield.brmesolve).

Note: Currently the qutip.floquet.fmmesolve can only accept a single environment coupling operator
and spectral-density function.

The noise spectral-density function of the environment is implemented as a Python callback function that is passed
to the solver. For example:

>>> gamma1 = 0.1
>>> def noise_spectrum(omega):
>>> return 0.5 * gamma1 * omega/(2*pi)

The other parameters are similar to the qutip.mesolve and qutip.mcsolve, and the same format for the
return value is used qutip.solver.Result. The following example extends the example studied above, and
uses qutip.floquet.fmmesolve to introduce dissipation into the calculation

from qutip import *
from scipy import *

delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.25 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 20 * T, 101)
psi0 = basis(2,0)

H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 * sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]

# noise power spectrum
gamma1 = 0.1
def noise_spectrum(omega):

return 0.5 * gamma1 * omega/(2*pi)

# find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes(H, T, args)

# precalculate mode table
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,

linspace(0, T, 500 + 1), H, T, args)

# solve the floquet-markov master equation
output = fmmesolve(H, psi0, tlist, [sigmax()], [], [noise_spectrum], T, args)

# calculate expectation values in the computational basis
p_ex = zeros(shape(tlist), dtype=complex)
for idx, t in enumerate(tlist):

f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
p_ex[idx] = expect(num(2), output.states[idx].transform(f_modes_t, True))

# For reference: calculate the same thing with mesolve
(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 83



QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

output = mesolve(H, psi0, tlist, [sqrt(gamma1) * sigmax()], [num(2)], args)
p_ex_ref = output.expect[0]

# plot the results
from pylab import *
plot(tlist, real(p_ex), 'r--', tlist, 1-real(p_ex), 'b--')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
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Alternatively, we can let the qutip.floquet.fmmesolve function transform the density matrix at each time
step back to the computational basis, and calculating the expectation values for us, but using:

output = fmmesolve(H, psi0, tlist, [sigmax()], [num(2)], [noise_spectrum], T, args)
p_ex = output.expect[0]

3.5.9 Permutational Invariance

Permutational Invariant Quantum Solver (PIQS)

The Permutational Invariant Quantum Solver (PIQS) is a QuTiP module that allows to study the dynamics of an
open quantum system consisting of an ensemble of identical qubits that can dissipate through local and collective
baths according to a Lindblad master equation.

The Liouvillian of an ensemble of 𝑁 qubits, or two-level systems (TLSs), 𝒟𝑇𝐿𝑆(𝜌), can be built using only
polynomial – instead of exponential – resources. This has many applications for the study of realistic quantum
optics models of many TLSs and in general as a tool in cavity QED.

Consider a system evolving according to the equation

𝜌̇ = 𝒟TLS(𝜌) = − 𝑖

~
[𝐻, 𝜌] +

𝛾CE

2
ℒ𝐽− [𝜌] +

𝛾CD

2
ℒ𝐽𝑧

[𝜌] +
𝛾CP

2
ℒ𝐽+

[𝜌]

+

𝑁∑︁
𝑛=1

(︁𝛾E

2
ℒ𝐽−,𝑛

[𝜌] +
𝛾D

2
ℒ𝐽𝑧,𝑛

[𝜌] +
𝛾P

2
ℒ𝐽+,𝑛

[𝜌]
)︁
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where 𝐽𝛼,𝑛 = 1
2𝜎𝛼,𝑛 are SU(2) Pauli spin operators, with 𝛼 = 𝑥, 𝑦, 𝑧 and 𝐽±,𝑛 = 𝜎±,𝑛. The collective spin

operators are 𝐽𝛼 =
∑︀

𝑛 𝐽𝛼,𝑛 . The Lindblad super-operators are ℒ𝐴 = 2𝐴𝜌𝐴† −𝐴†𝐴𝜌− 𝜌𝐴†𝐴.

The inclusion of local processes in the dynamics lead to using a Liouvillian space of dimension 4𝑁 . By exploiting
the permutational invariance of identical particles [2-8], the Liouvillian 𝒟TLS(𝜌) can be built as a block-diagonal
matrix in the basis of Dicke states |𝑗,𝑚⟩.

The system under study is defined by creating an object of the Dicke class, e.g. simply named system, whose
first attribute is

• system.N, the number of TLSs of the system 𝑁 .

The rates for collective and local processes are simply defined as

• collective_emission defines 𝛾CE, collective (superradiant) emission

• collective_dephasing defines 𝛾CD, collective dephasing

• collective_pumping defines 𝛾CP, collective pumping.

• emission defines 𝛾E, incoherent emission (losses)

• dephasing defines 𝛾D, local dephasing

• pumping defines 𝛾P, incoherent pumping.

Then the system.lindbladian() creates the total TLS Lindbladian superoperator matrix. Similarly,
system.hamiltonian defines the TLS hamiltonian of the system 𝐻TLS.

The system’s Liouvillian can be built using system.liouvillian(). The properties of a Piqs object can be
visualized by simply calling system. We give two basic examples on the use of PIQS. In the first example the
incoherent emission of N driven TLSs is considered.

from piqs import Dicke
from qutip import steadystate
N = 10
system = Dicke(N, emission = 1, pumping = 2)
L = system.liouvillian()
steady = steadystate(L)

For more example of use, see the “Permutational Invariant Lindblad Dynamics” section in the tutorials section of
the website, http://qutip.org/tutorials.html.
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Table 1: Useful PIQS functions.
Operators Command Description
Collective spin algebra
𝐽𝑥, 𝐽𝑦, 𝐽𝑧

jspin(N) The collective spin algebra 𝐽𝑥, 𝐽𝑦, 𝐽𝑧 for 𝑁 TLSs

Collective spin 𝐽𝑥 jspin(N, "x") The collective spin operator 𝐽𝑥. Requires 𝑁 number
of TLSs

Collective spin 𝐽𝑦 jspin(N, "y") The collective spin operator 𝐽𝑦 . Requires 𝑁 number
of TLSs

Collective spin 𝐽𝑧 jspin(N, "z") The collective spin operator 𝐽𝑧 . Requires 𝑁 number
of TLSs

Collective spin 𝐽+ jspin(N, "+") The collective spin operator 𝐽+.
Collective spin 𝐽− jspin(N, "-") The collective spin operator 𝐽−.
Collective spin 𝐽𝑧 in un-
coupled basis

jspin(N, "z",
basis='uncoupled')

The collective spin operator 𝐽𝑧 in the uncoupled basis
of dimension 2𝑁 .

Dicke state |𝑗,𝑚⟩ density
matrix

dicke(N, j, m) The density matrix for the Dicke state given by |𝑗,𝑚⟩

Excited-state density ma-
trix in Dicke basis

excited(N) The excited state in the Dicke basis

Excited-state density ma-
trix in uncoupled basis

excited(N,
basis="uncoupled")

The excited state in the uncoupled basis

Ground-state density ma-
trix in Dicke basis

ground(N) The ground state in the Dicke basis

GHZ-state density ma-
trix in the Dicke basis

ghz(N) The GHZ-state density matrix in the Dicke (default)
basis for N number of TLS

Collapse operators of the
ensemble

Dicke.c_ops() The collapse operators for the ensemble can be called
by the c_ops method of the Dicke class.

Note that the mathematical object representing the density matrix of the full system that is manipulated (or ob-
tained from steadystate) in the Dicke-basis formalism used here is a representative of the density matrix. This
representative object is of linear size N^2, whereas the full density matrix is defined over a 2^N Hilbert space. In
order to calculate nonlinear functions of such density matrix, such as the Von Neumann entropy or the purity, it is
necessary to take into account the degeneracy of each block of such block-diagonal density matrix. Note that as
long as one calculates expected values of operators, being Tr[A*rho] a linear function of rho, the representative
density matrix give straightforwardly the correct result. When a nonlinear function of the density matrix needs to
be calculated, one needs to weigh each degenerate block correctly; this is taken care by the dicke_function_trace
in qutip.piqs, and the user can use it to define general nonlinear functions that can be described as the trace of a
Taylor expandable function. Two nonlinear functions that use dicke_function_trace and are already implemented
are purity_dicke, to calculate the purity of a density matrix in the Dicke basis, and entropy_vn_dicke, which can
be used to calculate the Von Neumann entropy.

More functions relative to the qutip.piqs module can be found at API documentation. Attributes to the qutip.
piqs.Dicke and qutip.piqs.Pim class can also be found there.

3.5.10 Setting Options for the Dynamics Solvers

Occasionally it is necessary to change the built in parameters of the dynamics solvers used by for example the
qutip.mesolve and qutip.mcsolve functions. The options for all dynamics solvers may be changed by
using the Options class qutip.solver.Options.

In [1]: options = Options()

the properties and default values of this class can be view via the print function:

In [2]: print(options)
Options:
-----------

(continues on next page)
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atol: 1e-08
rtol: 1e-06
method: adams
order: 12
nsteps: 1000
first_step: 0
min_step: 0
max_step: 0
tidy: True
num_cpus: 2
norm_tol: 0.001
norm_steps: 5
rhs_filename: None
rhs_reuse: False
seeds: 0
rhs_with_state: False
average_expect: True
average_states: False
ntraj: 500
store_states: False
store_final_state: False

These properties are detailed in the following table. Assuming options = Options():

As an example, let us consider changing the number of processors used, turn the GUI off, and strengthen the
absolute tolerance. There are two equivalent ways to do this using the Options class. First way,

In [3]: options = Options()

In [4]: options.num_cpus = 3

In [5]: options.atol = 1e-10

or one can use an inline method,

In [6]: options = Options(num_cpus=4, atol=1e-10)

Note that the order in which you input the options does not matter. Using either method, the resulting options
variable is now:

In [7]: print(options)
Options:
-----------
atol: 1e-10
rtol: 1e-06
method: adams
order: 12
nsteps: 1000
first_step: 0
min_step: 0
max_step: 0
tidy: True
num_cpus: 4
norm_tol: 0.001
norm_steps: 5
rhs_filename: None
rhs_reuse: False
seeds: 0
rhs_with_state: False
average_expect: True
average_states: False

(continues on next page)
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ntraj: 500
store_states: False
store_final_state: False

To use these new settings we can use the keyword argument options in either the func:qutip.mesolve and
qutip.mcsolve function. We can modify the last example as:

>>> mesolve(H0, psi0, tlist, c_op_list, [sigmaz()], options=options)
>>> mesolve(hamiltonian_t, psi0, tlist, c_op_list, [sigmaz()], H_args,
→˓options=options)

or:

>>> mcsolve(H0, psi0, tlist, ntraj,c_op_list, [sigmaz()], options=options)
>>> mcsolve(hamiltonian_t, psi0, tlist, ntraj, c_op_list, [sigmaz()], H_args,
→˓options=options)

3.6 Solving for Steady-State Solutions

Important: Updated in QuTiP 3.2.

3.6.1 Introduction

For time-independent open quantum systems with decay rates larger than the corresponding excitation rates, the
system will tend toward a steady state as 𝑡→ ∞ that satisfies the equation

𝑑𝜌𝑠𝑠
𝑑𝑡

= ℒ𝜌𝑠𝑠 = 0.

Although the requirement for time-independence seems quite resitrictive, one can often employ a transformation
to the interaction picture that yields a time-independent Hamiltonian. For many these systems, solving for the
asymptotic density matrix 𝜌𝑠𝑠 can be achieved using direct or iterative solution methods faster than using master
equation or Monte Carlo simulations. Although the steady state equation has a simple mathematical form, the
properties of the Liouvillian operator are such that the solutions to this equation are anything but straightforward
to find.

3.6.2 Steady State solvers in QuTiP

In QuTiP, the steady-state solution for a system Hamiltonian or Liouvillian is given by qutip.steadystate.
steadystate. This function implements a number of different methods for finding the steady state, each with
their own pros and cons, where the method used can be chosen using the method keyword argument.

Method Keyword Description
Direct (default) ‘direct’ Direct solution solving 𝐴𝑥 = 𝑏 via sparse LU decomposi-

tion.
Eigenvalue ‘eigen’ Iteratively find the zero eigenvalue of ℒ.
Inverse-Power ‘power’ Solve using the inverse-power method.
GMRES ‘iterative-gmres’ Solve using the GMRES method and optional precondi-

tioner.
LGMRES ‘iterative-lgmres’ Solve using the LGMRES method and optional precondi-

tioner.
BICGSTAB ‘iterative-bicgstab’ Solve using the BICGSTAB method and optional precon-

ditioner.
SVD ‘svd’ Steady-state solution via the dense SVD of the Liouvillian.
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The function qutip.steadystate.steadystate can take either a Hamiltonian and a list of collapse oper-
ators as input, generating internally the corresponding Liouvillian super operator in Lindblad form, or alternatively,
a Liouvillian passed by the user. When possible, we recommend passing the Hamiltonian and collapse operators to
qutip.steadystate.steadystate, and letting the function automatically build the Liouvillian (in Lind-
blad form) for the system.

As of QuTiP 3.2, the direct and power methods can take advantage of the Intel Pardiso LU solver in the Intel
Math Kernel library that comes with the Anacoda (2.5+) and Intel Python distributions. This gives a substantial
increase in performance compared with the standard SuperLU method used by SciPy. To verify that QuTiP can
find the necessary libraries, one can check for INTEL MKL Ext: True in the QuTiP about box (qutip.
about).

3.6.3 Using the Steadystate Solver

Solving for the steady state solution to the Lindblad master equation for a general system with qutip.
steadystate.steadystate can be accomplished using:

>>> rho_ss = steadystate(H, c_ops)

where H is a quantum object representing the system Hamiltonian, and c_ops is a list of quantum objects for
the system collapse operators. The output, labeled as rho_ss, is the steady-state solution for the systems. If no
other keywords are passed to the solver, the default ‘direct’ method is used, generating a solution that is exact to
machine precision at the expense of a large memory requirement. The large amount of memory need for the direct
LU decomposition method stems from the large bandwidth of the system Liouvillian and the correspondingly
large fill-in (extra nonzero elements) generated in the LU factors. This fill-in can be reduced by using bandwidth
minimization algorithms such as those discussed in Additional Solver Arguments. However, in most cases, the
default fill-in reducing algorithm is nearly optimal. Additional parameters may be used by calling the steady-state
solver as:

rho_ss = steadystate(H, c_ops, method='power', use_rcm=True)

where method='power' indicates that we are using the inverse-power solution method, and use_rcm=True
turns on a bandwidth minimization routine.

Although it is not obvious, the 'direct', eigen, and 'power' methods all use an LU decomposi-
tion internally and thus suffer from a large memory overhead. In contrast, iterative methods such as the
'iterative-gmres', 'iterative-lgmres', and 'iterative-bicgstab' methods do not factor
the matrix and thus take less memory than these previous methods and allowing, in principle, for extremely large
system sizes. The downside is that these methods can take much longer than the direct method as the condition
number of the Liouvillian matrix is large, indicating that these iterative methods require a large number of itera-
tions for convergence. To overcome this, one can use a preconditioner 𝑀 that solves for an approximate inverse
for the (modified) Liouvillian, thus better conditioning the problem, leading to faster convergence. The use of a
preconditioner can actually make these iterative methods faster than the other solution methods. The problem with
precondioning is that it is only well defined for Hermitian matrices. Since the Liouvillian is non-Hermitian, the
ability to find a good preconditioner is not guaranteed. And moreover, if a preconditioner is found, it is not guar-
anteed to have a good condition number. QuTiP can make use of an incomplete LU preconditioner when using the
iterative 'gmres', 'lgmres', and 'bicgstab' solvers by setting use_precond=True. The precondi-
tioner optionally makes use of a combination of symmetric and anti-symmetric matrix permutations that attempt
to improve the preconditioning process. These features are discussed in the Additional Solver Arguments section.
Even with these state-of-the-art permutations, the generation of a successful preconditoner for non-symmetric
matrices is currently a trial-and-error process due to the lack of mathematical work done in this area. It is always
recommended to begin with the direct solver with no additional arguments before selecting a different method.

Finding the steady-state solution is not limited to the Lindblad form of the master equation. Any time-independent
Liouvillian constructed from a Hamiltonian and collapse operators can be used as an input:

>>> rho_ss = steadystate(L)

where L is the Louvillian. All of the additional arguments can also be used in this case.

3.6. Solving for Steady-State Solutions 89



QuTiP: Quantum Toolbox in Python, Release 4.5.0

3.6.4 Additional Solver Arguments

The following additional solver arguments are available for the steady-state solver:

Keyword Options (default listed first) Description
method ‘direct’, ‘eigen’, ‘power’,

‘iterative-gmres’,’iterative-
lgmres’, ‘svd’

Method used for solving for the steady-state density matrix.

sparse True, False Use sparse version of direct solver.
weight None Allows the user to define the weighting factor used in the

'direct', 'GMRES', and 'LGMRES' solvers.
permc_spec‘COLAMD’, ‘NATURAL’ Column ordering used in the sparse LU decomposition.
use_rcm False, True Use a Reverse Cuthill-Mckee reordering to minimize the band-

width of the modified Liouvillian used in the LU decomposi-
tion. If use_rcm=True then the column ordering is set to
'Natural' automatically unless explicitly set.

use_precondFalse, True Attempt to generate a preconditioner when using the
'iterative-gmres' and 'iterative-lgmres'
methods.

M None, sparse_matrix, Linear-
Operator

A user defined preconditioner, if any.

use_wbm False, True Use a Weighted Bipartite Matching algorithm to attempt to make
the modified Liouvillian more diagonally dominate, and thus for
favorable for preconditioning. Set to True automatically when
using a iterative method, unless explicitly set.

tol 1e-9 Tolerance used in finding the solution for all methods expect
'direct' and 'svd'.

maxiter 10000 Maximum number of iterations to perform for all methods expect
'direct' and 'svd'.

fill_factor 10 Upper-bound on the allowed fill-in for the approximate inverse
preconditioner. This value may need to be set much higher than
this in some cases.

drop_tol 1e-3 Sets the threshold for the relative magnitude of preconditioner el-
ements that should be dropped. A lower number yields a more ac-
curate approximate inverse at the expense of fill-in and increased
runtime.

diag_pivot_threshNone Sets the threshold between [0, 1] for which diagonal elements are
considered acceptable pivot points when using a preconditioner.

ILU_MILU‘smilu_2’ Selects the incomplete LU decomposition method algorithm
used.

Further information can be found in the qutip.steadystate.steadystate docstrings.

3.6.5 Example: Harmonic Oscillator in Thermal Bath

A simple example of a system that reaches a steady state is a harmonic oscillator coupled to a thermal environment.
Below we consider a harmonic oscillator, initially in the |10⟩ number state, and weakly coupled to a thermal
environment characterized by an average particle expectation value of ⟨𝑛⟩ = 2. We calculate the evolution via
master equation and Monte Carlo methods, and see that they converge to the steady-state solution. Here we choose
to perform only a few Monte Carlo trajectories so we can distinguish this evolution from the master-equation
solution.

import numpy as np
import pylab as plt
from qutip import *
# Define paramters

(continues on next page)
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N = 20 # number of basis states to consider
a = destroy(N)
H = a.dag() * a
psi0 = basis(N, 10) # initial state
kappa = 0.1 # coupling to oscillator

# collapse operators
c_op_list = []
n_th_a = 2 # temperature with average of 2 excitations
rate = kappa * (1 + n_th_a)
if rate > 0.0:

c_op_list.append(np.sqrt(rate) * a) # decay operators
rate = kappa * n_th_a
if rate > 0.0:

c_op_list.append(np.sqrt(rate) * a.dag()) # excitation operators

# find steady-state solution
final_state = steadystate(H, c_op_list)
# find expectation value for particle number in steady state
fexpt = expect(a.dag() * a, final_state)

tlist = np.linspace(0, 50, 100)
# monte-carlo
mcdata = mcsolve(H, psi0, tlist, c_op_list, [a.dag() * a], ntraj=100)
# master eq.
medata = mesolve(H, psi0, tlist, c_op_list, [a.dag() * a])

plt.plot(tlist, mcdata.expect[0], tlist, medata.expect[0], lw=2)
# plot steady-state expt. value as horizontal line (should be = 2)
plt.axhline(y=fexpt, color='r', lw=1.5)
plt.ylim([0, 10])
plt.xlabel('Time', fontsize=14)
plt.ylabel('Number of excitations', fontsize=14)
plt.legend(('Monte-Carlo', 'Master Equation', 'Steady State'))
plt.title('Decay of Fock state $\left|10\\rangle\\right.$' +

' in a thermal environment with $\langle n\\rangle=2$')
plt.show()
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3.7 An Overview of the Eseries Class

3.7.1 Exponential-series representation of time-dependent quantum objects

The eseries object in QuTiP is a representation of an exponential-series expansion of time-dependent quantum
objects (a concept borrowed from the quantum optics toolbox).

An exponential series is parameterized by its amplitude coefficients 𝑐𝑖 and rates 𝑟𝑖, so that the series takes the
form 𝐸(𝑡) =

∑︀
𝑖 𝑐𝑖𝑒

𝑟𝑖𝑡. The coefficients are typically quantum objects (type Qobj: states, operators, etc.), so that
the value of the eseries also is a quantum object, and the rates can be either real or complex numbers (describing
decay rates and oscillation frequencies, respectively). Note that all amplitude coefficients in an exponential series
must be of the same dimensions and composition.

In QuTiP, an exponential series object is constructed by creating an instance of the class qutip.eseries:

In [1]: es1 = eseries(sigmax(), 1j)

where the first argument is the amplitude coefficient (here, the sigma-X operator), and the second argument is the
rate. The eseries in this example represents the time-dependent operator 𝜎𝑥𝑒𝑖𝑡.

To add more terms to an qutip.eseries object we simply add objects using the + operator:

In [2]: omega=1.0

In [3]: es2 = (eseries(0.5 * sigmax(), 1j * omega) +
...: eseries(0.5 * sigmax(), -1j * omega))
...:
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The qutip.eseries in this example represents the operator 0.5𝜎𝑥𝑒
𝑖𝜔𝑡 + 0.5𝜎𝑥𝑒

−𝑖𝜔𝑡, which is the exponential
series representation of 𝜎𝑥 cos(𝜔𝑡). Alternatively, we can also specify a list of amplitudes and rates when the
qutip.eseries is created:

In [4]: es2 = eseries([0.5 * sigmax(), 0.5 * sigmax()], [1j * omega, -1j * omega])

We can inspect the structure of an qutip.eseries object by printing it to the standard output console:

In [5]: es2
Out[5]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = -1j
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0. ]]

Exponent #1 = 1j
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0. ]]

and we can evaluate it at time t by using the qutip.eseries.esval function:

In [6]: esval(es2, 0.0) # equivalent to es2.value(0.0)
Out[6]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]]

or for a list of times [0.0, 1.0 * pi, 2.0 * pi]:

In [7]: times = [0.0, 1.0 * pi, 2.0 * pi]

In [8]: esval(es2, times) # equivalent to es2.value(times)
Out[8]:
array([Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
→˓True
Qobj data =
[[0. 1.]
[1. 0.]],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
→˓True
Qobj data =
[[ 0. -1.]
[-1. 0.]],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
→˓True
Qobj data =
[[0. 1.]
[1. 0.]]], dtype=object)

To calculate the expectation value of an time-dependent operator represented by an qutip.eseries, we use the
qutip.expect function. For example, consider the operator 𝜎𝑥 cos(𝜔𝑡) + 𝜎𝑧 sin(𝜔𝑡), and say we would like
to know the expectation value of this operator for a spin in its excited state (rho = fock_dm(2,1) produce
this state):

In [9]: es3 = (eseries([0.5*sigmaz(), 0.5*sigmaz()], [1j, -1j]) +
...: eseries([-0.5j*sigmax(), 0.5j*sigmax()], [1j, -1j]))
...:

(continues on next page)

3.7. An Overview of the Eseries Class 93



QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

In [10]: rho = fock_dm(2, 1)

In [11]: es3_expect = expect(rho, es3)

In [12]: es3_expect
Out[12]:
ESERIES object: 2 terms
Hilbert space dimensions: [[1, 1]]
Exponent #0 = (-0-1j)
(-0.5+0j)
Exponent #1 = 1j
(-0.5+0j)

In [13]: es3_expect.value([0.0, pi/2])
Out[13]: array([-1.000000e+00, -6.123234e-17])

Note the expectation value of the qutip.eseries object, expect(rho, es3), itself is an qutip.
eseries, but with amplitude coefficients that are C-numbers instead of quantum operators. To evaluate the
C-number qutip.eseries at the times times we use esval(es3_expect, times), or, equivalently,
es3_expect.value(times).

3.7.2 Applications of exponential series

The exponential series formalism can be useful for the time-evolution of quantum systems. One approach to
calculating the time evolution of a quantum system is to diagonalize its Hamiltonian (or Liouvillian, for dissipative
systems) and to express the propagator (e.g., exp(−𝑖𝐻𝑡)𝜌 exp(𝑖𝐻𝑡)) as an exponential series.

The QuTiP function qutip.essolve.ode2es and qutip.essolve use this method to evolve quantum
systems in time. The exponential series approach is particularly suitable for cases when the same system is to be
evolved for many different initial states, since the diagonalization only needs to be performed once (as opposed to
e.g. the ode solver that would need to be ran independently for each initial state).

As an example, consider a spin-1/2 with a Hamiltonian pointing in the 𝜎𝑧 direction, and that is subject to noise
causing relaxation. For a spin originally is in the up state, we can create an qutip.eseries object describing
its dynamics by using the qutip.es2ode function:

In [14]: psi0 = basis(2,1)

In [15]: H = sigmaz()

In [16]: L = liouvillian(H, [sqrt(1.0) * destroy(2)])

In [17]: es = ode2es(L, psi0)

The qutip.essolve.ode2es function diagonalizes the Liouvillian 𝐿 and creates an exponential series with
the correct eigenfrequencies and amplitudes for the initial state 𝜓0 (psi0).

We can examine the resulting qutip.eseries object by printing a text representation:

In [18]: es
Out[18]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = (-1+0j)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[-1. 0.]
[ 0. 1.]]

Exponent #1 = 0j

(continues on next page)
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Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

or by evaluating it and arbitrary points in time (here at 0.0 and 1.0):

In [19]: es.value([0.0, 1.0])
Out[19]:
array([Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
→˓True
Qobj data =
[[0. 0.]
[0. 1.]],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
→˓True
Qobj data =
[[0.63212056 0. ]
[0. 0.36787944]]], dtype=object)

and the expectation value of the exponential series can be calculated using the qutip.expect function:

In [20]: es_expect = expect(sigmaz(), es)

The result es_expect is now an exponential series with c-numbers as amplitudes, which easily can be evaluated at
arbitrary times:

In [21]: es_expect.value([0.0, 1.0, 2.0, 3.0])
Out[21]: array([-1. , 0.26424112, 0.72932943, 0.90042586])

In [22]: times = linspace(0.0, 10.0, 100)

In [23]: sz_expect = es_expect.value(times)

In [24]: from pylab import *

In [25]: plot(times, sz_expect, lw=2);

In [26]: xlabel("Time", fontsize=16)
....: ylabel("Expectation value of sigma-z", fontsize=16);
....:

In [27]: title("The expectation value of the $\sigma_{z}$ operator", fontsize=16);
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3.8 Two-time correlation functions

With the QuTiP time-evolution functions (for example qutip.mesolve and qutip.mcsolve), a state vector
or density matrix can be evolved from an initial state at 𝑡0 to an arbitrary time 𝑡, 𝜌(𝑡) = 𝑉 (𝑡, 𝑡0) {𝜌(𝑡0)}, where
𝑉 (𝑡, 𝑡0) is the propagator defined by the equation of motion. The resulting density matrix can then be used to
evaluate the expectation values of arbitrary combinations of same-time operators.

To calculate two-time correlation functions on the form ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, we can use the quantum regression the-
orem (see, e.g., [Gar03]) to write

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌(𝑡)}] = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝑉 (𝑡, 0) {𝜌(0)}}]

We therefore first calculate 𝜌(𝑡) = 𝑉 (𝑡, 0) {𝜌(0)} using one of the QuTiP evolution solvers with 𝜌(0) as initial
state, and then again use the same solver to calculate 𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌(𝑡)} using 𝐵𝜌(𝑡) as initial state.

Note that if the initial state is the steady state, then 𝜌(𝑡) = 𝑉 (𝑡, 0) {𝜌ss} = 𝜌ss and

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ = Tr [𝐴𝑉 (𝑡+ 𝜏, 𝑡) {𝐵𝜌ss}] = Tr [𝐴𝑉 (𝜏, 0) {𝐵𝜌ss}] = ⟨𝐴(𝜏)𝐵(0)⟩ ,

which is independent of 𝑡, so that we only have one time coordinate 𝜏 .

QuTiP provides a family of functions that assists in the process of calculating two-time correlation functions.
The available functions and their usage is shown in the table below. Each of these functions can use one of the
following evolution solvers: Master-equation, Exponential series and the Monte-Carlo. The choice of solver is
defined by the optional argument solver.

QuTiP function Correlation function
qutip.correlation.correlation or qutip.correlation.
correlation_2op_2t

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ or
⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩.

qutip.correlation.correlation_ss or qutip.correlation.
correlation_2op_1t

⟨𝐴(𝜏)𝐵(0)⟩ or
⟨𝐴(0)𝐵(𝜏)⟩.

qutip.correlation.correlation_4op_1t ⟨𝐴(0)𝐵(𝜏)𝐶(𝜏)𝐷(0)⟩.
qutip.correlation.correlation_4op_2t ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩.

The most common use-case is to calculate correlation functions of the kind ⟨𝐴(𝜏)𝐵(0)⟩, in which case
we use the correlation function solvers that start from the steady state, e.g., the qutip.correlation.
correlation_2op_1t function. These correlation function solvers return a vector or matrix (in general
complex) with the correlations as a function of the delays times.
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3.8.1 Steadystate correlation function

The following code demonstrates how to calculate the ⟨𝑥(𝑡)𝑥(0)⟩ correlation for a leaky cavity with three different
relaxation rates.

In [1]: times = np.linspace(0,10.0,200)

In [2]: a = destroy(10)

In [3]: x = a.dag() + a

In [4]: H = a.dag() * a

In [5]: corr1 = correlation_2op_1t(H, None, times, [np.sqrt(0.5) * a], x, x)

In [6]: corr2 = correlation_2op_1t(H, None, times, [np.sqrt(1.0) * a], x, x)

In [7]: corr3 = correlation_2op_1t(H, None, times, [np.sqrt(2.0) * a], x, x)

In [8]: figure()
Out[8]: <Figure size 640x480 with 0 Axes>

In [9]: plot(times, np.real(corr1), times, np.real(corr2), times, np.real(corr3))
Out[9]:
[<matplotlib.lines.Line2D at 0x1a26366c88>,
<matplotlib.lines.Line2D at 0x1a263669e8>,
<matplotlib.lines.Line2D at 0x1a26553978>]

In [10]: legend(['0.5','1.0','2.0'])
Out[10]: <matplotlib.legend.Legend at 0x1a26f66630>

In [11]: xlabel(r'Time $t$')
Out[11]: Text(0.5,0,'Time $t$')

In [12]: ylabel(r'Correlation $\left<x(t)x(0)\right>$')
Out[12]: Text(0,0.5,'Correlation $\\left<x(t)x(0)\\right>$')

In [13]: show()
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3.8.2 Emission spectrum

Given a correlation function ⟨𝐴(𝜏)𝐵(0)⟩ we can define the corresponding power spectrum as

𝑆(𝜔) =

∫︁ ∞

−∞
⟨𝐴(𝜏)𝐵(0)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

In QuTiP, we can calculate 𝑆(𝜔) using either qutip.correlation.spectrum_ss, which first calculates
the correlation function using the qutip.essolve.essolve solver and then performs the Fourier transform
semi-analytically, or we can use the function qutip.correlation.spectrum_correlation_fft to
numerically calculate the Fourier transform of a given correlation data using FFT.

The following example demonstrates how these two functions can be used to obtain the emission power spectrum.

import numpy as np
import pylab as plt
from qutip import *

N = 4 # number of cavity fock states
wc = wa = 1.0 * 2 * np.pi # cavity and atom frequency
g = 0.1 * 2 * np.pi # coupling strength
kappa = 0.75 # cavity dissipation rate
gamma = 0.25 # atom dissipation rate

# Jaynes-Cummings Hamiltonian
a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag())

# collapse operators
n_th = 0.25
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag(), np.
→˓sqrt(gamma) * sm]

# calculate the correlation function using the mesolve solver, and then fft to
# obtain the spectrum. Here we need to make sure to evaluate the correlation

(continues on next page)
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(continued from previous page)

# function for a sufficient long time and sufficiently high sampling rate so
# that the discrete Fourier transform (FFT) captures all the features in the
# resulting spectrum.
tlist = np.linspace(0, 100, 5000)
corr = correlation_2op_1t(H, None, tlist, c_ops, a.dag(), a)
wlist1, spec1 = spectrum_correlation_fft(tlist, corr)

# calculate the power spectrum using spectrum, which internally uses essolve
# to solve for the dynamics (by default)
wlist2 = np.linspace(0.25, 1.75, 200) * 2 * np.pi
spec2 = spectrum(H, wlist2, c_ops, a.dag(), a)

# plot the spectra
fig, ax = plt.subplots(1, 1)
ax.plot(wlist1 / (2 * np.pi), spec1, 'b', lw=2, label='eseries method')
ax.plot(wlist2 / (2 * np.pi), spec2, 'r--', lw=2, label='me+fft method')
ax.legend()
ax.set_xlabel('Frequency')
ax.set_ylabel('Power spectrum')
ax.set_title('Vacuum Rabi splitting')
ax.set_xlim(wlist2[0]/(2*np.pi), wlist2[-1]/(2*np.pi))
plt.show()
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3.8.3 Non-steadystate correlation function

More generally, we can also calculate correlation functions of the kind ⟨𝐴(𝑡1 + 𝑡2)𝐵(𝑡1)⟩, i.e., the correlation
function of a system that is not in its steadystate. In QuTiP, we can evoluate such correlation functions using the
function qutip.correlation.correlation_2op_2t. The default behavior of this function is to return
a matrix with the correlations as a function of the two time coordinates (𝑡1 and 𝑡2).

import numpy as np
import pylab as plt
from qutip import *

times = np.linspace(0, 10.0, 200)
a = destroy(10)
x = a.dag() + a
H = a.dag() * a
alpha = 2.5
rho0 = coherent_dm(10, alpha)
corr = correlation_2op_2t(H, rho0, times, times, [np.sqrt(0.25) * a], x, x)

plt.pcolor(np.real(corr))
plt.xlabel(r'Time $t_2$')
plt.ylabel(r'Time $t_1$')
plt.title(r'Correlation $\left<x(t)x(0)\right>$')
plt.show()
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However, in some cases we might be interested in the correlation functions on the form ⟨𝐴(𝑡1 + 𝑡2)𝐵(𝑡1)⟩,
but only as a function of time coordinate 𝑡2. In this case we can also use the qutip.correlation.
correlation_2op_2t function, if we pass the density matrix at time 𝑡1 as second argument, and None as
third argument. The qutip.correlation.correlation_2op_2t function then returns a vector with the
correlation values corresponding to the times in taulist (the fourth argument).
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Example: first-order optical coherence function

This example demonstrates how to calculate a correlation function on the form ⟨𝐴(𝜏)𝐵(0)⟩ for a non-steady initial
state. Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent
state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the

first-order optical coherence function 𝑔(1)(𝜏) =
⟨𝑎†(𝜏)𝑎(0)⟩√

⟨𝑎†(𝜏)𝑎(𝜏)⟩⟨𝑎†(0)𝑎(0)⟩
. For a coherent state |𝑔(1)(𝜏)| = 1, and

for a completely incoherent (thermal) state 𝑔(1)(𝜏) = 0. The following code calculates and plots 𝑔(1)(𝜏) as a
function of 𝜏 .

import numpy as np
import pylab as plt
from qutip import *

N = 15
taus = np.linspace(0,10.0,200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a

# collapse operator
G1 = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sqrt(G1 * (1 + n_th)) * a, np.sqrt(G1 * n_th) * a.dag()]

# start with a coherent state
rho0 = coherent_dm(N, 2.0)

# first calculate the occupation number as a function of time
n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]

# calculate the correlation function G1 and normalize with n to obtain g1
G1 = correlation_2op_2t(H, rho0, None, taus, c_ops, a.dag(), a)
g1 = G1 / np.sqrt(n[0] * n)

plt.plot(taus, np.real(g1), 'b', lw=2)
plt.plot(taus, n, 'r', lw=2)
plt.title('Decay of a coherent state to an incoherent (thermal) state')
plt.xlabel(r'$\tau$')
plt.legend((r'First-order coherence function $g^{(1)}(\tau)$',

r'occupation number $n(\tau)$'))
plt.show()
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For convenience, the steps for calculating the first-order coherence function have been collected in the function
qutip.correlation.coherence_function_g1.

Example: second-order optical coherence function

The second-order optical coherence function, with time-delay 𝜏 , is defined as

𝑔(2)(𝜏) =
⟨𝑎†(0)𝑎†(𝜏)𝑎(𝜏)𝑎(0)⟩

⟨𝑎†(0)𝑎(0)⟩2

For a coherent state 𝑔(2)(𝜏) = 1, for a thermal state 𝑔(2)(𝜏 = 0) = 2 and it decreases as a function of time
(bunched photons, they tend to appear together), and for a Fock state with 𝑛 photons 𝑔(2)(𝜏 = 0) = 𝑛(𝑛−1)/𝑛2 <
1 and it increases with time (anti-bunched photons, more likely to arrive separated in time).

To calculate this type of correlation function with QuTiP, we can use qutip.correlation.
correlation_4op_1t, which computes a correlation function on the form ⟨𝐴(0)𝐵(𝜏)𝐶(𝜏)𝐷(0)⟩ (four op-
erators, one delay-time vector).

The following code calculates and plots 𝑔(2)(𝜏) as a function of 𝜏 for a coherent, thermal and fock state.

import numpy as np
import pylab as plt
from qutip import *

N = 25
taus = np.linspace(0, 25.0, 200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a

kappa = 0.25
n_th = 2.0 # bath temperature in terms of excitation number
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag()]

states = [{'state': coherent_dm(N, np.sqrt(2)), 'label': "coherent state"},
{'state': thermal_dm(N, 2), 'label': "thermal state"},

(continues on next page)
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(continued from previous page)

{'state': fock_dm(N, 2), 'label': "Fock state"}]

fig, ax = plt.subplots(1, 1)

for state in states:
rho0 = state['state']

# first calculate the occupation number as a function of time
n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]

# calculate the correlation function G2 and normalize with n(0)n(t) to
# obtain g2
G2 = correlation_3op_1t(H, rho0, taus, c_ops, a.dag(), a.dag()*a, a)
g2 = G2 / (n[0] * n)

ax.plot(taus, np.real(g2), label=state['label'], lw=2)

ax.legend(loc=0)
ax.set_xlabel(r'$\tau$')
ax.set_ylabel(r'$g^{(2)}(\tau)$')
plt.show()
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For convenience, the steps for calculating the second-order coherence function have been collected in the function
qutip.correlation.coherence_function_g2.
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3.9 Quantum Optimal Control

3.9.1 Introduction

In quantum control we look to prepare some specific state, effect some state-to-state transfer, or effect some
transformation (or gate) on a quantum system. For a given quantum system there will always be factors that
effect the dynamics that are outside of our control. As examples, the interactions between elements of the system
or a magnetic field required to trap the system. However, there may be methods of affecting the dynamics in a
controlled way, such as the time varying amplitude of the electric component of an interacting laser field. And so
this leads to some questions; given a specific quantum system with known time-independent dynamics generator
(referred to as the drift dynamics generators) and set of externally controllable fields for which the interaction can
be described by control dynamics generators:

1. what states or transformations can we achieve (if any)?

2. what is the shape of the control pulse required to achieve this?

These questions are addressed as controllability and quantum optimal control [dAless08]. The answer to question
of controllability is determined by the commutability of the dynamics generators and is formalised as the Lie
Algebra Rank Criterion and is discussed in detail in [dAless08]. The solutions to the second question can be
determined through optimal control algorithms, or control pulse optimisation.

Fig. 2: Schematic showing the principle of quantum control.

Quantum Control has many applications including NMR, quantum metrology, control of chemical reactions, and
quantum information processing.

To explain the physics behind these algorithms we will first consider only finite-dimensional, closed quantum
systems.

3.9.2 Closed Quantum Systems

In closed quantum systems the states can be represented by kets, and the transformations on these states are unitary
operators. The dynamics generators are Hamiltonians. The combined Hamiltonian for the system is given by

𝐻(𝑡) = 𝐻0 +
∑︁
𝑗=1

𝑢𝑗(𝑡)𝐻𝑗

where 𝐻0 is the drift Hamiltonian and the 𝐻𝑗 are the control Hamiltonians. The 𝑢𝑗 are time varying amplitude
functions for the specific control.

The dynamics of the system are governed by Schrödingers equation.

𝑑
𝑑𝑡 |𝜓⟩ = −𝑖𝐻(𝑡) |𝜓⟩
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Note we use units where ~ = 1 throughout. The solutions to Schrödinger’s equation are of the form:

|𝜓(𝑡)⟩ = 𝑈(𝑡) |𝜓0⟩

where 𝜓0 is the state of the system at 𝑡 = 0 and 𝑈(𝑡) is a unitary operator on the Hilbert space containing the
states. 𝑈(𝑡) is a solution to the Schrödinger operator equation

𝑑
𝑑𝑡𝑈 = −𝑖𝐻(𝑡)𝑈, 𝑈(0) = 1

We can use optimal control algorithms to determine a set of 𝑢𝑗 that will drive our system from |𝜓0⟩ to |𝜓1⟩, this is
state-to-state transfer, or drive the system from some arbitary state to a given state |𝜓1⟩, which is state preparation,
or effect some unitary transformation 𝑈𝑡𝑎𝑟𝑔𝑒𝑡, called gate synthesis. The latter of these is most important in
quantum computation.

3.9.3 The GRAPE algorithm

The GRadient Ascent Pulse Engineering was first proposed in [2]. Solutions to Schrödinger’s equation for a
time-dependent Hamiltonian are not generally possible to obtain analytically. Therefore, a piecewise constant
approximation to the pulse amplitudes is made. Time allowed for the system to evolve 𝑇 is split into 𝑀 timeslots
(typically these are of equal duration), during which the control amplitude is assumed to remain constant. The
combined Hamiltonian can then be approximated as:

𝐻(𝑡) ≈ 𝐻(𝑡𝑘) = 𝐻0 +

𝑁∑︁
𝑗=1

𝑢𝑗𝑘𝐻𝑗

where 𝑘 is a timeslot index, 𝑗 is the control index, and 𝑁 is the number of controls. Hence 𝑡𝑘 is the evolution
time at the start of the timeslot, and 𝑢𝑗𝑘 is the amplitude of control 𝑗 throughout timeslot 𝑘. The time evolution
operator, or propagator, within the timeslot can then be calculated as:

𝑋𝑘 := 𝑒−𝑖𝐻(𝑡𝑘)Δ𝑡𝑘

where ∆𝑡𝑘 is the duration of the timeslot. The evolution up to (and including) any timeslot 𝑘 (including the full
evolution 𝑘 = 𝑀 ) can the be calculated as

𝑋(𝑡𝑘) := 𝑋𝑘𝑋𝑘−1 · · ·𝑋1𝑋0

If the objective is state-to-state transfer then 𝑋0 = |𝜓0⟩ and the target 𝑋𝑡𝑎𝑟𝑔 = |𝜓1⟩, for gate synthesis 𝑋0 =
𝑈(0) = 1 and the target 𝑋𝑡𝑎𝑟𝑔 = 𝑈𝑡𝑎𝑟𝑔.

A figure of merit or fidelity is some measure of how close the evolution is to the target, based on the control
amplitudes in the timeslots. The typical figure of merit for unitary systems is the normalised overlap of the
evolution and the target.

𝑓𝑃𝑆𝑈 = 1
𝑑

⃒⃒
tr{𝑋†

𝑡𝑎𝑟𝑔𝑋(𝑇 )}
⃒⃒

where 𝑑 is the system dimension. In this figure of merit the absolute value is taken to ignore any differences in
global phase, and 0 ≤ 𝑓 ≤ 1. Typically the fidelity error (or infidelity) is more useful, in this case defined as
𝜀 = 1 − 𝑓𝑃𝑆𝑈 . There are many other possible objectives, and hence figures of merit.

As there are now 𝑁 ×𝑀 variables (the 𝑢𝑗𝑘) and one parameter to minimise 𝜀, then the problem becomes a finite
multi-variable optimisation problem, for which there are many established methods, often referred to as ‘hill-
climbing’ methods. The simplest of these to understand is that of steepest ascent (or descent). The gradient of the
fidelity with respect to all the variables is calculated (or approximated) and a step is made in the variable space
in the direction of steepest ascent (or descent). This method is a first order gradient method. In two dimensions
this describes a method of climbing a hill by heading in the direction where the ground rises fastest. This analogy
also clearly illustrates one of the main challenges in multi-variable optimisation, which is that all methods have a
tendency to get stuck in local maxima. It is hard to determine whether one has found a global maximum or not - a
local peak is likely not to be the highest mountain in the region. In quantum optimal control we can typically define
an infidelity that has a lower bound of zero. We can then look to minimise the infidelity (from here on we will
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only consider optimising for infidelity minima). This means that we can terminate any pulse optimisation when
the infidelity reaches zero (to a sufficient precision). This is however only possible for fully controllable systems;
otherwise it is hard (if not impossible) to know that the minimum possible infidelity has been achieved. In the hill
walking analogy the step size is roughly fixed to a stride, however, in computations the step size must be chosen.
Clearly there is a trade-off here between the number of steps (or iterations) required to reach the minima and the
possibility that we might step over a minima. In practice it is difficult to determine an efficient and effective step
size.

The second order differentials of the infidelity with respect to the variables can be used to approximate the local
landscape to a parabola. This way a step (or jump) can be made to where the minima would be if it were parabolic.
This typically vastly reduces the number of iterations, and removes the need to guess a step size. The method where
all the second differentials are calculated explicitly is called the Newton-Raphson method. However, calculating
the second-order differentials (the Hessian matrix) can be computationally expensive, and so there are a class of
methods known as quasi-Newton that approximate the Hessian based on successive iterations. The most popular
of these (in quantum optimal control) is the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). The default
method in the QuTiP Qtrl GRAPE implementation is the L-BFGS-B method in Scipy, which is a wrapper to the
implementation described in [Byrd95]. This limited memory and bounded method does not need to store the entire
Hessian, which reduces the computer memory required, and allows bounds to be set for variable values, which
considering these are field amplitudes is often physical.

The pulse optimisation is typically far more efficient if the gradients can be calculated exactly, rather than approxi-
mated. For simple fidelity measures such as 𝑓𝑃𝑆𝑈 this is possible. Firstly the propagator gradient for each timeslot
with respect to the control amplitudes is calculated. For closed systems, with unitary dynamics, a method using
the eigendecomposition is used, which is efficient as it is also used in the propagator calculation (to exponentiate
the combined Hamiltonian). More generally (for example open systems and symplectic dynamics) the Frechet
derivative (or augmented matrix) method is used, which is described in [Flo12]. For other optimisation goals it
may not be possible to calculate analytic gradients. In these cases it is necessary to approximate the gradients, but
this can be very expensive, and can lead to other algorithms out-performing GRAPE.

3.9.4 The CRAB Algorithm

It has been shown [Lloyd14], the dimension of a quantum optimal control problem is a polynomial function of the
dimension of the manifold of the time-polynomial reachable states, when allowing for a finite control precision
and evolution time. You can think of this as the information content of the pulse (as being the only effective input)
being very limited e.g. the pulse is compressible to a few bytes without loosing the target.

This is where the Chopped RAndom Basis (CRAB) algorithm [Doria11], [Caneva11] comes into play: Since the
pulse complexity is usually very low, it is sufficient to transform the optimal control problem to a few parameter
search by introducing a physically motivated function basis that builds up the pulse. Compared to the number
of time slices needed to accurately simulate quantum dynamics (often equals basis dimension for Gradient based
algorithms), this number is lower by orders of magnitude, allowing CRAB to efficiently optimize smooth pulses
with realistic experimental constraints. It is important to point out, that CRAB does not make any suggestion
on the basis function to be used. The basis must be chosen carefully considered, taking into account a priori
knowledge of the system (such as symmetries, magnitudes of scales,. . . ) and solution (e.g. sign, smoothness,
bang-bang behavior, singularities, maximum excursion or rate of change,. . . .). By doing so, this algorithm allows
for native integration of experimental constraints such as maximum frequencies allowed, maximum amplitude,
smooth ramping up and down of the pulse and many more. Moreover initial guesses, if they are available, can
(however not have to) be included to speed up convergence.

As mentioned in the GRAPE paragraph, for CRAB local minima arising from algorithmic design can occur, too.
However, for CRAB a ‘dressed’ version has recently been introduced [Rach15] that allows to escape local minima.

For some control objectives and/or dynamical quantum descriptions, it is either not possible to derive the gradient
for the cost functional with respect to each time slice or it is computationally expensive to do so. The same can
apply for the necessary (reverse) propagation of the co-state. All this trouble does not occur within CRAB as
those elements are not in use here. CRAB, instead, takes the time evolution as a black-box where the pulse goes
as an input and the cost (e.g. infidelity) value will be returned as an output. This concept, on top, allows for
direct integration in a closed loop experimental environment where both the preliminarily open loop optimization,
as well as the final adoption, and integration to the lab (to account for modeling errors, experimental systematic
noise, . . . ) can be done all in one, using this algorithm.
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3.9.5 Optimal Quantum Control in QuTiP

There are two separate implementations of optimal control inside QuTiP. The first is an implementation of first
order GRAPE, and is not further described here, but there are the example notebooks. The second is referred to as
Qtrl (when a distinction needs to be made) as this was its name before it was integrated into QuTiP. Qtrl uses the
Scipy optimize functions to perform the multi-variable optimisation, typically the L-BFGS-B method for GRAPE
and Nelder-Mead for CRAB. The GRAPE implementation in Qtrl was initially based on the open-source package
DYNAMO, which is a MATLAB implementation, and is described in [DYNAMO]. It has since been restructured
and extended for flexibility and compatibility within QuTiP.

The rest of this section describes the Qtrl implementation and how to use it.

Object Model The Qtrl code is organised in a hierarchical object model in order to try and maximise configura-
bility whilst maintaining some clarity. It is not necessary to understand the model in order to use the pulse
optimisation functions, but it is the most flexible method of using Qtrl. If you just want to use a simple
single function call interface, then jump to Using the pulseoptim functions

Fig. 3: Qtrl code object model.

The object’s properties and methods are described in detail in the documentation, so that will not be repeated here.

OptimConfig The OptimConfig object is used simply to hold configuration parameters used by all the objects.
Typically this is the subclass types for the other objects and parameters for the users specific requirements.
The loadparams module can be used read parameter values from a configuration file.

Optimizer This acts as a wrapper to the Scipy.optimize functions that perform the work of the pulse opti-
misation algorithms. Using the main classes the user can specify which of the optimisation methods are to
be used. There are subclasses specifically for the BFGS and L-BFGS-B methods. There is another subclass
for using the CRAB algorithm.

Dynamics This is mainly a container for the lists that hold the dynamics generators, propagators, and time evo-
lution operators in each timeslot. The combining of dynamics generators is also complete by this object.
Different subclasses support a range of types of quantum systems, including closed systems with unitary
dynamics, systems with quadratic Hamiltonians that have Gaussian states and symplectic transforms, and a
general subclass that can be used for open system dynamics with Lindbladian operators.

PulseGen There are many subclasses of pulse generators that generate different types of pulses as the initial
amplitudes for the optimisation. Often the goal cannot be achieved from all starting conditions, and then
typically some kind of random pulse is used and repeated optimisations are performed until the desired
infidelity is reached or the minimum infidelity found is reported. There is a specific subclass that is used by
the CRAB algorithm to generate the pulses based on the basis coefficients that are being optimised.

TerminationConditions This is simply a convenient place to hold all the properties that will determine when the
single optimisation run terminates. Limits can be set for number of iterations, time, and of course the target
infidelity.

Stats Performance data are optionally collected during the optimisation. This object is shared to a single location
to store, calculate and report run statistics.
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FidelityComputer The subclass of the fidelity computer determines the type of fidelity measure. These are
closely linked to the type of dynamics in use. These are also the most commonly user customised subclasses.

PropagatorComputer This object computes propagators from one timeslot to the next and also the propagator
gradient. The options are using the spectral decomposition or Frechet derivative, as discussed above.

TimeslotComputer Here the time evolution is computed by calling the methods of the other computer objects.

OptimResult The result of a pulse optimisation run is returned as an object with properties for the outcome in
terms of the infidelity, reason for termination, performance statistics, final evolution, and more.

3.9.6 Using the pulseoptim functions

The simplest method for optimising a control pulse is to call one of the functions in the pulseoptim module.
This automates the creation and configuration of the necessary objects, generation of initial pulses, running the
optimisation and returning the result. There are functions specifically for unitary dynamics, and also specifically
for the CRAB algorithm (GRAPE is the default). The optimise_pulse function can in fact be used for unitary
dynamics and / or the CRAB algorithm, the more specific functions simply have parameter names that are more
familiar in that application.

A semi-automated method is to use the create_optimizer_objects function to generate and configure
all the objects, then manually set the initial pulse and call the optimisation. This would be more efficient when
repeating runs with different starting conditions.

3.10 Plotting on the Bloch Sphere

Important: Updated in QuTiP version 3.0.

3.10.1 Introduction

When studying the dynamics of a two-level system, it is often convent to visualize the state of the system by
plotting the state-vector or density matrix on the Bloch sphere. In QuTiP, we have created two different classes
to allow for easy creation and manipulation of data sets, both vectors and data points, on the Bloch sphere. The
qutip.Bloch class, uses Matplotlib to render the Bloch sphere, where as qutip.Bloch3d uses the Mayavi
rendering engine to generate a more faithful 3D reconstruction of the Bloch sphere.

3.10.2 The Bloch and Bloch3d Classes

In QuTiP, creating a Bloch sphere is accomplished by calling either:

In [1]: b = Bloch()

which will load an instance of the qutip.Bloch class, or using:

>>> b3d = Bloch3d()

that loads the qutip.Bloch3d version. Before getting into the details of these objects, we can simply plot the
blank Bloch sphere associated with these instances via:

In [2]: b.show()
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or

In addition to the show() command, the Bloch class has the following functions:

As an example, we can add a single data point:

In [3]: pnt = [1/np.sqrt(3),1/np.sqrt(3),1/np.sqrt(3)]

In [4]: b.add_points(pnt)

In [5]: b.show()
<Figure size 500x500 with 1 Axes>
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and then a single vector:

In [6]: vec = [0,1,0]

In [7]: b.add_vectors(vec)

In [8]: b.show()
<Figure size 500x500 with 1 Axes>

and then add another vector corresponding to the |up⟩ state:

In [9]: up = basis(2,0)

In [10]: b.add_states(up)

(continues on next page)
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(continued from previous page)

In [11]: b.show()
<Figure size 500x500 with 1 Axes>

Notice that when we add more than a single vector (or data point), a different color will automatically be applied
to the later data set (mod 4). In total, the code for constructing our Bloch sphere with one vector, one state, and a
single data point is:

In [12]: b = Bloch()

In [13]: pnt = [1./np.sqrt(3), 1./np.sqrt(3), 1./np.sqrt(3)]

In [14]: b.add_points(pnt)

In [15]: vec = [0,1,0]

In [16]: b.add_vectors(vec)

In [17]: up = basis(2,0)

In [18]: b.add_states(up)

In [19]: b.show()
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where we have removed the extra show() commands. Replacing b=Bloch() with b=Bloch3d() in the
above code generates the following 3D Bloch sphere.

We can also plot multiple points, vectors, and states at the same time by passing list or arrays instead of individual
elements. Before giving an example, we can use the clear() command to remove the current data from our Bloch
sphere instead of creating a new instance:

In [20]: b.clear()

In [21]: b.show()
<Figure size 500x500 with 1 Axes>

112 Chapter 3. Users Guide



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Now on the same Bloch sphere, we can plot the three states associated with the x, y, and z directions:

In [22]: x = (basis(2,0)+(1+0j)*basis(2,1)).unit()

In [23]: y = (basis(2,0)+(0+1j)*basis(2,1)).unit()

In [24]: z = (basis(2,0)+(0+0j)*basis(2,1)).unit()

In [25]: b.add_states([x,y,z])

In [26]: b.show()
<Figure size 500x500 with 1 Axes>

a similar method works for adding vectors:
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In [27]: b.clear()

In [28]: vec = [[1,0,0],[0,1,0],[0,0,1]]

In [29]: b.add_vectors(vec)

In [30]: b.show()
<Figure size 500x500 with 1 Axes>

Adding multiple points to the Bloch sphere works slightly differently than adding multiple states or vectors. For
example, lets add a set of 20 points around the equator (after calling clear()):

In [31]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]

In [32]: yp = [np.sin(th) for th in np.linspace(0, 2*pi, 20)]

In [33]: zp = np.zeros(20)

In [34]: pnts = [xp, yp, zp]

In [35]: b.add_points(pnts)

In [36]: b.show()
<Figure size 500x500 with 1 Axes>
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Notice that, in contrast to states or vectors, each point remains the same color as the initial point. This is because
adding multiple data points using the add_points function is interpreted, by default, to correspond to a single data
point (single qubit state) plotted at different times. This is very useful when visualizing the dynamics of a qubit.
An example of this is given in the example . If we want to plot additional qubit states we can call additional
add_points functions:

In [37]: xz = np.zeros(20)

In [38]: yz = [np.sin(th) for th in np.linspace(0, pi, 20)]

In [39]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]

In [40]: b.add_points([xz, yz, zz])

In [41]: b.show()
<Figure size 500x500 with 1 Axes>
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The color and shape of the data points is varied automatically by the Bloch class. Notice how the color and point
markers change for each set of data. Again, we have had to call add_points twice because adding more than
one set of multiple data points is not supported by the add_points function.

What if we want to vary the color of our points. We can tell the qutip.Bloch class to vary the color of each
point according to the colors listed in the b.point_color list (see Configuring the Bloch sphere below). Again
after clear():

In [42]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]

In [43]: yp = [sin(th) for th in np.linspace(0, 2*pi, 20)]

In [44]: zp = np.zeros(20)

In [45]: pnts = [xp, yp, zp]

In [46]: b.add_points(pnts,'m') # <-- add a 'm' string to signify 'multi' colored
→˓points

In [47]: b.show()
<Figure size 500x500 with 1 Axes>
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Now, the data points cycle through a variety of predefined colors. Now lets add another set of points, but this time
we want the set to be a single color, representing say a qubit going from the |up⟩ state to the |down⟩ state in the
y-z plane:

In [48]: xz = np.zeros(20)

In [49]: yz = [np.sin(th) for th in np.linspace(0, pi ,20)]

In [50]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]

In [51]: b.add_points([xz, yz, zz]) # no 'm'

In [52]: b.show()
<Figure size 500x500 with 1 Axes>

Again, the same plot can be generated using the qutip.Bloch3d class by replacing Bloch with Bloch3d:
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A more slick way of using this ‘multi’ color feature is also given in the example, where we set the color of the
markers as a function of time.

Differences Between Bloch and Bloch3d

While in general the Bloch and Bloch3d classes are interchangeable, there are some important differences to
consider when choosing between them.

• The Bloch class uses Matplotlib to generate figures. As such, the data plotted on the sphere is in reality
just a 2D object. In contrast the Bloch3d class uses the 3D rendering engine from VTK via mayavi to
generate the sphere and the included data. In this sense the Bloch3d class is much more advanced, as
objects are rendered in 3D leading to a higher quality figure.

• Only the Bloch class can be embedded in a Matplotlib figure window. Thus if you want to combine a
Bloch sphere with another figure generated in QuTiP, you can not use Bloch3d. Of course you can always
post-process your figures using other software to get the desired result.

• Due to limitations in the rendering engine, the Bloch3d class does not support LaTex for text. Again, you
can get around this by post-processing.

• The user customizable attributes for the Bloch and Bloch3d classes are not identical. Therefore, if you
change the properties of one of the classes, these changes will cause an exception if the class is switched.

3.10.3 Configuring the Bloch sphere

Bloch Class Options

At the end of the last section we saw that the colors and marker shapes of the data plotted on the Bloch sphere are
automatically varied according to the number of points and vectors added. But what if you want a different choice
of color, or you want your sphere to be purple with different axes labels? Well then you are in luck as the Bloch
class has 22 attributes which one can control. Assuming b=Bloch():
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Attribute Function Default Setting
b.axes Matplotlib axes instance for animations. Set by

axes keyword arg.
None

b.fig User supplied Matplotlib Figure instance. Set by
fig keyword arg.

None

b.font_color Color of fonts ‘black’
b.font_size Size of fonts 20
b.frame_alpha Transparency of wireframe 0.1
b.frame_color Color of wireframe ‘gray’
b.frame_width Width of wireframe 1
b.point_color List of colors for Bloch point markers to cycle

through
[‘b’,’r’,’g’,’#CC6600’]

b.point_marker List of point marker shapes to cycle through [‘o’,’s’,’d’,’^’]
b.point_size List of point marker sizes (not all markers look the

same size when plotted)
[55,62,65,75]

b.sphere_alpha Transparency of Bloch sphere 0.2
b.sphere_color Color of Bloch sphere ‘#FFDDDD’
b.size Sets size of figure window [7,7] (700x700 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [‘g’,’#CC6600’,’b’,’r’]
b.vector_width Width of Bloch vectors 4
b.view Azimuthal and Elevation viewing angles [-60,30]
b.xlabel Labels for x-axis [‘$x$’,”] +x and -x (labels use LaTeX)
b.xlpos Position of x-axis labels [1.1,-1.1]
b.ylabel Labels for y-axis [‘$y$’,”] +y and -y (labels use LaTeX)
b.ylpos Position of y-axis labels [1.2,-1.2]
b.zlabel Labels for z-axis [‘$left|0\right>$’,’$left|1\right>$’] +z and -z (la-

bels use LaTeX)
b.zlpos Position of z-axis labels [1.2,-1.2]

Bloch3d Class Options

The Bloch3d sphere is also customizable. Note however that the attributes for the Bloch3d class are not in one-
to-one correspondence to those of the Bloch class due to the different underlying rendering engines. Assuming
b=Bloch3d():
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Attribute Function Default Setting
b.fig User supplied Mayavi Figure instance. Set by

fig keyword arg.
None

b.font_color Color of fonts ‘black’
b.font_scale Scale of fonts 0.08
b.frame Draw wireframe for sphere? True
b.frame_alpha Transparency of wireframe 0.05
b.frame_color Color of wireframe ‘gray’
b.frame_num Number of wireframe elements to draw 8
b.frame_radius Radius of wireframe lines 0.005
b.point_color List of colors for Bloch point markers to cycle

through
[‘r’, ‘g’, ‘b’, ‘y’]

b.point_mode Type of point markers to draw sphere
b.point_size Size of points 0.075
b.sphere_alpha Transparency of Bloch sphere 0.1
b.sphere_color Color of Bloch sphere ‘#808080’
b.size Sets size of figure window [500,500] (500x500 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [‘r’, ‘g’, ‘b’, ‘y’]
b.vector_width Width of Bloch vectors 3
b.view Azimuthal and Elevation viewing angles [45,65 ]
b.xlabel Labels for x-axis [‘|x>’, ‘’] +x and -x
b.xlpos Position of x-axis labels [1.07,-1.07]
b.ylabel Labels for y-axis [‘$y$’,”] +y and -y
b.ylpos Position of y-axis labels [1.07,-1.07]
b.zlabel Labels for z-axis [‘|0>’, ‘|1>’] +z and -z
b.zlpos Position of z-axis labels [1.07,-1.07]

These properties can also be accessed via the print command:

In [53]: b = Bloch()

In [54]: print(b)
Bloch data:
-----------
Number of points: 0
Number of vectors: 0

Bloch sphere properties:
------------------------
font_color: black
font_size: 20
frame_alpha: 0.2
frame_color: gray
frame_width: 1
point_color: ['b', 'r', 'g', '#CC6600']
point_marker: ['o', 's', 'd', '^']
point_size: [25, 32, 35, 45]
sphere_alpha: 0.2
sphere_color: #FFDDDD
figsize: [5, 5]
vector_color: ['g', '#CC6600', 'b', 'r']
vector_width: 3
vector_style: -|>
vector_mutation: 20
view: [-60, 30]
xlabel: ['$x$', '']
xlpos: [1.2, -1.2]
ylabel: ['$y$', '']

(continues on next page)
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(continued from previous page)

ylpos: [1.2, -1.2]
zlabel: ['$\\left|0\\right>$', '$\\left|1\\right>$']
zlpos: [1.2, -1.2]

3.10.4 Animating with the Bloch sphere

The Bloch class was designed from the outset to generate animations. To animate a set of vectors or data points
the basic idea is: plot the data at time t1, save the sphere, clear the sphere, plot data at t2,. . . The Bloch sphere
will automatically number the output file based on how many times the object has been saved (this is stored in
b.savenum). The easiest way to animate data on the Bloch sphere is to use the save() method and generate
a series of images to convert into an animation. However, as of Matplotlib version 1.1, creating animations is
built-in. We will demonstrate both methods by looking at the decay of a qubit on the bloch sphere.

Example: Qubit Decay

The code for calculating the expectation values for the Pauli spin operators of a qubit decay is given below. This
code is common to both animation examples.

from qutip import *
from scipy import *
def qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist):

# operators and the hamiltonian
sx = sigmax(); sy = sigmay(); sz = sigmaz(); sm = sigmam()
H = w * (cos(theta) * sz + sin(theta) * sx)
# collapse operators
c_op_list = []
n_th = 0.5 # temperature
rate = gamma1 * (n_th + 1)
if rate > 0.0: c_op_list.append(sqrt(rate) * sm)
rate = gamma1 * n_th
if rate > 0.0: c_op_list.append(sqrt(rate) * sm.dag())
rate = gamma2
if rate > 0.0: c_op_list.append(sqrt(rate) * sz)

# evolve and calculate expectation values
output = mesolve(H, psi0, tlist, c_op_list, [sx, sy, sz])
return output.expect[0], output.expect[1], output.expect[2]

## calculate the dynamics
w = 1.0 * 2 * pi # qubit angular frequency
theta = 0.2 * pi # qubit angle from sigma_z axis (toward sigma_x axis)
gamma1 = 0.5 # qubit relaxation rate
gamma2 = 0.2 # qubit dephasing rate
# initial state
a = 1.0
psi0 = (a* basis(2,0) + (1-a)*basis(2,1))/(sqrt(a**2 + (1-a)**2))
tlist = linspace(0,4,250)
#expectation values for ploting
sx, sy, sz = qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist)
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Generating Images for Animation

An example of generating images for generating an animation outside of Python is given below:

import numpy as np
b = Bloch()
b.vector_color = ['r']
b.view = [-40,30]
for i in range(len(sx)):

b.clear()
b.add_vectors([np.sin(theta),0,np.cos(theta)])
b.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
b.save(dirc='temp') #saving images to temp directory in current working

→˓directory

Generating an animation using ffmpeg (for example) is fairly simple:

ffmpeg -r 20 -b 1800 -i bloch_%01d.png bloch.mp4

Directly Generating an Animation

Important: Generating animations directly from Matplotlib requires installing either mencoder or ffmpeg. While
either choice works on linux, it is best to choose ffmpeg when running on the Mac. If using macports just do:
sudo port install ffmpeg.

The code to directly generate an mp4 movie of the Qubit decay is as follows:

from pylab import *
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D

fig = figure()
ax = Axes3D(fig,azim=-40,elev=30)
sphere = Bloch(axes=ax)

def animate(i):
sphere.clear()
sphere.add_vectors([np.sin(theta),0,np.cos(theta)])
sphere.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
sphere.make_sphere()
return ax

def init():
sphere.vector_color = ['r']
return ax

ani = animation.FuncAnimation(fig, animate, np.arange(len(sx)),
init_func=init, blit=True, repeat=False)

ani.save('bloch_sphere.mp4', fps=20)

The resulting movie may be viewed here: bloch_decay.mp4
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3.11 Visualization of quantum states and processes

Visualization is often an important complement to a simulation of a quantum mechanical system. The first method
of visualization that come to mind might be to plot the expectation values of a few selected operators. But on top
of that, it can often be instructive to visualize for example the state vectors or density matices that describe the
state of the system, or how the state is transformed as a function of time (see process tomography below). In this
section we demonstrate how QuTiP and matplotlib can be used to perform a few types of visualizations that often
can provide additional understanding of quantum system.

3.11.1 Fock-basis probability distribution

In quantum mechanics probability distributions plays an important role, and as in statistics, the expectation values
computed from a probability distribution does not reveal the full story. For example, consider an quantum har-
monic oscillator mode with Hamiltonian 𝐻 = ~𝜔𝑎†𝑎, which is in a state described by its density matrix 𝜌, and
which on average is occupied by two photons, Tr[𝜌𝑎†𝑎] = 2. Given this information we cannot say whether the
oscillator is in a Fock state, a thermal state, a coherent state, etc. By visualizing the photon distribution in the Fock
state basis important clues about the underlying state can be obtained.

One convenient way to visualize a probability distribution is to use histograms. Consider the following histogram
visualization of the number-basis probability distribution, which can be obtained from the diagonal of the density
matrix, for a few possible oscillator states with on average occupation of two photons.

First we generate the density matrices for the coherent, thermal and fock states.

In [1]: N = 20

In [2]: rho_coherent = coherent_dm(N, np.sqrt(2))

In [3]: rho_thermal = thermal_dm(N, 2)

In [4]: rho_fock = fock_dm(N, 2)

Next, we plot histograms of the diagonals of the density matrices:

In [5]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [6]: bar0 = axes[0].bar(np.arange(0, N)-.5, rho_coherent.diag())

In [7]: lbl0 = axes[0].set_title("Coherent state")

In [8]: lim0 = axes[0].set_xlim([-.5, N])

In [9]: bar1 = axes[1].bar(np.arange(0, N)-.5, rho_thermal.diag())

In [10]: lbl1 = axes[1].set_title("Thermal state")

In [11]: lim1 = axes[1].set_xlim([-.5, N])

In [12]: bar2 = axes[2].bar(np.arange(0, N)-.5, rho_fock.diag())

In [13]: lbl2 = axes[2].set_title("Fock state")

In [14]: lim2 = axes[2].set_xlim([-.5, N])

In [15]: plt.show()
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All these states correspond to an average of two photons, but by visualizing the photon distribution in Fock basis
the differences between these states are easily appreciated.

One frequently need to visualize the Fock-distribution in the way described above, so QuTiP provides a conve-
nience function for doing this, see qutip.visualization.plot_fock_distribution, and the follow-
ing example:

In [16]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [17]: plot_fock_distribution(rho_coherent, fig=fig, ax=axes[0], title="Coherent
→˓state");

In [18]: plot_fock_distribution(rho_thermal, fig=fig, ax=axes[1], title="Thermal
→˓state");

In [19]: plot_fock_distribution(rho_fock, fig=fig, ax=axes[2], title="Fock state");

In [20]: fig.tight_layout()

In [21]: plt.show()

3.11.2 Quasi-probability distributions

The probability distribution in the number (Fock) basis only describes the occupation probabilities for a discrete
set of states. A more complete phase-space probability-distribution-like function for harmonic modes are the
Wigner and Husumi Q-functions, which are full descriptions of the quantum state (equivalent to the density ma-
trix). These are called quasi-distribution functions because unlike real probability distribution functions they can
for example be negative. In addition to being more complete descriptions of a state (compared to only the oc-
cupation probabilities plotted above), these distributions are also great for demonstrating if a quantum state is
quantum mechanical, since for example a negative Wigner function is a definite indicator that a state is distinctly
nonclassical.
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Wigner function

In QuTiP, the Wigner function for a harmonic mode can be calculated with the function qutip.wigner.
wigner. It takes a ket or a density matrix as input, together with arrays that define the ranges of the phase-space
coordinates (in the x-y plane). In the following example the Wigner functions are calculated and plotted for the
same three states as in the previous section.

In [22]: xvec = np.linspace(-5,5,200)

In [23]: W_coherent = wigner(rho_coherent, xvec, xvec)

In [24]: W_thermal = wigner(rho_thermal, xvec, xvec)

In [25]: W_fock = wigner(rho_fock, xvec, xvec)

In [26]: # plot the results

In [27]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [28]: cont0 = axes[0].contourf(xvec, xvec, W_coherent, 100)

In [29]: lbl0 = axes[0].set_title("Coherent state")

In [30]: cont1 = axes[1].contourf(xvec, xvec, W_thermal, 100)

In [31]: lbl1 = axes[1].set_title("Thermal state")

In [32]: cont0 = axes[2].contourf(xvec, xvec, W_fock, 100)

In [33]: lbl2 = axes[2].set_title("Fock state")

In [34]: plt.show()

Custom Color Maps

The main objective when plotting a Wigner function is to demonstrate that the underlying state is nonclassical,
as indicated by negative values in the Wigner function. Therefore, making these negative values stand out in
a figure is helpful for both analysis and publication purposes. Unfortunately, all of the color schemes used in
Matplotlib (or any other plotting software) are linear colormaps where small negative values tend to be near the
same color as the zero values, and are thus hidden. To fix this dilemma, QuTiP includes a nonlinear colormap
function qutip.matplotlib_utilities.wigner_cmap that colors all negative values differently than
positive or zero values. Below is a demonstration of how to use this function in your Wigner figures:

In [35]: import matplotlib as mpl

In [36]: from matplotlib import cm

In [37]: psi = (basis(10, 0) + basis(10, 3) + basis(10, 9)).unit()

(continues on next page)

3.11. Visualization of quantum states and processes 125



QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

In [38]: xvec = np.linspace(-5, 5, 500)

In [39]: W = wigner(psi, xvec, xvec)

In [40]: wmap = wigner_cmap(W) # Generate Wigner colormap

In [41]: nrm = mpl.colors.Normalize(-W.max(), W.max())

In [42]: fig, axes = plt.subplots(1, 2, figsize=(10, 4))

In [43]: plt1 = axes[0].contourf(xvec, xvec, W, 100, cmap=cm.RdBu, norm=nrm)

In [44]: axes[0].set_title("Standard Colormap");

In [45]: cb1 = fig.colorbar(plt1, ax=axes[0])

In [46]: plt2 = axes[1].contourf(xvec, xvec, W, 100, cmap=wmap) # Apply Wigner
→˓colormap

In [47]: axes[1].set_title("Wigner Colormap");

In [48]: cb2 = fig.colorbar(plt2, ax=axes[1])

In [49]: fig.tight_layout()

In [50]: plt.show()

Husimi Q-function

The Husimi Q function is, like the Wigner function, a quasiprobability distribution for harmonic modes. It is
defined as

𝑄(𝛼) =
1

𝜋
⟨𝛼|𝜌|𝛼⟩

where |𝛼⟩ is a coherent state and 𝛼 = 𝑥+ 𝑖𝑦. In QuTiP, the Husimi Q function can be computed given a state ket
or density matrix using the function qutip.wigner.qfunc, as demonstrated below.

In [51]: Q_coherent = qfunc(rho_coherent, xvec, xvec)

In [52]: Q_thermal = qfunc(rho_thermal, xvec, xvec)

In [53]: Q_fock = qfunc(rho_fock, xvec, xvec)

(continues on next page)
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In [54]: fig, axes = plt.subplots(1, 3, figsize=(12,3))

In [55]: cont0 = axes[0].contourf(xvec, xvec, Q_coherent, 100)

In [56]: lbl0 = axes[0].set_title("Coherent state")

In [57]: cont1 = axes[1].contourf(xvec, xvec, Q_thermal, 100)

In [58]: lbl1 = axes[1].set_title("Thermal state")

In [59]: cont0 = axes[2].contourf(xvec, xvec, Q_fock, 100)

In [60]: lbl2 = axes[2].set_title("Fock state")

In [61]: plt.show()

3.11.3 Visualizing operators

Sometimes, it may also be useful to directly visualizing the underlying matrix representation of an operator. The
density matrix, for example, is an operator whose elements can give insights about the state it represents, but one
might also be interesting in plotting the matrix of an Hamiltonian to inspect the structure and relative importance
of various elements.

QuTiP offers a few functions for quickly visualizing matrix data in the form of his-
tograms, qutip.visualization.matrix_histogram and qutip.visualization.
matrix_histogram_complex, and as Hinton diagram of weighted squares, qutip.visualization.
hinton. These functions takes a qutip.Qobj.Qobj as first argument, and optional arguments to, for
example, set the axis labels and figure title (see the function’s documentation for details).

For example, to illustrate the use of qutip.visualization.matrix_histogram, let’s visualize of the
Jaynes-Cummings Hamiltonian:

In [62]: N = 5

In [63]: a = tensor(destroy(N), qeye(2))

In [64]: b = tensor(qeye(N), destroy(2))

In [65]: sx = tensor(qeye(N), sigmax())

In [66]: H = a.dag() * a + sx - 0.5 * (a * b.dag() + a.dag() * b)

In [67]: # visualize H

In [68]: lbls_list = [[str(d) for d in range(N)], ["u", "d"]]

In [69]: xlabels = []

(continues on next page)

3.11. Visualization of quantum states and processes 127



QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

In [70]: for inds in tomography._index_permutations([len(lbls) for lbls in lbls_
→˓list]):

....: xlabels.append("".join([lbls_list[k][inds[k]]

....: for k in range(len(lbls_list))]))

....:

In [71]: fig, ax = matrix_histogram(H, xlabels, xlabels, limits=[-4,4])

In [72]: ax.view_init(azim=-55, elev=45)

In [73]: plt.show()

Similarly, we can use the function qutip.visualization.hinton, which is used below to visualize the
corresponding steadystate density matrix:

In [74]: rho_ss = steadystate(H, [np.sqrt(0.1) * a, np.sqrt(0.4) * b.dag()])

In [75]: hinton(rho_ss)
Out[75]:
(<Figure size 800x600 with 2 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x1a25d06c88>)

In [76]: plt.show()
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3.11.4 Quantum process tomography

Quantum process tomography (QPT) is a useful technique for characterizing experimental implementations of
quantum gates involving a small number of qubits. It can also be a useful theoretical tool that can give insight
in how a process transforms states, and it can be used for example to study how noise or other imperfections
deteriorate a gate. Whereas a fidelity or distance measure can give a single number that indicates how far from
ideal a gate is, a quantum process tomography analysis can give detailed information about exactly what kind of
errors various imperfections introduce.

The idea is to construct a transformation matrix for a quantum process (for example a quantum gate) that describes
how the density matrix of a system is transformed by the process. We can then decompose the transformation in
some operator basis that represent well-defined and easily interpreted transformations of the input states.

To see how this works (see e.g. [Moh08] for more details), consider a process that is described by quantum map
𝜖(𝜌in) = 𝜌out, which can be written

𝜖(𝜌in) = 𝜌out =

𝑁2∑︁
𝑖

𝐴𝑖𝜌in𝐴
†
𝑖 , (3.32)

where𝑁 is the number of states of the system (that is, 𝜌 is represented by an [𝑁×𝑁 ] matrix). Given an orthogonal
operator basis of our choice {𝐵𝑖}𝑁

2

𝑖 , which satisfies Tr[𝐵†
𝑖𝐵𝑗 ] = 𝑁𝛿𝑖𝑗 , we can write the map as

𝜖(𝜌in) = 𝜌out =
∑︁
𝑚𝑛

𝜒𝑚𝑛𝐵𝑚𝜌in𝐵
†
𝑛. (3.33)

where 𝜒𝑚𝑛 =
∑︀

𝑖𝑗 𝑏𝑖𝑚𝑏
*
𝑗𝑛 and 𝐴𝑖 =

∑︀
𝑚 𝑏𝑖𝑚𝐵𝑚. Here, matrix 𝜒 is the transformation matrix we are after, since

it describes how much 𝐵𝑚𝜌in𝐵
†
𝑛 contributes to 𝜌out.

In a numerical simulation of a quantum process we usually do not have access to the quantum map in the form Eq.
(3.32). Instead, what we usually can do is to calculate the propagator 𝑈 for the density matrix in superoperator
form, using for example the QuTiP function qutip.propagator.propagator. We can then write

𝜖(𝜌in) = 𝑈𝜌in = 𝜌out
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where 𝜌 is the vector representation of the density matrix 𝜌. If we write Eq. (3.33) in superoperator form as well
we obtain

𝜌out =
∑︁
𝑚𝑛

𝜒𝑚𝑛𝐵̃𝑚𝐵̃
†
𝑛𝜌in = 𝑈𝜌in.

so we can identify

𝑈 =
∑︁
𝑚𝑛

𝜒𝑚𝑛𝐵̃𝑚𝐵̃
†
𝑛.

Now this is a linear equation systems for the 𝑁2 × 𝑁2 elements in 𝜒. We can solve it by writing 𝜒 and the
superoperator propagator as [𝑁4] vectors, and likewise write the superoperator product 𝐵̃𝑚𝐵̃

†
𝑛 as a [𝑁4 × 𝑁4]

matrix 𝑀 :

𝑈𝐼 =

𝑁4∑︁
𝐽

𝑀𝐼𝐽𝜒𝐽

with the solution

𝜒 = 𝑀−1𝑈.

Note that to obtain 𝜒 with this method we have to construct a matrix 𝑀 with a size that is the square of the size of
the superoperator for the system. Obviously, this scales very badly with increasing system size, but this method
can still be a very useful for small systems (such as system comprised of a small number of coupled qubits).

Implementation in QuTiP

In QuTiP, the procedure described above is implemented in the function qutip.tomography.qpt, which
returns the 𝜒 matrix given a density matrix propagator. To illustrate how to use this function, let’s consider the
𝑖-SWAP gate for two qubits. In QuTiP the function qutip.qip.operations.iswap generates the unitary
transformation for the state kets:

U_psi = iswap()

To be able to use this unitary transformation matrix as input to the function qutip.tomography.qpt, we first
need to convert it to a transformation matrix for the corresponding density matrix:

In [1]: U_rho = spre(U_psi) * spost(U_psi.dag())

Next, we construct a list of operators that define the basis {𝐵𝑖} in the form of a list of operators for each composite
system. At the same time, we also construct a list of corresponding labels that will be used when plotting the 𝜒
matrix.

In [1]: op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2

In [1]: op_label = [[“i”, “x”, “y”, “z”]] * 2

We are now ready to compute 𝜒 using qutip.tomography.qpt, and to plot it using qutip.tomography.
qpt_plot_combined.

In [1]: chi = qpt(U_rho, op_basis)

In [1]: fig = qpt_plot_combined(chi, op_label, r’$i$SWAP’)

@savefig visualization-chi-iswap.png width=5.0in align=center In [1]: plt.show()

For a slightly more advanced example, where the density matrix propagator is calculated from the dynam-
ics of a system defined by its Hamiltonian and collapse operators using the function qutip.propagator.
propagator, see notebook “Time-dependent master equation: Landau-Zener transitions” on the tutorials sec-
tion on the QuTiP web site.
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3.12 Parallel computation

3.12.1 Parallel map and parallel for-loop

Often one is interested in the output of a given function as a single-parameter is varied. For instance, we can
calculate the steady-state response of our system as the driving frequency is varied. In cases such as this, where
each iteration is independent of the others, we can speedup the calculation by performing the iterations in parallel.
In QuTiP, parallel computations may be performed using the qutip.parallel.parallel_map function or
the qutip.parallel.parfor (parallel-for-loop) function.

To use the these functions we need to define a function of one or more variables, and the range over which one of
these variables are to be evaluated. For example:

In [1]: def func1(x): return x, x**2, x**3

In [2]: a, b, c = parfor(func1, range(10))

In [3]: print(a)
[0 1 2 3 4 5 6 7 8 9]

In [4]: print(b)
[ 0 1 4 9 16 25 36 49 64 81]

In [5]: print(c)
[ 0 1 8 27 64 125 216 343 512 729]

or

In [6]: result = parallel_map(func1, range(10))

In [7]: result_array = np.array(result)

In [8]: print(result_array[:, 0]) # == a
[0 1 2 3 4 5 6 7 8 9]

In [9]: print(result_array[:, 1]) # == b
[ 0 1 4 9 16 25 36 49 64 81]

In [10]: print(result_array[:, 2]) # == c
[ 0 1 8 27 64 125 216 343 512 729]

Note that the return values are arranged differently for the qutip.parallel.parallel_map and the
qutip.parallel.parfor functions, as illustrated below. In particular, the return value of qutip.
parallel.parallel_map is not enforced to be NumPy arrays, which can avoid unnecessary copying if
all that is needed is to iterate over the resulting list:

In [11]: result = parfor(func1, range(5))

In [12]: print(result)
[array([0, 1, 2, 3, 4]), array([ 0, 1, 4, 9, 16]), array([ 0, 1, 8, 27, 64])]

In [13]: result = parallel_map(func1, range(5))

In [14]: print(result)
[(0, 0, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

The qutip.parallel.parallel_map and qutip.parallel.parfor functions are not limited to just
numbers, but also works for a variety of outputs:

In [15]: def func2(x): return x, Qobj(x), 'a' * x

(continues on next page)
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In [16]: a, b, c = parfor(func2, range(5))

In [17]: print(a)
[0 1 2 3 4]

In [18]: print(b)
[Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[0.]]
Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra

Qobj data =
[[1.]]
Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra

Qobj data =
[[2.]]
Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra

Qobj data =
[[3.]]
Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra

Qobj data =
[[4.]]]

In [19]: print(c)
['' 'a' 'aa' 'aaa' 'aaaa']

Note: New in QuTiP 3.

One can also define functions with multiple input arguments and even keyword arguments. Here
the qutip.parallel.parallel_map and qutip.parallel.parfor functions behaves differently:
While qutip.parallel.parallel_map only iterate over the values arguments, the qutip.parallel.
parfor function simultaneously iterates over all arguments:

In [20]: def sum_diff(x, y, z=0): return x + y, x - y, z

In [21]: parfor(sum_diff, [1, 2, 3], [4, 5, 6], z=5.0)
Out[21]: [array([5, 7, 9]), array([-3, -3, -3]), array([5., 5., 5.])]

In [22]: parallel_map(sum_diff, [1, 2, 3], task_args=(np.array([4, 5, 6]),), task_
→˓kwargs=dict(z=5.0))
Out[22]:
[(array([5, 6, 7]), array([-3, -4, -5]), 5.0),
(array([6, 7, 8]), array([-2, -3, -4]), 5.0),
(array([7, 8, 9]), array([-1, -2, -3]), 5.0)]

Note that the keyword arguments can be anything you like, but the keyword values are not iterated over. The
keyword argument num_cpus is reserved as it sets the number of CPU’s used by parfor. By default, this value
is set to the total number of physical processors on your system. You can change this number to a lower value,
however setting it higher than the number of CPU’s will cause a drop in performance. In qutip.parallel.
parallel_map, keyword arguments to the task function are specified using task_kwargs argument, so there is
no special reserved keyword arguments.

The qutip.parallel.parallel_map function also supports progressbar, using the keyword argument
progress_bar which can be set to True or to an instance of qutip.ui.progressbar.BaseProgressBar.
There is a function called qutip.parallel.serial_map that works as a non-parallel drop-in replacement
for qutip.parallel.parallel_map, which allows easy switching between serial and parallel computa-
tion.

In [23]: import time

(continues on next page)
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In [24]: def func(x): time.sleep(1)

In [25]: result = parallel_map(func, range(50), progress_bar=True)
10.0%. Run time: 3.01s. Est. time left: 00:00:00:27
20.0%. Run time: 5.02s. Est. time left: 00:00:00:20
30.0%. Run time: 8.02s. Est. time left: 00:00:00:18
40.0%. Run time: 10.02s. Est. time left: 00:00:00:15
50.0%. Run time: 13.02s. Est. time left: 00:00:00:13
60.0%. Run time: 15.02s. Est. time left: 00:00:00:10
70.0%. Run time: 18.02s. Est. time left: 00:00:00:07
80.0%. Run time: 20.03s. Est. time left: 00:00:00:05
90.0%. Run time: 23.03s. Est. time left: 00:00:00:02
100.0%. Run time: 25.03s. Est. time left: 00:00:00:00
Total run time: 25.04s

Parallel processing is useful for repeated tasks such as generating plots corresponding to the dynamical evolution
of your system, or simultaneously simulating different parameter configurations.

3.12.2 IPython-based parallel_map

Note: New in QuTiP 3.

When QuTiP is used with IPython interpreter, there is an alternative parallel for-loop implementation in the QuTiP
module qutip.ipynbtools, see qutip.ipynbtools.parallel_map. The advantage of this paral-
lel_map implementation is based on IPythons powerful framework for parallelization, so the compute processes
are not confined to run on the same host as the main process.

3.13 Saving QuTiP Objects and Data Sets

With time-consuming calculations it is often necessary to store the results to files on disk, so it can be post-
processed and archived. In QuTiP there are two facilities for storing data: Quantum objects can be stored to files
and later read back as python pickles, and numerical data (vectors and matrices) can be exported as plain text files
in for example CSV (comma-separated values), TSV (tab-separated values), etc. The former method is preferred
when further calculations will be performed with the data, and the latter when the calculations are completed and
data is to be imported into a post-processing tool (e.g. for generating figures).

3.13.1 Storing and loading QuTiP objects

To store and load arbitrary QuTiP related objects (qutip.Qobj, qutip.solver.Result, etc.) there are two
functions: qutip.fileio.qsave and qutip.fileio.qload. The function qutip.fileio.qsave
takes an arbitrary object as first parameter and an optional filename as second parameter (default filename is
qutip_data.qu). The filename extension is always .qu. The function qutip.fileio.qload takes a mandatory
filename as first argument and loads and returns the objects in the file.

To illustrate how these functions can be used, consider a simple calculation of the steadystate of the harmonic
oscillator:

In [1]: a = destroy(10); H = a.dag() * a ; c_ops = [np.sqrt(0.5) * a, np.sqrt(0.
→˓25) * a.dag()]

In [2]: rho_ss = steadystate(H, c_ops)

The steadystate density matrix rho_ss is an instance of qutip.Qobj. It can be stored to a file steadystate.qu
using
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In [3]: qsave(rho_ss, 'steadystate')

In [4]: ls *.qu
density_matrix_vs_time.qu steadystate.qu

and it can later be loaded again, and used in further calculations:

In [5]: rho_ss_loaded = qload('steadystate')
Loaded Qobj object:
Quantum object: dims = [[10], [10]], shape = (10, 10), type = oper, isHerm = True

In [6]: a = destroy(10)

In [7]: expect(a.dag() * a, rho_ss_loaded)
Out[7]: 0.9902248289345061

The nice thing about the qutip.fileio.qsave and qutip.fileio.qload functions is that almost any
object can be stored and load again later on. We can for example store a list of density matrices as returned by
qutip.mesolve:

In [8]: a = destroy(10); H = a.dag() * a ; c_ops = [np.sqrt(0.5) * a, np.sqrt(0.
→˓25) * a.dag()]

In [9]: psi0 = rand_ket(10)

In [10]: times = np.linspace(0, 10, 10)

In [11]: dm_list = mesolve(H, psi0, times, c_ops, [])

In [12]: qsave(dm_list, 'density_matrix_vs_time')

And it can then be loaded and used again, for example in an other program:

In [13]: dm_list_loaded = qload('density_matrix_vs_time')
Loaded Result object:
Result object with mesolve data.
--------------------------------
states = True
num_collapse = 0

In [14]: a = destroy(10)

In [15]: expect(a.dag() * a, dm_list_loaded.states)
Out[15]:
array([5.38745597, 4.1480452 , 3.31825788, 2.71971389, 2.27993015,

1.95406236, 1.71149571, 1.53044208, 1.39506867, 1.2937358 ])

3.13.2 Storing and loading datasets

The qutip.fileio.qsave and qutip.fileio.qload are great, but the file format used is only under-
stood by QuTiP (python) programs. When data must be exported to other programs the preferred method is
to store the data in the commonly used plain-text file formats. With the QuTiP functions qutip.fileio.
file_data_store and qutip.fileio.file_data_read we can store and load numpy arrays and ma-
trices to files on disk using a deliminator-separated value format (for example comma-separated values CSV).
Almost any program can handle this file format.

The qutip.fileio.file_data_store takes two mandatory and three optional arguments:
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>>> file_data_store(filename, data, numtype="complex", numformat="decimal", sep=",
→˓")

where filename is the name of the file, data is the data to be written to the file (must be a numpy array), numtype
(optional) is a flag indicating numerical type that can take values complex or real, numformat (optional) specifies
the numerical format that can take the values exp for the format 1.0e1 and decimal for the format 10.0, and sep
(optional) is an arbitrary single-character field separator (usually a tab, space, comma, semicolon, etc.).

A common use for the qutip.fileio.file_data_store function is to store the expectation values of a
set of operators for a sequence of times, e.g., as returned by the qutip.mesolve function, which is what the
following example does:

In [16]: a = destroy(10); H = a.dag() * a ; c_ops = [np.sqrt(0.5) * a, np.sqrt(0.
→˓25) * a.dag()]

In [17]: psi0 = rand_ket(10)

In [18]: times = np.linspace(0, 100, 100)

In [19]: medata = mesolve(H, psi0, times, c_ops, [a.dag() * a, a + a.dag(), -1j *
→˓(a - a.dag())])

In [20]: shape(medata.expect)
Out[20]: (3, 100)

In [21]: shape(times)
Out[21]: (100,)

In [22]: output_data = np.vstack((times, medata.expect)) # join time and expt
→˓data

In [23]: file_data_store('expect.dat', output_data.T) # Note the .T for transpose!

In [24]: ls *.dat
expect.dat

In [25]: !head expect.dat
# Generated by QuTiP: 100x4 complex matrix in decimal format [',' separated
→˓values].
0.0000000000+0.0000000000j,4.7692152000+0.0000000000j,0.9760672525+0.0000000000j,-
→˓0.5516182319+0.0000000000j
1.0101010101+0.0000000000j,3.7839989252+0.0000000000j,0.1636502633+0.0000000000j,-
→˓0.8236281194+0.0000000000j
2.0202020202+0.0000000000j,3.1020626970+0.0000000000j,-0.5056236634+0.0000000000j,-
→˓0.4903913665+0.0000000000j
3.0303030303+0.0000000000j,2.5990356338+0.0000000000j,-0.5877965899+0.0000000000j,
→˓0.1420536140+0.0000000000j
4.0404040404+0.0000000000j,2.2206926904+0.0000000000j,-0.1668936701+0.0000000000j,
→˓0.4963002733+0.0000000000j
5.0505050505+0.0000000000j,1.9335062188+0.0000000000j,0.2882140151+0.0000000000j,0.
→˓3524469362+0.0000000000j
6.0606060606+0.0000000000j,1.7144071061+0.0000000000j,0.3937524572+0.0000000000j,-
→˓0.0493728186+0.0000000000j
7.0707070707+0.0000000000j,1.5467379951+0.0000000000j,0.1462746604+0.0000000000j,-
→˓0.3140170957+0.0000000000j
8.0808080808+0.0000000000j,1.4181716007+0.0000000000j,-0.1644211095+0.0000000000j,-
→˓0.2541566524+0.0000000000j

In this case we didn’t really need to store both the real and imaginary parts, so instead we could use the num-
type=”real” option:
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In [26]: file_data_store('expect.dat', output_data.T, numtype="real")

In [27]: !head -n5 expect.dat
# Generated by QuTiP: 100x4 real matrix in decimal format [',' separated values].
0.0000000000,4.7692152000,0.9760672525,-0.5516182319
1.0101010101,3.7839989252,0.1636502633,-0.8236281194
2.0202020202,3.1020626970,-0.5056236634,-0.4903913665
3.0303030303,2.5990356338,-0.5877965899,0.1420536140

and if we prefer scientific notation we can request that using the numformat=”exp” option

In [28]: file_data_store('expect.dat', output_data.T, numtype="real", numformat=
→˓"exp")

In [29]: !head -n 5 expect.dat
# Generated by QuTiP: 100x4 real matrix in exp format [',' separated values].
0.0000000000e+00,4.7692152000e+00,9.7606725249e-01,-5.5161823191e-01
1.0101010101e+00,3.7839989252e+00,1.6365026329e-01,-8.2362811941e-01
2.0202020202e+00,3.1020626970e+00,-5.0562366340e-01,-4.9039136648e-01
3.0303030303e+00,2.5990356338e+00,-5.8779658987e-01,1.4205361396e-01

Loading data previously stored using qutip.fileio.file_data_store (or some other software) is a even
easier. Regardless of which deliminator was used, if data was stored as complex or real numbers, if it is in decimal
or exponential form, the data can be loaded using the qutip.fileio.file_data_read, which only takes
the filename as mandatory argument.

In [30]: input_data = file_data_read('expect.dat')

In [31]: shape(input_data)
Out[31]: (100, 4)

In [32]: plot(input_data[:,0], input_data[:,1]); # plot the data

(If a particularly obscure choice of deliminator was used it might be necessary to use the optional second argument,
for example sep=”_” if _ is the deliminator).
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3.14 Generating Random Quantum States & Operators

QuTiP includes a collection of random state, unitary and channel generators for simulations, Monte Carlo evalu-
ation, theorem evaluation, and code testing. Each of these objects can be sampled from one of several different
distributions including the default distributions used by QuTiP versions prior to 3.2.0.

For example, a random Hermitian operator can be sampled by calling rand_herm function:

In [1]: rand_herm(5)
Out[1]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[ 0. +0.j 0.07995792+0.80641666j 0. +0.j

0.25521238-0.75912407j 0.68969259-0.16747612j]
[ 0.07995792-0.80641666j -0.8358753 +0.j 0.53943014+0.84111559j
-0.17388007-0.13712726j -0.05999113+0.64580743j]

[ 0. +0.j 0.53943014-0.84111559j 0. +0.j
-0.07356208+0.05017169j -0.44777514-0.51546556j]

[ 0.25521238+0.75912407j -0.17388007+0.13712726j -0.07356208-0.05017169j
0.68490072+0.j -0.7504527 +0.75501795j]

[ 0.68969259+0.16747612j -0.05999113-0.64580743j -0.44777514+0.51546556j
-0.7504527 -0.75501795j -0.17425908+0.j ]]

Random
Variable
Type

Sampling Func-
tions

Dimensions

State vector
(ket)

rand_ket,
rand_ket_haar

𝑁 × 1

Hermitian op-
erator (oper)

rand_herm 𝑁 × 1

Density oper-
ator (oper)

rand_dm,
rand_dm_hs,
rand_dm_ginibre

𝑁 ×𝑁

Unitary oper-
ator (oper)

rand_unitary,
rand_unitary_haar

𝑁 ×𝑁

CPTP channel
(super)

rand_super,
rand_super_bcsz

(𝑁 ×𝑁) × (𝑁 ×𝑁)

In all cases, these functions can be called with a single parameter 𝑁 that dimension of the relevant Hilbert space.
The optional dims keyword argument allows for the dimensions of a random state, unitary or channel to be broken
down into subsystems.

In [2]: print(rand_super_bcsz(7).dims)
[[[7], [7]], [[7], [7]]]

In [3]: print(rand_super_bcsz(6, dims=[[[2, 3], [2, 3]], [[2, 3], [2, 3]]]).dims)
[[[2, 3], [2, 3]], [[2, 3], [2, 3]]]

Several of the distributions supported by QuTiP support additional parameters as well, namely density and rank.
In particular, the rand_herm and rand_dm functions return quantum objects such that a fraction of the elements
are identically equal to zero. The ratio of nonzero elements is passed as the density keyword argument. By
contrast, the rand_dm_ginibre and rand_super_bcsz take as an argument the rank of the generated object, such
that passing rank=1 returns a random pure state or unitary channel, respectively. Passing rank=None specifies
that the generated object should be full-rank for the given dimension.

For example,

In [4]: rand_dm(5, density=0.5)
Out[4]:

(continues on next page)
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Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[ 0.32439809+0.j -0.02701102+0.01791281j 0.09293875-0.03357982j

-0.15850266+0.03368069j -0.01737019+0.03597206j]
[-0.02701102-0.01791281j 0.06634585+0.j 0.02971456-0.0140788j
-0.05241431-0.03428314j -0.04537076+0.02691136j]

[ 0.09293875+0.03357982j 0.02971456+0.0140788j 0.16547649+0.j
-0.07374183-0.08487125j -0.06616211+0.00616371j]

[-0.15850266-0.03368069j -0.05241431+0.03428314j -0.07374183+0.08487125j
0.32220674+0.j 0.05575804-0.11362504j]

[-0.01737019-0.03597206j -0.04537076-0.02691136j -0.06616211-0.00616371j
0.05575804+0.11362504j 0.12157284+0.j ]]

In [5]: rand_dm_ginibre(5, rank=2)
Out[5]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[ 0.50800097-3.53271846e-18j 0.01852218+9.33795230e-02j

0.02151895-1.05821180e-01j -0.24721227+6.01009831e-02j
-0.14922972+4.18427141e-02j]

[ 0.01852218-9.33795230e-02j 0.08621509+1.73767813e-18j
-0.0540198 -5.01552419e-02j -0.03085918+2.98018219e-02j
-0.08794981-1.16930375e-02j]

[ 0.02151895+1.05821180e-01j -0.0540198 +5.01552419e-02j
0.06745374-1.36683207e-19j 0.0050578 -6.01002664e-02j
0.05677196-6.41525628e-02j]

[-0.24721227-6.01009831e-02j -0.03085918-2.98018219e-02j
0.0050578 +6.01002664e-02j 0.14788745+1.11236796e-18j
0.13156486-6.67491266e-03j]

[-0.14922972-4.18427141e-02j -0.08794981+1.16930375e-02j
0.05677196+6.41525628e-02j 0.13156486+6.67491266e-03j
0.19044275+8.19355578e-19j]]

See the API documentation: Quantum Objects for details.

Warning: When using the density keyword argument, setting the density too low may result in not enough
diagonal elements to satisfy trace constraints.

3.14.1 Random objects with a given eigen spectrum

Note: New in QuTiP 3.2

It is also possible to generate random Hamiltonian (rand_herm) and densitiy matrices (rand_dm) with a given
eigen spectrum. This is done by passing an array of eigenvalues as the first argument to either function. For
example,

In [6]: eigs = np.arange(5)

In [7]: H = rand_herm(eigs, density=0.5)

In [8]: H
Out[8]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[ 1.29919295-1.11022302e-16j -0.5793834 -3.77780607e-01j

1.29919295-1.11022302e-16j 0. +0.00000000e+00j

(continues on next page)
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0.67073491-1.70045254e-01j]
[-0.5793834 +3.77780607e-01j 2.64157488-2.77555756e-17j
-0.5793834 +3.77780607e-01j 0. +0.00000000e+00j
-0.41354093+3.07124734e-02j]

[ 1.29919295-1.11022302e-16j -0.5793834 -3.77780607e-01j
1.29919295-1.11022302e-16j 0. +0.00000000e+00j
0.67073491-1.70045254e-01j]

[ 0. +0.00000000e+00j 0. +0.00000000e+00j
0. +0.00000000e+00j 3. +0.00000000e+00j
0. +0.00000000e+00j]

[ 0.67073491+1.70045254e-01j -0.41354093-3.07124734e-02j
0.67073491+1.70045254e-01j 0. +0.00000000e+00j
1.76003921-1.11022302e-16j]]

In [9]: H.eigenenergies()
Out[9]:
array([5.11046157e-17, 1.00000000e+00, 2.00000000e+00, 3.00000000e+00,

4.00000000e+00])

In order to generate a random object with a given spectrum QuTiP applies a series of random complex Jacobi
rotations. This technique requires many steps to build the desired quantum object, and is thus suitable only for
objects with Hilbert dimensionality . 1000.

3.14.2 Composite random objects

In many cases, one is interested in generating random quantum objects that correspond to composite systems
generated using the qutip.tensor.tensor function. Specifying the tensor structure of a quantum object is
done using the dims keyword argument in the same fashion as one would do for a qutip.Qobj object:

In [10]: rand_dm(4, 0.5, dims=[[2,2], [2,2]])
Out[10]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.3549636 +0.j 0. +0.j 0.07406587+0.06882552j

0.09203544-0.14044802j]
[0. +0.j 0. +0.j 0. +0.j
0. +0.j ]

[0.07406587-0.06882552j 0. +0.j 0.29465174+0.j
0.00893283+0.16630249j]

[0.09203544+0.14044802j 0. +0.j 0.00893283-0.16630249j
0.35038466+0.j ]]

3.15 Modifying Internal QuTiP Settings

3.15.1 User Accessible Parameters

In this section we show how to modify a few of the internal parameters used by QuTiP. The settings that can be
modified are given in the following table:
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Setting Description Options
auto_herm Automatically calculate the hermic-

ity of quantum objects.
True / False

auto_tidyup Automatically tidyup quantum ob-
jects.

True / False

auto_tidyup_atol Tolerance used by tidyup any float value > 0
atol General tolerance any float value > 0
num_cpus Number of CPU’s used for multi-

processing.
int between 1 and # cpu’s

debug Show debug printouts. True / False
openmp_thresh NNZ matrix must have for

OPENMP.
Int

3.15.2 Example: Changing Settings

The two most important settings are auto_tidyup and auto_tidyup_atol as they control whether the
small elements of a quantum object should be removed, and what number should be considered as the cut-off
tolerance. Modifying these, or any other parameters, is quite simple:

>>> qutip.settings.auto_tidyup = False

These settings will be used for the current QuTiP session only and will need to be modified again when restarting
QuTiP. If running QuTiP from a script file, then place the qutip.setings.xxxx commands immediately after from
qutip import * at the top of the script file. If you want to reset the parameters back to their default values then call
the reset command:

>>> qutip.settings.reset()

3.15.3 Persistent Settings

When QuTiP is imported, it looks for a file named qutiprc in a folder called .qutip user’s home directory. If
this file is found, it will be loaded and overwrite the QuTiP default settings, which allows for persistent changes in
the QuTiP settings to be made. A sample qutiprc file is show below. The syntax is a simple key-value format,
where the keys and possible values are described in the table above:

[qutip]
auto_tidyup=True
auto_herm=True
auto_tidyup_atol=1e-12
num_cpus=4
debug=False

Note that the openmp_thresh value is automatically generatd by QuTiP. It is also possible to set a specific
compiler for QuTiP to use when generating runtime Cython code for time-dependent problems. For example, the
following section in the qutiprc file will set the compiler to be clang-3.9:

[compiler]
cc = clang-3.9
cxx = clang-3.9
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3.16 Quantum Information Processing

3.16.1 Introduction

The Quantum Information Processing (QIP) module aims at providing basic tools for quantum computing simula-
tion both for simple quantum algorithm design and for experimental realization. It offers two different approaches,
one with qutip.qip.QubitCircuit calculating unitary evolution under quantum gates by matrix product,
another called qutip.qip.device.Processor using open system solver in QuTiP to simulate noisy quan-
tum device.

3.16.2 Quantum Circuit

The most common model for quantum computing is the quantum circuit model. In QuTiP, we use qutip.qip.
QubitCircuit to represent a quantum circuit. Each quantum gate is saved as a class object qutip.qip.
operations.Gate with information such as gate name, target qubits and arguments. To get the matrix repre-
sentation of each gate, we can call the class method qutip.qip.QubitCircuit.propagators. Carrying
out the matrices product, one gets the matrix representation of the whole evolution. This process is demonstrated
in the following example.

>>> from qutip.qip.circuit import QubitCircuit, Gate
>>> from qutip.qip.operations import gate_sequence_product
>>> qc = QubitCircuit(N=2)
>>> swap_gate = Gate(name="SWAP", targets=[0, 1])
>>> qc.add_gate(swap_gate)
>>> qc.add_gate("CNOT", controls=0, targets=1)
>>> qc.add_gate(swap_gate)
>>> print(qc.gates)
[Gate(SWAP, targets=[0, 1], controls=None), Gate(CNOT, targets=[1],
controls=[0]), Gate(SWAP, targets=[0, 1], controls=None)]
>>> U_list = qc.propagators()
>>> print(gate_sequence_product(U_list))
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]]

The pre-defined gates for the class qutip.qip.Gate are shown in the table below:
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Gate name Description
“RX” Rotation around x axis
“RY” Rotation around y axis
“RZ” Rotation around z axis
“SQRTNOT” Square root of NOT gate
“SNOT” Hardmard gate
“PHASEGATE” Add a phase one the state 1
“CRX” Controlled rotation around x axis
“CRY” Controlled rotation around y axis
“CRZ” Controlled rotation around z axis
“CPHASE” Controlled phase gate
“CNOT” Controlled NOT gate
“CSIGN” Same as CPHASE
“BERKELEY” Berkeley gate
“SWAPalpha” SWAPalpha gate
“SWAP” Swap the states of two qubits
“ISWAP” Swap gate with additional phase for 01 and 10 states
“SQRTSWAP” Square root of the SWAP gate
“SQRTISWAP” Square root of the ISWAP gate
“FREDKIN” Fredkin gate
“TOFFOLI” Toffoli gate
“GLOBALPHASE” Global phase

For some of the gates listed above, qutip.qip.QubitCircuit also has a primitive qutip.qip.
QubitCircuit.resolve_gates method that decomposes them into elementary gate sets such as CNOT
or SWAP with single-qubit gates. However, this method is not fully optimized. It is very likely that the depth of
the circuit can be further reduced by merging quantum gates. Apart from it, there is also a function drawing the
circuit with LaTeX code using the Q-qircuit package from http://physics.unm.edu/CQuIC/Qcircuit.

In addition to these pre-defined gates, QuTiP also allows the user to define their own gate. The following example
shows how to define a customized gate.

Note: Available from QuTiP 4.4

>>> from qutip.qip.circuit import Gate
>>> from qutip.qip.operations import rx
>>> from qutip import Qobj
>>> import numpy as np
>>> def user_gate1(arg_value):
... # controlled rotation X
... mat = np.zeros((4, 4), dtype=np.complex)
... mat[0, 0] = mat[1, 1] = 1.
... mat[2:4, 2:4] = rx(arg_value)
... return Qobj(mat, dims=[[2, 2], [2, 2]])
...
>>> def user_gate2():
... # S gate
... mat = np.array([[1., 0],
... [0., 1.j]])
... return Qobj(mat, dims=[[2], [2]])
...
>>>
>>> qc = QubitCircuit(2)
>>> qc.user_gates = {"CTRLRX": user_gate1,
... "S" : user_gate2}
>>>
>>> # qubit 0 controlls qubit 1

(continues on next page)
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... qc.add_gate("CTRLRX", targets=[0,1], arg_value=np.pi/2)
>>> # qubit 1 controlls qubit 0
... qc.add_gate("CTRLRX", targets=[1,0], arg_value=np.pi/2)
>>> # we also add a gate using a predefined Gate object
... g_T = Gate("S", targets=[1])
>>> qc.add_gate(g_T)
>>> props = qc.propagators()
>>> props[0]
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
→˓False
Qobj data =
[[1. +0.j 0. +0.j 0. +0.j 0. +0.j ]
[0. +0.j 1. +0.j 0. +0.j 0. +0.j ]
[0. +0.j 0. +0.j 0.7071+0.j 0. -0.7071j]
[0. +0.j 0. +0.j 0. -0.7071j 0.7071+0.j ]]
>>> props[1]
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
→˓False
Qobj data =
[[1. +0.j 0. +0.j 0. +0.j 0. +0.j ]
[0. +0.j 0.7071+0.j 0. +0.j 0. -0.7071j]
[0. +0.j 0. +0.j 1. +0.j 0. +0.j ]
[0. +0.j 0. -0.7071j 0. +0.j 0.7071+0.j ]]
>>> props[2]
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
→˓False
Qobj data =
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+1.j]]

3.16.3 Processor for QIP simulation

Note: Available from QuTiP 4.5

In addition to direct matrix product, QuTiP also offers another approach to QIP simulation. Based on the open
system solver, qutip.qip.device.Processor in the qutip.qip module simulates quantum circuits
at the level of driving Hamiltonians. One can consider the processor as a simulator of a quantum device, on
which the quantum circuit is to be implemented. Like a real quantum device, the processor is determined by a
list of Hamiltonians, i.e. the control pulses driving the evolution. Given the intensity of the control pulses and
the corresponding time slices for each pulse, the evolution can be calculated using the solver. A control pulse
is characterized by qutip.qip.pulse.Pulse, consisting of the control Hamiltonian, the targets qubit, the
pulse coefficients and the time sequence. We can either use the coefficients as a step function or with cubic spline.
For step function, tlist specifies the start and the end of each pulse and thus is one element longer the coeffs.
One example of defining the control pulse coefficients and the time array is as follows:

>>> from qutip.qip.device import Processor
>>> proc = Processor(2)
>>> proc.add_control(sigmaz(), cyclic_permutation=True) # sigmaz for all qubits
>>> proc.pulses[0].coeffs = np.array([[1.0, 1.5, 2.0], [1.8, 1.3, 0.8]])
>>> proc.pulses[0].tlist = np.array([0.1, 0.2, 0.4, 0.5])

Note: If the coefficients represent a step function, the length of each array is 1 element shorter than tlist. If it
is supposed to be a continuous function, the length should be the same as tlist.
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The above example shows the framework and the most essential part of the simulator’s API. For now, it looks like
just a wrap for the open system solver. However, based on this, we can implement different physical realizations.
They differ mainly in how to find the control pulse for a quantum circuit, which gives birth to different sub-classes:

Processor
ModelProcessor

DispersivecQED
SpinChain

OptPulseProcessor

In general, there are two ways to find the control pulses. The first one, qutip.qip.device.
ModelProcessor, is more experiment-oriented and based on physical models. A universal set of gates is
defined in the processor as well as the pulse implementing them in this particular physical model. This is usu-
ally the case where control pulses realizing those gates are well known and can be concatenated to realize the
whole quantum circuits. Two realizations have already been implemented: the spin chain and the CQED model
for quantum computing. In those models, the driving Hamiltonians are predefined. The other approach, based
on the optimal control module in QuTiP (see Quantum Optimal Control), is called qutip.qip.device.
OptPulseProcessor. In this subclass, one only defines the available Hamiltonians in their system. The
processor then uses algorithms to find the optimal control pulses that realize the desired unitary evolution.

Despite this difference, the logic behind all processors is the same:

• One defines a processor by a list of available Hamiltonians and, as explained later, hardware-dependent
noise. In the model bases processor, the Hamiltonians are predefined and one only need to give the device
parameters like frequency and interaction strength.

• The control pulse coefficients and time slices are either specified by the user or calculated by the method
qutip.qip.device.Processor.load_circuit, which takes a qutip.qip.QubitCircuit
and find the control pulse for this evolution.

• The processor calculates the evolution using the QuTiP solvers. Collapse operators can be added to simulate
decoherence. The method qutip.qip.device.Processor.run_state returns a object qutip.
solver.Result.

It is also possible to calculate the evolution analytically with matrix exponentiation by setting
analytical=True. A list of the matrices representing the gates is returned just like for qutip.qip.
QubitCircuit.propagators. However, this does not consider the collapse operators or the noise. As
the system size gets larger, this approach will become very inefficient.
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SpinChain

qutip.qip.device.LinearSpinChain and qutip.qip.device.CircularSpinChain are
quantum computing models base on the spin chain realization. The control Hamiltonians are 𝜎𝑥, 𝜎𝑧 and
𝜎𝑥𝜎𝑥 + 𝜎𝑦𝜎𝑦 . This processor will first decompose the gate into the universal gate set with ISWAP and
SQRTISWAP as two-qubit gates, resolve them into quantum gates of adjacent qubits and then calculate the pulse
coefficients.

DispersivecQED

Same as above, qutip.qip.device.DispersivecQED is a simulator based on Cavity Quantum Electrody-
namics. The workflow is similar to the one for the spin chain, except that the component systems are a multi-level
cavity and a qubits system. The control Hamiltonians are the single-qubit rotation together with the qubits-cavity
interaction 𝑎†𝜎− + 𝑎𝜎+. The device parameters including the cavity frequency, qubits frequency, detuning and
interaction strength etc.

OptPulseProcessor

The qutip.qip.device.OptPulseProcessor uses the function in qutip.control.pulseoptim.
optimize_pulse_unitary in the optimal control module to find the control pulses. The Hamiltonian in-
cludes a drift part and a control part and only the control part will be optimized. The unitary evolution follows

𝑈(∆𝑡) = exp(i · ∆t[Hd +
∑︁
j

ujHj])

To let it find the optimal pulses, we need to give the parameters for qutip.control.pulseoptim.
optimize_pulse_unitary as keyword arguments to qutip.qip.device.OptPulseProcessor.
load_circuit. Usually the minimal requirements are the evolution time evo_time and the number of time
slices num_tslots for each gate. Other parameters can also be given in the keyword arguments. For available
choices, see qutip.control.pulseoptim.optimize_pulse_unitary . It is also possible to specify
different parameters for different gates, as shown in the following example:

>>> from qutip.qip.device import OptPulseProcessor
>>> from qutip.operators import sigmaz, sigmax, sigmay
>>> from qutip.tensor import tensor
>>>
>>> # Same parameter for all the gates
... qc = QubitCircuit(N=1)
>>> qc.add_gate("SNOT", 0)
>>>
>>> num_tslots = 10
>>> evo_time = 10
>>> processor = OptPulseProcessor(N=1, drift=sigmaz())
>>> processor.add_control(sigmax())
>>> # num_tslots and evo_time are two keyword arguments
... tlist, coeffs = processor.load_circuit(
... qc, num_tslots=num_tslots, evo_time=evo_time)
>>>
>>> # Different parameters for different gates
... qc = QubitCircuit(N=2)
>>> qc.add_gate("SNOT", 0)
>>> qc.add_gate("SWAP", targets=[0, 1])
>>> qc.add_gate('CNOT', controls=1, targets=[0])
>>>
>>> processor = OptPulseProcessor(N=2, drift=tensor([sigmaz()]*2))
>>> processor.add_control(sigmax(), cyclic_permutation=True)
>>> processor.add_control(sigmay(), cyclic_permutation=True)
>>> processor.add_control(tensor([sigmay(), sigmay()]))
>>> setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},

(continues on next page)
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(continued from previous page)

... "SWAP": {"num_tslots": 30, "evo_time": 3},

... "CNOT": {"num_tslots": 30, "evo_time": 3}}
>>> tlist, coeffs = processor.load_circuit(
... qc, setting_args=setting_args, merge_gates=False)

3.16.4 Noise Simulation

In the common way of QIP simulation, where evolution is carried out by gate matrix product, the noise is usually
simulated with bit flipping and sign flipping errors. The typical approaches are either applying bit/sign flipping
gate probabilistically or applying Kraus operators representing different noisy channels (e.g. amplitude damping,
dephasing) after each unitary gate evolution. In the case of single qubit, they have the same effect and the pa-
rameters in the Kraus operators are exactly the probability of a flipping error happens during the gate operation
time.

Since the processor simulates the state evolution at the level of the driving Hamiltonian, there is no way to apply an
error operator to the continuous time evolution. Instead, the error is added to the driving Hamiltonian list (coherent
control error) or the collapse operators (decoherent error) contributing to the evolution. Mathematically, this is no
different from adding error channel probabilistically (it is actually how qutip.mcsolve works internally). The
collapse operator for single-qubit amplitude damping and dephasing are exactly the destroying operator and the
sign-flipping operator. One just needs to choose the correct coefficients for them to simulate the noise, e.g. the
relaxation time T1 and dephasing time T2. Because it is based on the open system evolution instead of abstract
operators, this simulation is closer to the physical implementation and requires less pre-analysis of the system.

Compared to the approach of Kraus operators, this way of simulating noise is more computationally expensive.
If you only want to simulate the decoherence of single-qubit relaxation, there is no need to go through all the
calculations. However, this simulator is closer to the real experiment and, therefore, more convenient in some
cases, such as when coherent noise or correlated noise exist. For instance, a pulse on one qubit might affect the
neighbouring qubits, the evolution is still unitary but the gate fidelity will decrease. It is not always easy or even
possible to define a noisy gate matrix. In our simulator, it can be done by defining a qutip.qip.device.
ControlAmpNoise (Control Amplitude Noise). Here we show two examples (the source code can be found in
the gallery):

The first example is a processor with one qubit under rotation around the z-axis and relaxation time 𝑇2 = 5. We
measure the population of the |+⟩ state and observe the Ramsey signal:

146 Chapter 3. Users Guide



QuTiP: Quantum Toolbox in Python, Release 4.5.0

The second example demonstrates a biased Gaussian noise on the pulse amplitude. For visualization purposes, we
plot the noisy pulse intensity instead of the state fidelity. The three pulses can, for example, be a zyz-decomposition
of an arbitrary single-qubit gate:
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As the design of our simulator follows the physical realization, so is the noise simulation. Noise can be added to
the processor at different levels:

• The decoherence time T1 and T2 can be defined for the processor or for each qubit. When calculating the
evolution, the corresponding collapse operators will be added automatically to the solver.

• The noise of the physical parameters (e.g. detuned frequency) can be simulated by changing the parameters
in the model, e.g. laser frequency in cavity QED. (This can only be time-independent since QuTiP open
system solver only allows varying coefficients, not varying Hamiltonian operators.)

• The noise of the pulse intensity can be simulated by modifying the coefficients of the Hamiltonian operators
or even adding new Hamiltonians.

To add noise to a processor, one needs to first define a noise object qutip.qip.noise.Noise. The simplest
relaxation noise can be defined directly in the processor with relaxation time. Other pre-defined noise can be
found as subclasses of qutip.qip.noise.Noise. We add noise to the simulator with the method qutip.
qip.device.Processor.add_noise.

3.16.5 Workflow of the Processor

This section helps you understand the workflow inside the simulator.
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The figure above shows how the noise is processed in processor. The noise is defined separately in a class ob-
ject. When called, it takes parameters and the unitary noiseless qutip.QobjEvo from the processor, generates
the noisy version and sends the noisy qutip.QobjEvo together with the collapse operators to the processor.

When calculating the evolution, the processor first creates its own qutip.QobjEvo of the noiseless evolution. It
will then find all the noise objects saved in the attributes qutip.qip.device.Processor.noise and call
the corresponding methods to get the qutip.QobjEvo and a list of collapse operators representing the noise.
(For collapse operators, we don’t want to add all the constant collapse into one time-independent operator, so we
use a list). The processor then combines its own qutip.QobjEvo with those from the noise object and give
them to the solver. The figure below shows how the noiseless part and the noisy part are combined.
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Gallery

This is the gallery for QuTiP examples, you can click on the image to see the source code.

4.1 Quantum Information Processing

Note: Click here to download the full example code

4.1.1 Basic use of Processor

This example contains the basic functions of qutip.qip.device.Processor. We define a simulator with
control Hamiltonian, pulse amplitude and time slice for each pulse. The two figures illustrate the pulse shape for
two different setup: step function or continuous pulse.
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•

•

Out:

(<Figure size 640x480 with 1 Axes>, <matplotlib.axes._subplots.AxesSubplot object
→˓at 0x1a15c5cef0>) (continues on next page)
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(continued from previous page)

import copy
import numpy as np
import matplotlib.pyplot as plt
pi = np.pi
from qutip.qip.device import Processor
from qutip.operators import sigmaz
from qutip.states import basis

processor = Processor(N=1)
processor.add_control(sigmaz(), targets=0)

tlist = np.linspace(0., 2*np.pi, 20)
processor = Processor(N=1, spline_kind="step_func")
processor.add_control(sigmaz(), 0)
processor.pulses[0].tlist = tlist
processor.pulses[0].coeff = np.array([np.sin(t) for t in tlist])
processor.plot_pulses()

tlist = np.linspace(0., 2*np.pi, 20)
processor = Processor(N=1, spline_kind="cubic")
processor.add_control(sigmaz())
processor.pulses[0].tlist = tlist
processor.pulses[0].coeff = np.array([np.sin(t) for t in tlist])
processor.plot_pulses()

Total running time of the script: ( 0 minutes 3.107 seconds)

Note: Click here to download the full example code

4.1.2 T2 Relaxation

Simulating the T2 relaxation of a single qubit with qutip.qip.device.Processor. The single qubit is
driven by a rotation around z axis. We measure the population of the plus state as a function of time to see the
Ramsey signal.
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import numpy as np
import matplotlib.pyplot as plt
from qutip.qip.device import Processor
from qutip.operators import sigmaz, destroy
from qutip.qip.operations import snot
from qutip.states import basis

a = destroy(2)
Hadamard = snot()
plus_state = (basis(2,1) + basis(2,0)).unit()
tlist = np.arange(0.00, 20.2, 0.2)

T2 = 5
processor = Processor(1, t2=T2)
processor.add_control(sigmaz())
processor.pulses[0].coeff = True
processor.pulses[0].tlist = tlist
result = processor.run_state(

plus_state, e_ops=[a.dag()*a, Hadamard*a.dag()*a*Hadamard])

fig, ax = plt.subplots()
# detail about length of tlist needs to be fixed
ax.plot(tlist[:-1], result.expect[1][:-1], '.', label="simulation")
ax.plot(tlist[:-1], np.exp(-1./T2*tlist[:-1])*0.5 + 0.5, label="theory")
ax.set_xlabel("t")
ax.set_ylabel("Ramsey signal")
ax.legend()
ax.set_title("Relaxation T2=5")
ax.grid()
fig.tight_layout()
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Total running time of the script: ( 0 minutes 0.119 seconds)

Note: Click here to download the full example code

4.1.3 Control Amplitude Noise

This example demonstrates how to add Gaussian noise to the control pulse.

•

•

Out:

[<matplotlib.lines.Line2D object at 0x1a15c5a0b8>]

import numpy as np
import matplotlib.pyplot as plt

(continues on next page)
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(continued from previous page)

from qutip.qip.device import Processor
from qutip.qip.noise import RandomNoise
from qutip.operators import sigmaz, sigmay

# add control Hamiltonians
processor = Processor(N=1)
processor.add_control(sigmaz(), targets=0)

# define pulse coefficients and tlist for all pulses
processor.pulses[0].coeff = np.array([0.3, 0.5, 0. ])
processor.set_all_tlist(np.array([0., np.pi/2., 2*np.pi/2, 3*np.pi/2]))

# define noise, loc and scale are keyword arguments for np.random.normal
gaussnoise = RandomNoise(

dt=0.01, rand_gen=np.random.normal, loc=0.00, scale=0.02)
processor.add_noise(gaussnoise)

# Plot the ideal pulse
processor.plot_pulses(title="Original control amplitude", figsize=(5,3))

# Plot the noisy pulse
qobjevo, _ = processor.get_qobjevo(noisy=True)
noisy_coeff = qobjevo.to_list()[1][1] + qobjevo.to_list()[2][1]
fig2, ax2 = processor.plot_pulses(title="Noisy control amplitude", figsize=(5,3))
ax2.step(qobjevo.tlist, noisy_coeff)

Total running time of the script: ( 0 minutes 0.131 seconds)
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API documentation

This chapter contains automatically generated API documentation, including a complete list of QuTiP’s public
classes and functions.

5.1 Classes

5.1.1 Qobj

class Qobj(inpt=None, dims=[[], []], shape=[], type=None, isherm=None, copy=True, fast=False,
superrep=None, isunitary=None)

A class for representing quantum objects, such as quantum operators and states.

The Qobj class is the QuTiP representation of quantum operators and state vectors. This class also im-
plements math operations +,-,* between Qobj instances (and / by a C-number), as well as a collection of
common operator/state operations. The Qobj constructor optionally takes a dimension list and/or shape
list as arguments.

Parameters

inpt [array_like] Data for vector/matrix representation of the quantum object.

dims [list] Dimensions of object used for tensor products.

shape [list] Shape of underlying data structure (matrix shape).

copy [bool] Flag specifying whether Qobj should get a copy of the input data, or use the
original.

fast [bool] Flag for fast qobj creation when running ode solvers. This parameter is used
internally only.

Attributes

data [array_like] Sparse matrix characterizing the quantum object.

dims [list] List of dimensions keeping track of the tensor structure.

shape [list] Shape of the underlying data array.

type [str] Type of quantum object: ‘bra’, ‘ket’, ‘oper’, ‘operator-ket’, ‘operator-bra’, or
‘super’.

superrep [str] Representation used if type is ‘super’. One of ‘super’ (Liouville form) or
‘choi’ (Choi matrix with tr = dimension).

isherm [bool] Indicates if quantum object represents Hermitian operator.

isunitary [bool] Indictaes if quantum object represents unitary operator.
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iscp [bool] Indicates if the quantum object represents a map, and if that map is completely
positive (CP).

ishp [bool] Indicates if the quantum object represents a map, and if that map is hermicity
preserving (HP).

istp [bool] Indicates if the quantum object represents a map, and if that map is trace pre-
serving (TP).

iscptp [bool] Indicates if the quantum object represents a map that is completely positive
and trace preserving (CPTP).

isket [bool] Indicates if the quantum object represents a ket.

isbra [bool] Indicates if the quantum object represents a bra.

isoper [bool] Indicates if the quantum object represents an operator.

issuper [bool] Indicates if the quantum object represents a superoperator.

isoperket [bool] Indicates if the quantum object represents an operator in column vector
form.

isoperbra [bool] Indicates if the quantum object represents an operator in row vector form.
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Methods

copy() Create copy of Qobj
conj() Conjugate of quantum object.
cosm() Cosine of quantum object.
dag() Adjoint (dagger) of quantum object.
dnorm() Diamond norm of quantum operator.
dual_chan() Dual channel of quantum object representing a CP

map.
eigenenergies(sparse=False, sort=’low’,
eigvals=0, tol=0, maxiter=100000)

Returns eigenenergies (eigenvalues) of a quantum
object.

eigenstates(sparse=False, sort=’low’,
eigvals=0, tol=0, maxiter=100000)

Returns eigenenergies and eigenstates of quantum
object.

expm() Matrix exponential of quantum object.
full(order=’C’) Returns dense array of quantum object data attribute.
groundstate(sparse=False, tol=0, max-
iter=100000)

Returns eigenvalue and eigenket for the groundstate
of a quantum object.

inv() Return a Qobj corresponding to the matrix inverse of
the operator.

matrix_element(bra, ket) Returns the matrix element of operator between bra
and ket vectors.

norm(norm=’tr’, sparse=False, tol=0, max-
iter=100000)

Returns norm of a ket or an operator.

permute(order) Returns composite qobj with indices reordered.
proj() Computes the projector for a ket or bra vector.
ptrace(sel) Returns quantum object for selected dimensions after

performing partial trace.
sinm() Sine of quantum object.
sqrtm() Matrix square root of quantum object.
tidyup(atol=1e-12) Removes small elements from quantum object.
tr() Trace of quantum object.
trans() Transpose of quantum object.
transform(inpt, inverse=False) Performs a basis transformation defined by inpt ma-

trix.
trunc_neg(method=’clip’) Removes negative eigenvalues and returns a new

Qobj that is a valid density operator.
unit(norm=’tr’, sparse=False, tol=0, max-
iter=100000)

Returns normalized quantum object.

check_herm(self)
Check if the quantum object is hermitian.

Returns

isherm [bool] Returns the new value of isherm property.

check_isunitary(self)
Checks whether qobj is a unitary matrix

conj(self)
Conjugate operator of quantum object.

copy(self)
Create identical copy

cosm(self)
Cosine of a quantum operator.

Operator must be square.
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Returns

oper [qutip.Qobj] Matrix cosine of operator.

Raises

TypeError Quantum object is not square.

Notes

Uses the Q.expm() method.

dag(self)
Adjoint operator of quantum object.

diag(self)
Diagonal elements of quantum object.

Returns

diags [array] Returns array of real values if operators is Hermitian, otherwise
complex values are returned.

dnorm(self, B=None)
Calculates the diamond norm, or the diamond distance to another operator.

Parameters

B [qutip.Qobj or None] If B is not None, the diamond distance d(A, B) = dnorm(A
- B) between this operator and B is returned instead of the diamond norm.

Returns

d [float] Either the diamond norm of this operator, or the diamond distance from this
operator to B.

dual_chan(self)
Dual channel of quantum object representing a completely positive map.

eigenenergies(self, sparse=False, sort='low', eigvals=0, tol=0, maxiter=100000)
Eigenenergies of a quantum object.

Eigenenergies (eigenvalues) are defined for operators or superoperators only.

Parameters

sparse [bool] Use sparse Eigensolver

sort [str] Sort eigenvalues ‘low’ to high, or ‘high’ to low.

eigvals [int] Number of requested eigenvalues. Default is all eigenvalues.

tol [float] Tolerance used by sparse Eigensolver (0=machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).

Returns

eigvals [array] Array of eigenvalues for operator.
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Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eigenstates(self, sparse=False, sort='low', eigvals=0, tol=0, maxiter=100000)
Eigenstates and eigenenergies.

Eigenstates and eigenenergies are defined for operators and superoperators only.

Parameters

sparse [bool] Use sparse Eigensolver

sort [str] Sort eigenvalues (and vectors) ‘low’ to high, or ‘high’ to low.

eigvals [int] Number of requested eigenvalues. Default is all eigenvalues.

tol [float] Tolerance used by sparse Eigensolver (0 = machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).

Returns

eigvals [array] Array of eigenvalues for operator.

eigvecs [array] Array of quantum operators representing the oprator eigenkets. Order of
eigenkets is determined by order of eigenvalues.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eliminate_states(self, states_inds, normalize=False)
Creates a new quantum object with states in state_inds eliminated.

Parameters

states_inds [list of integer] The states that should be removed.

normalize [True / False] Weather or not the new Qobj instance should be normalized
(default is False). For Qobjs that represents density matrices or state vectors normal-
ized should probably be set to True, but for Qobjs that represents operators in for
example an Hamiltonian, normalize should be False.

Returns

q [qutip.Qobj] A new instance of qutip.Qobj that contains only the states corre-
sponding to indices that are not in state_inds.

Notes

Experimental.

static evaluate(qobj_list, t, args)
Evaluate a time-dependent quantum object in list format. For example,

qobj_list = [H0, [H1, func_t]]

is evaluated to

Qobj(t) = H0 + H1 * func_t(t, args)

and

qobj_list = [H0, [H1, ‘sin(w * t)’]]
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is evaluated to

Qobj(t) = H0 + H1 * sin(args[‘w’] * t)

Parameters

qobj_list [list] A nested list of Qobj instances and corresponding time-dependent coef-
ficients.

t [float] The time for which to evaluate the time-dependent Qobj instance.

args [dictionary] A dictionary with parameter values required to evaluate the time-
dependent Qobj intance.

Returns

output [qutip.Qobj] A Qobj instance that represents the value of qobj_list at time t.

expm(self, method='dense')
Matrix exponential of quantum operator.

Input operator must be square.

Parameters

method [str {‘dense’, ‘sparse’}] Use set method to use to calculate the matrix exponen-
tiation. The available choices includes ‘dense’ and ‘sparse’. Since the exponential of
a matrix is nearly always dense, method=’dense’ is set as default.s

Returns

oper [qutip.Qobj] Exponentiated quantum operator.

Raises

TypeError Quantum operator is not square.

extract_states(self, states_inds, normalize=False)
Qobj with states in state_inds only.

Parameters

states_inds [list of integer] The states that should be kept.

normalize [True / False] Weather or not the new Qobj instance should be normalized
(default is False). For Qobjs that represents density matrices or state vectors normal-
ized should probably be set to True, but for Qobjs that represents operators in for
example an Hamiltonian, normalize should be False.

Returns

q [qutip.Qobj] A new instance of qutip.Qobj that contains only the states corre-
sponding to the indices in state_inds.

Notes

Experimental.

full(self, order='C', squeeze=False)
Dense array from quantum object.

Parameters

order [str {‘C’, ‘F’}] Return array in C (default) or Fortran ordering.

squeeze [bool {False, True}] Squeeze output array.

Returns

data [array] Array of complex data from quantum objects data attribute.
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groundstate(self, sparse=False, tol=0, maxiter=100000, safe=True)
Ground state Eigenvalue and Eigenvector.

Defined for quantum operators or superoperators only.

Parameters

sparse [bool] Use sparse Eigensolver

tol [float] Tolerance used by sparse Eigensolver (0 = machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).

safe [bool (default=True)] Check for degenerate ground state

Returns

eigval [float] Eigenvalue for the ground state of quantum operator.

eigvec [qutip.Qobj] Eigenket for the ground state of quantum operator.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

inv(self, sparse=False)
Matrix inverse of a quantum operator

Operator must be square.

Returns

oper [qutip.Qobj] Matrix inverse of operator.

Raises

TypeError Quantum object is not square.

matrix_element(self, bra, ket)
Calculates a matrix element.

Gives the matrix element for the quantum object sandwiched between a bra and ket vector.

Parameters

bra [qutip.Qobj] Quantum object of type ‘bra’ or ‘ket’

ket [qutip.Qobj] Quantum object of type ‘ket’.

Returns

elem [complex] Complex valued matrix element.

norm(self, norm=None, sparse=False, tol=0, maxiter=100000)
Norm of a quantum object.

Default norm is L2-norm for kets and trace-norm for operators. Other ket and operator norms may be
specified using the norm and argument.

Parameters

norm [str] Which norm to use for ket/bra vectors: L2 ‘l2’, max norm ‘max’, or for
operators: trace ‘tr’, Frobius ‘fro’, one ‘one’, or max ‘max’.

sparse [bool] Use sparse eigenvalue solver for trace norm. Other norms are not affected
by this parameter.

tol [float] Tolerance for sparse solver (if used) for trace norm. The sparse solver may
not converge if the tolerance is set too low.
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maxiter [int] Maximum number of iterations performed by sparse solver (if used) for
trace norm.

Returns

norm [float] The requested norm of the operator or state quantum object.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

overlap(self, other)
Overlap between two state vectors or two operators.

Gives the overlap (inner product) between the current bra or ket Qobj and and another bra or ket Qobj.
It gives the Hilbert-Schmidt overlap when one of the Qobj is an operator/density matrix.

Parameters

other [qutip.Qobj] Quantum object for a state vector of type ‘ket’, ‘bra’ or density
matrix.

Returns

overlap [complex] Complex valued overlap.

Raises

TypeError Can only calculate overlap between a bra, ket and density matrix quantum
objects.

Notes

Since QuTiP mainly deals with ket vectors, the most efficient inner product call is the ket-ket version
that computes the product <self|other> with both vectors expressed as kets.

permute(self, order)
Permutes a composite quantum object.

Parameters

order [list/array] List specifying new tensor order.

Returns

P [qutip.Qobj] Permuted quantum object.

proj(self)
Form the projector from a given ket or bra vector.

Parameters

Q [qutip.Qobj] Input bra or ket vector

Returns

P [qutip.Qobj] Projection operator.

ptrace(self, sel, sparse=None)
Partial trace of the quantum object.

Parameters

sel [int/list] An int or list of components to keep after partial trace.

Returns

164 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

oper [qutip.Qobj] Quantum object representing partial trace with selected compo-
nents remaining.

Notes

This function is identical to the qutip.qobj.ptrace function that has been deprecated.

purity(self)
Calculate purity of a quantum object.

Returns

state_purity [float] Returns the purity of a quantum object. For a pure state, the purity
is 1. For a mixed state of dimension d, 1/d<=purity<1.

sinm(self)
Sine of a quantum operator.

Operator must be square.

Returns

oper [qutip.Qobj] Matrix sine of operator.

Raises

TypeError Quantum object is not square.

Notes

Uses the Q.expm() method.

sqrtm(self, sparse=False, tol=0, maxiter=100000)
Sqrt of a quantum operator.

Operator must be square.

Parameters

sparse [bool] Use sparse eigenvalue/vector solver.

tol [float] Tolerance used by sparse solver (0 = machine precision).

maxiter [int] Maximum number of iterations used by sparse solver.

Returns

oper [qutip.Qobj] Matrix square root of operator.

Raises

TypeError Quantum object is not square.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

tidyup(self, atol=1e-12)
Removes small elements from the quantum object.

Parameters

atol [float] Absolute tolerance used by tidyup. Default is set via qutip global settings
parameters.

Returns
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oper [qutip.Qobj] Quantum object with small elements removed.

tr(self)
Trace of a quantum object.

Returns

trace [float] Returns the trace of the quantum object.

trans(self)
Transposed operator.

Returns

oper [qutip.Qobj] Transpose of input operator.

transform(self, inpt, inverse=False, sparse=True)
Basis transform defined by input array.

Input array can be a matrix defining the transformation, or a list of kets that defines the new basis.

Parameters

inpt [array_like] A matrix or list of kets defining the transformation.

inverse [bool] Whether to return inverse transformation.

sparse [bool] Use sparse matrices when possible. Can be slower.

Returns

oper [qutip.Qobj] Operator in new basis.

Notes

This function is still in development.

trunc_neg(self, method='clip')
Truncates negative eigenvalues and renormalizes.

Returns a new Qobj by removing the negative eigenvalues of this instance, then renormalizing to obtain
a valid density operator.

Parameters

method [str] Algorithm to use to remove negative eigenvalues. “clip” simply discards
negative eigenvalues, then renormalizes. “sgs” uses the SGS algorithm (doi:10/bb76)
to find the positive operator that is nearest in the Shatten 2-norm.

Returns

oper [qutip.Qobj] A valid density operator.

unit(self, inplace=False, norm=None, sparse=False, tol=0, maxiter=100000)
Operator or state normalized to unity.

Uses norm from Qobj.norm().

Parameters

inplace [bool] Do an in-place normalization

norm [str] Requested norm for states / operators.

sparse [bool] Use sparse eigensolver for trace norm. Does not affect other norms.

tol [float] Tolerance used by sparse eigensolver.

maxiter [int] Number of maximum iterations performed by sparse eigensolver.

Returns
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oper [qutip.Qobj] Normalized quantum object if not in-place, else None.

5.1.2 QobjEvo

class QobjEvo(Q_object=[], args={}, copy=True, tlist=None, state0=None, e_ops=[])
A class for representing time-dependent quantum objects, such as quantum operators and states.

The QobjEvo class is a representation of time-dependent Qutip quantum objects (Qobj). This class imple-
ments math operations :

+,- : QobjEvo, Qobj * : Qobj, C-number / : C-number

and some common linear operator/state operations. The QobjEvo are constructed from a nested list of Qobj
with their time-dependent coefficients. The time-dependent coefficients are either a funciton, a string or a
numpy array.

For function format, the function signature must be f(t, args). Examples

def f1_t(t, args): return np.exp(-1j * t * args[“w1”])

def f2_t(t, args): return np.cos(t * args[“w2”])

H = QobjEvo([H0, [H1, f1_t], [H2, f2_t]], args={“w1”:1., “w2”:2.})

For string based coeffients, the string must be a compilable python code resulting in a complex. The follow-
ing symbols are defined:

sin cos tan asin acos atan pi sinh cosh tanh asinh acosh atanh exp log log10 erf zerf sqrt real imag
conj abs norm arg proj numpy as np, and scipy.special as spe.

Examples

H = QobjEvo([H0, [H1, ‘exp(-1j*w1*t)’], [H2, ‘cos(w2*t)’]], args={“w1”:1.,”w2”:2.})

For numpy array format, the array must be an 1d of dtype float or complex. A list of times (float64) at which
the coeffients must be given (tlist). The coeffients array must have the same len as the tlist. The time of the
tlist do not need to be equidistant, but must be sorted. By default, a cubic spline interpolation will be used
for the coefficient at time t. If the coefficients are to be treated as step function, use the arguments args =
{“_step_func_coeff”: True} Examples

tlist = np.logspace(-5,0,100) H = QobjEvo([H0, [H1, np.exp(-1j*tlist)], [H2, np.cos(2.*tlist)]],

tlist=tlist)

args is a dict of (name:object). The name must be a valid variables string. Some solvers support arguments
that update at each call: sesolve, mesolve, mcsolve:

state can be obtained with: “state_vec”:psi0, args[“state_vec”] = state as 1D np.ndarray
“state_mat”:psi0, args[“state_mat”] = state as 2D np.ndarray “state”:psi0, args[“state”] =
state as Qobj

This Qobj is the initial value.

expectation values: “expect_op_n”:0, args[“expect_op_n”] = expect(e_ops[int(n)], state) ex-
pect is <phi|O|psi> or tr(state * O) depending on state dimensions

mcsolve:

collapse can be obtained with: “collapse”:list => args[name] == list of collapse each collapse will
be appended to the list as (time, which c_ops)

Mixing the formats is possible, but not recommended. Mixing tlist will cause problem.

Parameters

QobjEvo(Q_object=[], args={}, tlist=None)
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Q_object [array_like] Data for vector/matrix representation of the quantum object.

args [dictionary that contain the arguments for]

tlist [array_like] List of times at which the numpy-array coefficients are applied. Times
must be equidistant and start from 0.

Attributes

cte [Qobj] Constant part of the QobjEvo

ops [list of EvoElement] List of Qobj and the coefficients. [(Qobj, coefficient as a function,
original coefficient,

type, local arguments ), . . . ]

type : 1: function 2: string 3: np.array 4: Cubic_Spline

args [map] arguments of the coefficients

dynamics_args [list] arguments that change during evolution

tlist [array_like] List of times at which the numpy-array coefficients are applied.

compiled [string] Has the cython version of the QobjEvo been created

compiled_qobjevo [cy_qobj (CQobjCte or CQobjEvoTd)] Cython version of the QobjEvo

coeff_get [callable object] object called to obtain a list of coefficient at t

coeff_files [list] runtime created files to delete with the instance

dummy_cte [bool] is self.cte a empty Qobj

const [bool] Indicates if quantum object is Constant

type [string]

information about the type of coefficient “string”, “func”, “array”, “spline”,
“mixed_callable”, “mixed_compilable”

num_obj [int] number of Qobj in the QobjEvo : len(ops) + (1 if not dummy_cte)

use_cython [bool] flag to compile string to cython or python

safePickle [bool] flag to not share pointers between thread
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Methods

copy() : Create copy of Qobj
argu-
ments(new_args):

Update the args of the object

Math: +/- QobjEvo, Qobj, scalar: Addition is possible between QobjEvo and with Qobj or scalar
-: Negation operator * Qobj, scalar: Product is possible with Qobj or scalar / scalar: It is
possible to divide by scalar only

conj() Return the conjugate of quantum object.
dag() Return the adjoint (dagger) of quantum object.
trans() Return the transpose of quantum object.
_cdc() Return self.dag() * self.
per-
mute(order)

Returns composite qobj with indices reordered.

apply(f,
*args,
**kw_args)

Apply the function f to every Qobj. f(Qobj) -> Qobj Return a modified QobjEvo and let the
original one untouched

ap-
ply_decorator(decorator,
*args,
str_mod=None,

inplace_np=False, **kw_args): Apply the decorator to each function of the ops. The
*args and **kw_args are passed to the decorator. new_coeff_function = decora-
tor(coeff_function, *args, **kw_args) str_mod : list of 2 elements replace the string :
str_mod[0] + original_string + str_mod[1] *exemple: str_mod = [“exp(“,”)”] inplace_np:
Change the numpy array instead of applying the decorator to the function reading the array.
Some decorators create incorrect array. Transformations f’(t) = f(g(t)) create a missmatch
between the array and the associated time list.

tidyup(atol=1e-
12)

Removes small elements from quantum object.

com-
press():

Merge ops which are based on the same quantum object and coeff type.

com-
pile(code=False,
matched=False,
dense=False,
omp=0):

Create the associated cython object for faster usage. code: return the code generated for
compilation of the strings. matched: the compiled object use sparse matrix with matching
indices. (experimental, no real advantage) dense: the compiled object use dense matrix.
omp: (int) number of thread: the compiled object use spmvpy_openmp.

__call__(t,
data=False,
state=None,
args={}):

Return the Qobj at time t. *Faster after compilation

mul_mat(t,
mat):

Product of this at t time with the dense matrix mat. *Faster after compilation

mul_vec(t,
psi):

Apply the quantum object (if operator, no check) to psi. More generaly, return the product
of the object at t with psi. *Faster after compilation

expect(t,
psi,
herm=False):

Calculates the expectation value for the quantum object (if operator, no check) and state
psi. Return only the real part if herm. *Faster after compilation

to_list(): Return the time-dependent quantum object as a list
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5.1.3 eseries

class eseries(q=None, s=array([], dtype=float64))
Class representation of an exponential-series expansion of time-dependent quantum objects.

Attributes

ampl [ndarray] Array of amplitudes for exponential series.

rates [ndarray] Array of rates for exponential series.

dims [list] Dimensions of exponential series components

shape [list] Shape corresponding to exponential series components

Methods

value(tlist) Evaluate an exponential series at the times listed in tlist
spec(wlist) Evaluate the spectrum of an exponential series at frequencies in wlist.
tidyup() Returns a tidier version of the exponential series

spec(self, wlist)
Evaluate the spectrum of an exponential series at frequencies in wlist.

Parameters

wlist [array_like] Array/list of frequenies.

Returns

val_list [ndarray] Values of exponential series at frequencies in wlist.

tidyup(self, *args)
Returns a tidier version of exponential series.

value(self, tlist)
Evaluates an exponential series at the times listed in tlist.

Parameters

tlist [ndarray] Times at which to evaluate exponential series.

Returns

val_list [ndarray] Values of exponential at times in tlist.

5.1.4 Bloch sphere

class Bloch(fig=None, axes=None, view=None, figsize=None, background=False)
Class for plotting data on the Bloch sphere. Valid data can be either points, vectors, or qobj objects.

Attributes

axes [instance {None}] User supplied Matplotlib axes for Bloch sphere animation.

fig [instance {None}] User supplied Matplotlib Figure instance for plotting Bloch sphere.

font_color [str {‘black’}] Color of font used for Bloch sphere labels.

font_size [int {20}] Size of font used for Bloch sphere labels.

frame_alpha [float {0.1}] Sets transparency of Bloch sphere frame.

frame_color [str {‘gray’}] Color of sphere wireframe.

frame_width [int {1}] Width of wireframe.
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point_color [list {[“b”,”r”,”g”,”#CC6600”]}] List of colors for Bloch sphere point markers
to cycle through. i.e. By default, points 0 and 4 will both be blue (‘b’).

point_marker [list {[“o”,”s”,”d”,”^”]}] List of point marker shapes to cycle through.

point_size [list {[25,32,35,45]}] List of point marker sizes. Note, not all point markers
look the same size when plotted!

sphere_alpha [float {0.2}] Transparency of Bloch sphere itself.

sphere_color [str {‘#FFDDDD’}] Color of Bloch sphere.

figsize [list {[7,7]}] Figure size of Bloch sphere plot. Best to have both numbers the same;
otherwise you will have a Bloch sphere that looks like a football.

vector_color [list {[“g”,”#CC6600”,”b”,”r”]}] List of vector colors to cycle through.

vector_width [int {5}] Width of displayed vectors.

vector_style [str {‘-|>’, ‘simple’, ‘fancy’, ‘’}] Vector arrowhead style (from matplotlib’s
arrow style).

vector_mutation [int {20}] Width of vectors arrowhead.

view [list {[-60,30]}] Azimuthal and Elevation viewing angles.

xlabel [list {[“$x$”,””]}] List of strings corresponding to +x and -x axes labels, respec-
tively.

xlpos [list {[1.1,-1.1]}] Positions of +x and -x labels respectively.

ylabel [list {[“$y$”,””]}] List of strings corresponding to +y and -y axes labels, respec-
tively.

ylpos [list {[1.2,-1.2]}] Positions of +y and -y labels respectively.

zlabel [list {[r’$left|0right>$’,r’$left|1right>$’]}] List of strings corresponding to +z and -z
axes labels, respectively.

zlpos [list {[1.2,-1.2]}] Positions of +z and -z labels respectively.

add_annotation(self, state_or_vector, text, **kwargs)
Add a text or LaTeX annotation to Bloch sphere, parametrized by a qubit state or a vector.

Parameters

state_or_vector [Qobj/array/list/tuple] Position for the annotaion. Qobj of a qubit or a
vector of 3 elements.

text [str/unicode] Annotation text. You can use LaTeX, but remember to use raw string
e.g. r”$langle x rangle$” or escape backslashes e.g. “$\langle x \rangle$”.

**kwargs : Options as for mplot3d.axes3d.text, including: fontsize, color, horizonta-
lalignment, verticalalignment.

add_points(self, points, meth='s')
Add a list of data points to bloch sphere.

Parameters

points [array/list] Collection of data points.

meth [str {‘s’, ‘m’, ‘l’}] Type of points to plot, use ‘m’ for multicolored, ‘l’ for points
connected with a line.

add_states(self, state, kind='vector')
Add a state vector Qobj to Bloch sphere.

Parameters

state [qobj] Input state vector.

kind [str {‘vector’,’point’}] Type of object to plot.
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add_vectors(self, vectors)
Add a list of vectors to Bloch sphere.

Parameters

vectors [array_like] Array with vectors of unit length or smaller.

clear(self)
Resets Bloch sphere data sets to empty.

make_sphere(self)
Plots Bloch sphere and data sets.

render(self, fig=None, axes=None)
Render the Bloch sphere and its data sets in on given figure and axes.

save(self, name=None, format='png', dirc=None, dpin=None)
Saves Bloch sphere to file of type format in directory dirc.

Parameters

name [str] Name of saved image. Must include path and format as well. i.e.
‘/Users/Paul/Desktop/bloch.png’ This overrides the ‘format’ and ‘dirc’ arguments.

format [str] Format of output image.

dirc [str] Directory for output images. Defaults to current working directory.

dpin [int] Resolution in dots per inch.

Returns

File containing plot of Bloch sphere.

set_label_convention(self, convention)
Set x, y and z labels according to one of conventions.

Parameters

convention [string] One of the following:

• “original”

• “xyz”

• “sx sy sz”

• “01”

• “polarization jones”

• “polarization jones letters” see also: http://en.wikipedia.org/wiki/Jones_calculus

• “polarization stokes” see also: http://en.wikipedia.org/wiki/Stokes_parameters

show(self)
Display Bloch sphere and corresponding data sets.

vector_mutation = None
Sets the width of the vectors arrowhead

vector_style = None
Style of Bloch vectors, default = ‘-|>’ (or ‘simple’)

vector_width = None
Width of Bloch vectors, default = 5
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5.1.5 Cubic Spline

class Cubic_Spline(a, b, y, alpha=0, beta=0)
Calculates coefficients for a cubic spline interpolation of a given data set.

This function assumes that the data is sampled uniformly over a given interval.

Parameters

a [float] Lower bound of the interval.

b [float] Upper bound of the interval.

y [ndarray] Function values at interval points.

alpha [float] Second-order derivative at a. Default is 0.

beta [float] Second-order derivative at b. Default is 0.

Notes

This object can be called like a normal function with a single or array of input points at which to evaluate
the interplating function.

Habermann & Kindermann, “Multidimensional Spline Interpolation: Theory and Applications”, Comput
Econ 30, 153 (2007).

Attributes

a [float] Lower bound of the interval.

b [float] Upper bound of the interval.

coeffs [ndarray] Array of coeffcients defining cubic spline.

5.1.6 Non-Markovian Solvers

class HEOMSolver
This is superclass for all solvers that use the HEOM method for calculating the dynamics evolution.
There are many references for this. A good introduction, and perhaps closest to the notation used here
is: DOI:10.1103/PhysRevLett.104.250401 A more canonical reference, with full derivation is: DOI:
10.1103/PhysRevA.41.6676 The method can compute open system dynamics without using any Marko-
vian or rotating wave approximation (RWA) for systems where the bath correlations can be approximated to
a sum of complex eponentials. The method builds a matrix of linked differential equations, which are then
solved used the same ODE solvers as other qutip solvers (e.g. mesolve)

This class should be treated as abstract. Currently the only subclass implemented is that for the Drude-
Lorentz spectral density. This covers the majority of the work that has been done using this model, and
there are some performance advantages to assuming this model where it is appropriate.

There are opportunities to develop a more general spectral density code.

Attributes

H_sys [Qobj] System Hamiltonian

coup_op [Qobj] Operator describing the coupling between system and bath.

coup_strength [float] Coupling strength.

temperature [float] Bath temperature, in units corresponding to planck

N_cut [int] Cutoff parameter for the bath

N_exp [int] Number of exponential terms used to approximate the bath correlation func-
tions
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planck [float] reduced Planck constant

boltzmann [float] Boltzmann’s constant

options [qutip.solver.Options] Generic solver options. If set to None the default
options will be used

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation.

stats [qutip.solver.Stats] optional container for holding performance statitics If
None is set, then statistics are not collected There may be an overhead in collecting
statistics

exp_coeff [list of complex] Coefficients for the exponential series terms

exp_freq [list of complex] Frequencies for the exponential series terms

configure(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, planck=None,
boltzmann=None, renorm=None, bnd_cut_approx=None, options=None,
progress_bar=None, stats=None)

Configure the solver using the passed parameters The parameters are described in the class attributes,
unless there is some specific behaviour

Parameters

options [qutip.solver.Options] Generic solver options. If set to None the de-
fault options will be used

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation. If set to None, then the default
progress bar will be used Set to False for no progress bar

stats: :class:`qutip.solver.Stats` Optional instance of solver.Stats, or a subclass
thereof, for storing performance statistics for the solver If set to True, then the de-
fault Stats for this class will be used Set to False for no stats

create_new_stats(self)
Creates a new stats object suitable for use with this solver Note: this solver expects the stats object to
have sections

config integrate

reset(self)
Reset any attributes to default values

class HSolverDL(H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq,
planck=1.0, boltzmann=1.0, renorm=True, bnd_cut_approx=True, options=None,
progress_bar=None, stats=None)

HEOM solver based on the Drude-Lorentz model for spectral density. Drude-Lorentz bath the correlation
functions can be exactly analytically expressed as an infinite sum of exponentials which depend on the
temperature, these are called the Matsubara terms or Matsubara frequencies

For practical computation purposes an approximation must be used based on a small number of Matsubara
terms (typically < 4).

Attributes

cut_freq [float] Bath spectral density cutoff frequency.

renorm [bool] Apply renormalisation to coupling terms Can be useful if using SI units for
planck and boltzmann

bnd_cut_approx [bool] Use boundary cut off approximation Can be

configure(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq,
planck=None, boltzmann=None, renorm=None, bnd_cut_approx=None, op-
tions=None, progress_bar=None, stats=None)

Calls configure from HEOMSolver and sets any attributes that are specific to this subclass

174 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

reset(self)
Reset any attributes to default values

run(self, rho0, tlist)
Function to solve for an open quantum system using the HEOM model.

Parameters

rho0 [Qobj] Initial state (density matrix) of the system.

tlist [list] Time over which system evolves.

Returns

results [qutip.solver.Result] Object storing all results from the simulation.

class MemoryCascade(H_S, L1, L2, S_matrix=None, c_ops_markov=None, integra-
tor='propagator', parallel=False, options=None)

Class for running memory cascade simulations of open quantum systems with time-delayed coherent feed-
back.

Attributes

H_S [qutip.Qobj] System Hamiltonian (can also be a Liouvillian)

L1 [qutip.Qobj / list of qutip.Qobj] System operators coupling into the feedback
loop. Can be a single operator or a list of operators.

L2 [qutip.Qobj / list of qutip.Qobj] System operators coupling out of the feedback
loop. Can be a single operator or a list of operators. L2 must have the same length as
L1.

S_matrix: *array* S matrix describing which operators in L1 are coupled to which oper-
ators in L2 by the feedback channel. Defaults to an n by n identity matrix where n is the
number of elements in L1/L2.

c_ops_markov [qutip.Qobj / list of qutip.Qobj] Decay operators describing con-
ventional Markovian decay channels. Can be a single operator or a list of operators.

integrator [str {‘propagator’, ‘mesolve’}] Integrator method to use. Defaults to ‘propaga-
tor’ which tends to be faster for long times (i.e., large Hilbert space).

parallel [bool] Run integrator in parallel if True. Only implemented for ‘propagator’ as the
integrator method.

options [qutip.solver.Options] Generic solver options.

outfieldcorr(self, rho0, blist, tlist, tau, c1=None, c2=None)
Compute output field expectation value <O_n(tn). . . O_2(t2)O_1(t1)> for times t1,t2,. . . and O_i = I,
b_out, b_out^dagger, b_loop, b_loop^dagger

Parameters

rho0 [qutip.Qobj] initial density matrix or state vector (ket).

blist [array_like] List of integers specifying the field operators: 0: I (nothing) 1: b_out
2: b_out^dagger 3: b_loop 4: b_loop^dagger

tlist [array_like] list of corresponding times t1,..,tn at which to evaluate the field opera-
tors

tau [float] time-delay

c1 [qutip.Qobj] system collapse operator that couples to the in-loop field in question
(only needs to be specified if self.L1 has more than one element)

c2 [qutip.Qobj] system collapse operator that couples to the output field in question
(only needs to be specified if self.L2 has more than one element)

Returns
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: complex expectation value of field correlation function

outfieldpropagator(self, blist, tlist, tau, c1=None, c2=None, notrace=False)
Compute propagator for computing output field expectation values <O_n(tn). . . O_2(t2)O_1(t1)> for
times t1,t2,. . . and O_i = I, b_out, b_out^dagger, b_loop, b_loop^dagger

Parameters

blist [array_like] List of integers specifying the field operators: 0: I (nothing) 1: b_out
2: b_out^dagger 3: b_loop 4: b_loop^dagger

tlist [array_like] list of corresponding times t1,..,tn at which to evaluate the field opera-
tors

tau [float] time-delay

c1 [qutip.Qobj] system collapse operator that couples to the in-loop field in question
(only needs to be specified if self.L1 has more than one element)

c2 [qutip.Qobj] system collapse operator that couples to the output field in question
(only needs to be specified if self.L2 has more than one element)

notrace [bool {False}] If this optional is set to True, a propagator is returned for a
cascade of k systems, where (𝑘 − 1)𝑡𝑎𝑢 < 𝑡 < 𝑘𝑡𝑎𝑢. If set to False (default), a
generalized partial trace is performed and a propagator for a single system is returned.

Returns

: qutip.Qobj time-propagator for computing field correlation function

propagator(self, t, tau, notrace=False)
Compute propagator for time t and time-delay tau

Parameters

t [float] current time

tau [float] time-delay

notrace [bool {False}] If this optional is set to True, a propagator is returned for a
cascade of k systems, where (𝑘 − 1)𝑡𝑎𝑢 < 𝑡 < 𝑘𝑡𝑎𝑢. If set to False (default), a
generalized partial trace is performed and a propagator for a single system is returned.

Returns

——-

: :class:`qutip.Qobj` time-propagator for reduced system dynamics

rhot(self, rho0, t, tau)
Compute the reduced system density matrix 𝜌(𝑡)

Parameters

rho0 [qutip.Qobj] initial density matrix or state vector (ket)

t [float] current time

tau [float] time-delay

Returns

: qutip.Qobj density matrix at time 𝑡

class TTMSolverOptions(dynmaps=None, times=[], learningtimes=[], thres=0.0, options=None)
Class of options for the Transfer Tensor Method solver.

Attributes

dynmaps [list of qutip.Qobj] List of precomputed dynamical maps (superoperators),
or a callback function that returns the superoperator at a given time.

times [array_like] List of times 𝑡𝑛 at which to calculate 𝜌(𝑡𝑛)
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learningtimes [array_like] List of times 𝑡𝑘 to use as learning times if argument dynmaps is
a callback function.

thres [float] Threshold for halting. Halts if ||𝑇𝑛 − 𝑇𝑛−1|| is below treshold.

options [qutip.solver.Options] Generic solver options.

5.1.7 Solver Options and Results

class ExpectOps(e_ops=[], super_=False)
Contain and compute expectation values

class Options(atol=1e-08, rtol=1e-06, method='adams', order=12, nsteps=1000, first_step=0,
max_step=0, min_step=0, average_expect=True, average_states=False,
tidy=True, num_cpus=0, norm_tol=0.001, norm_t_tol=1e-06, norm_steps=5,
rhs_reuse=False, rhs_filename=None, ntraj=500, gui=False, rhs_with_state=False,
store_final_state=False, store_states=False, steady_state_average=False,
seeds=None, normalize_output=True, use_openmp=None, openmp_threads=None)

Class of options for evolution solvers such as qutip.mesolve and qutip.mcsolve. Options can be
specified either as arguments to the constructor:

opts = Options(order=10, ...)

or by changing the class attributes after creation:

opts = Options()
opts.order = 10

Returns options class to be used as options in evolution solvers.

Attributes

atol [float {1e-8}] Absolute tolerance.

rtol [float {1e-6}] Relative tolerance.

method [str {‘adams’,’bdf’}] Integration method.

order [int {12}] Order of integrator (<=12 ‘adams’, <=5 ‘bdf’)

nsteps [int {2500}] Max. number of internal steps/call.

first_step [float {0}] Size of initial step (0 = automatic).

min_step [float {0}] Minimum step size (0 = automatic).

max_step [float {0}] Maximum step size (0 = automatic)

tidy [bool {True,False}] Tidyup Hamiltonian and initial state by removing small terms.

num_cpus [int] Number of cpus used by mcsolver (default = # of cpus).

norm_tol [float] Tolerance used when finding wavefunction norm in mcsolve.

norm_steps [int] Max. number of steps used to find wavefunction norm to within norm_tol
in mcsolve.

average_states [bool {False}] Average states values over trajectories in stochastic solvers.

average_expect [bool {True}] Average expectation values over trajectories for stochastic
solvers.

mc_corr_eps [float {1e-10}] Arbitrarily small value for eliminating any divide-by-zero er-
rors in correlation calculations when using mcsolve.

ntraj [int {500}] Number of trajectories in stochastic solvers.

openmp_threads [int] Number of OPENMP threads to use. Default is number of cpu cores.
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rhs_reuse [bool {False,True}] Reuse Hamiltonian data.

rhs_with_state [bool {False,True}] Whether or not to include the state in the Hamiltonian
function callback signature.

rhs_filename [str] Name for compiled Cython file.

seeds [ndarray] Array containing random number seeds for mcsolver.

store_final_state [bool {False, True}] Whether or not to store the final state of the evolution
in the result class.

store_states [bool {False, True}] Whether or not to store the state vectors or density matri-
ces in the result class, even if expectation values operators are given. If no expectation
are provided, then states are stored by default and this option has no effect.

use_openmp [bool {True, False}] Use OPENMP for sparse matrix vector multiplication.
Default None means auto check.

class Result
Class for storing simulation results from any of the dynamics solvers.

Attributes

solver [str] Which solver was used [e.g., ‘mesolve’, ‘mcsolve’, ‘brmesolve’, . . . ]

times [list/array] Times at which simulation data was collected.

expect [list/array] Expectation values (if requested) for simulation.

states [array] State of the simulation (density matrix or ket) evaluated at times.

num_expect [int] Number of expectation value operators in simulation.

num_collapse [int] Number of collapse operators in simualation.

ntraj [int/list] Number of trajectories (for stochastic solvers). A list indicates that averaging
of expectation values was done over a subset of total number of trajectories.

col_times [list] Times at which state collpase occurred. Only for Monte Carlo solver.

col_which [list] Which collapse operator was responsible for each collapse in
col_times. Only for Monte Carlo solver.

class SolverConfiguration

class Stats(section_names=None)
Statistical information on the solver performance Statistics can be grouped into sections. If no section names
are given in the the contructor, then all statistics will be added to one section ‘main’

Parameters

section_names [list] list of keys that will be used as keys for the sections These keys will
also be used as names for the sections The text in the output can be overidden by setting
the header property of the section If no names are given then one section called ‘main’
is created

Attributes

sections [OrderedDict of _StatsSection] These are the sections that are created automati-
cally on instantiation or added using add_section

header [string] Some text that will be used as the heading in the report By default there is
None

total_time [float] Time in seconds for the solver to complete processing Can be None,
meaning that total timing percentages will be reported
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Methods

add_section(self, name) Add another section with the given name
add_count(self, key, value[, section]) Add value to count.
add_timing(self, key, value[, section]) Add value to timing.
add_message(self, key, value[, section, sep]) Add value to message.

report: Output the statistics report to console or file.

add_count(self, key, value, section=None)
Add value to count. If key does not already exist in section then it is created with this value. If key
already exists it is increased by the give value value is expected to be an integer

Parameters

key [string] key for the section.counts dictionary reusing a key will result in numerical
addition of value

value [int] Initial value of the count, or added to an existing count

section: string or `class` [_StatsSection] Section which to add the count to. If None
given, the default (first) section will be used

add_message(self, key, value, section=None, sep=';')
Add value to message. If key does not already exist in section then it is created with this value. If key
already exists the value is added to the message The value will be converted to a string

Parameters

key [string] key for the section.messages dictionary reusing a key will result in concate-
nation of value

value [int] Initial value of the message, or added to an existing message

sep [string] Message will be prefixed with this string when concatenating

section: string or `class` [_StatsSection] Section which to add the message to. If None
given, the default (first) section will be used

add_section(self, name)
Add another section with the given name

Parameters

name [string] will be used as key for sections dict will also be the header for the section

Returns

section [class] The new section

add_timing(self, key, value, section=None)
Add value to timing. If key does not already exist in section then it is created with this value. If key
already exists it is increased by the give value value is expected to be a float, and given in seconds.

Parameters

key [string] key for the section.timings dictionary reusing a key will result in numerical
addition of value

value [int] Initial value of the timing, or added to an existing timing

section: string or `class` [_StatsSection] Section which to add the timing to. If None
given, the default (first) section will be used

clear(self)
Clear counts, timings and messages from all sections
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report(self, output=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)
Report the counts, timings and messages from the sections. Sections are reported in the order that the
names were supplied in the constructor. The counts, timings and messages are reported in the order
that they are added to the sections The output can be written to anything that supports a write method,
e.g. a file or the console (default) The output is intended to in markdown format

Parameters

output [stream] file or console stream - anything that support write - where the output
will be written

set_total_time(self, value, section=None)
Sets the total time for the complete solve or for a specific section value is expected to be a float, and
given in seconds

Parameters

value [float] Time in seconds to complete the solver section

section [string or class] Section which to set the total_time for If None given, the to-
tal_time for complete solve is set

class StochasticSolverOptions(me, H=None, c_ops=[], sc_ops=[], state0=None,
e_ops=[], m_ops=None, store_all_expect=False,
store_measurement=False, dW_factors=None,
solver=None, method='homodyne', normalize=None,
times=None, nsubsteps=1, ntraj=1, tol=None, gen-
erate_noise=None, noise=None, progress_bar=None,
map_func=None, map_kwargs=None, args={}, op-
tions=None, noiseDepth=20)

Class of options for stochastic solvers such as qutip.stochastic.ssesolve, qutip.
stochastic.smesolve, etc.

The stochastic solvers qutip.stochastic.general_stochastic, qutip.
stochastic.ssesolve, qutip.stochastic.smesolve, qutip.stochastic.
photocurrent_sesolve and qutip.stochastic.photocurrent_mesolve all take the
same keyword arguments as the constructor of these class, and internally they use these arguments to
construct an instance of this class, so it is rarely needed to explicitly create an instance of this class.

Attributes

H [qutip.Qobj, time-dependent Qobj as a list*] System Hamiltonian.

state0 [qutip.Qobj] Initial state vector (ket) or density matrix.

times [list / array] List of times for 𝑡. Must be uniformly spaced.

c_ops [list of qutip.Qobj, qutip.QobjEvo or [Qobj, coeff*]] List of deterministic
collapse operators.

sc_ops [list of qutip.Qobj, qutip.QobjEvo or [Qobj, coeff*]] List of stochastic col-
lapse operators. Each stochastic collapse operator will give a deterministic and stochas-
tic contribution to the equation of motion according to how the d1 and d2 functions are
defined.

e_ops [list of qutip.Qobj] Single operator or list of operators for which to evaluate
expectation values.

m_ops [list of qutip.Qobj] List of operators representing the measurement operators.
The expected format is a nested list with one measurement operator for each stochastic
increament, for each stochastic collapse operator.

args [dict] Dictionary of parameters for time dependent systems.

tol [float] Tolerance of the solver for implicit methods.

ntraj [int] Number of trajectors.
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nsubsteps [int] Number of sub steps between each time-spep given in times.

dW_factors [array] Array of length len(sc_ops), containing scaling factors for each mea-
surement operator in m_ops.

solver [string] Name of the solver method to use for solving the stochastic equations.
Valid values are: order 1/2 algorithms: ‘euler-maruyama’, ‘pc-euler’, ‘pc-euler-imp’
order 1 algorithms: ‘milstein’, ‘platen’, ‘milstein-imp’, ‘rouchon’ order 3/2 algorithms:
‘taylor1.5’, ‘taylor1.5-imp’, ‘explicit1.5’ order 2 algorithms: ‘taylor2.0’ call help of
qutip.stochastic.stochastic_solvers for a description of the solvers.
Implicit methods can adjust tolerance via the kw ‘tol’ default is {‘tol’:1e-6}

method [string (‘homodyne’, ‘heterodyne’)] The name of the type of measurement process
that give rise to the stochastic equation to solve.

store_all_expect [bool (default False)] Whether or not to store the e_ops expect values for
all paths.

store_measurement [bool (default False)] Whether or not to store the measurement results
in the qutip.solver.Result instance returned by the solver.

noise [int, array[int, 1d], array[double, 4d]] int : seed of the noise array[int, 1d], length
= ntraj, seeds for each trajectories array[double, 4d] (ntraj, len(times), nsubsteps,
len(sc_ops)*[1|2])

vector for the noise, the len of the last dimensions is doubled for solvers of order
1.5. The correspond to results.noise

noiseDepth [int] Number of terms kept of the truncated series used to create the noise used
by taylor2.0 solver.

normalize [bool] (default True for (photo)ssesolve, False for (photo)smesolve) Whether or
not to normalize the wave function during the evolution. Normalizing density matrices
introduce numerical errors.

options [qutip.solver.Options] Generic solver options. Only op-
tions.average_states and options.store_states are used.

map_func: function A map function or managing the calls to single-trajactory solvers.

map_kwargs: dictionary Optional keyword arguments to the map_func function function.

progress_bar [qutip.ui.BaseProgressBar] Optional progress bar class instance.

*

time-dependent Qobj can be used for H, c_ops and sc_ops.

The format for time-dependent system hamiltonian is:

H = [Qobj0,[Qobj1,coeff1],[Qobj2,coeff2],. . . ] = Qobj0 + Qobj1 * coeff1(t) + Qobj2 *
coeff2(t)

coeff function can be: function: coeff(t, args) -> complex str: “sin(1j*w*t)”
np.array[complex, 1d] of length equal to the times array

The argument args for the function coeff is the args keyword argument of the
stochastic solver.

Likewisem in str cases, the parameters (‘w’ in this case) are taken from the args key-
words argument.

*While mixing coeff type does not results in errors, it is not recommended.*

For the collapse operators (c_ops, sc_ops):

Each operators can only be composed of 1 Qobj.

c_ops = [c_op1, c_op2, . . . ]

where, c_opN = Qobj or [Qobj,coeff]
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The coeff format is the same as for the Hamiltonian.

5.1.8 Permutational Invariance

class Dicke(N, hamiltonian=None, emission=0.0, dephasing=0.0, pumping=0.0, collec-
tive_emission=0.0, collective_dephasing=0.0, collective_pumping=0.0)

The Dicke class which builds the Lindbladian and Liouvillian matrix.

Parameters

N: int The number of two-level systems.

hamiltonian [qutip.Qobj] A Hamiltonian in the Dicke basis.

The matrix dimensions are (nds, nds), with nds being the number of Dicke states. The
Hamiltonian can be built with the operators given by the jspin functions.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0

collective_pumping: float Collective pumping coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

Attributes

N: int The number of two-level systems.

hamiltonian [qutip.Qobj] A Hamiltonian in the Dicke basis.

The matrix dimensions are (nds, nds), with nds being the number of Dicke states. The
Hamiltonian can be built with the operators given by the jspin function in the “dicke”
basis.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

collective_pumping: float Collective pumping coefficient. default: 0.0

nds: int The number of Dicke states.

dshape: tuple The shape of the Hilbert space in the Dicke or uncoupled basis. default:
(nds, nds).

c_ops(self)
Build collapse operators in the full Hilbert space 2^N.

Returns

c_ops_list: list The list with the collapse operators in the 2^N Hilbert space.

coefficient_matrix(self)
Build coefficient matrix for ODE for a diagonal problem.

Returns

M: ndarray The matrix M of the coefficients for the ODE dp/dt = Mp. p is the vector
of the diagonal matrix elements of the density matrix rho in the Dicke basis.
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lindbladian(self)
Build the Lindbladian superoperator of the dissipative dynamics.

Returns

lindbladian [qutip.Qobj] The Lindbladian matrix as a qutip.Qobj.

liouvillian(self)
Build the total Liouvillian using the Dicke basis.

Returns

liouv [qutip.Qobj] The Liouvillian matrix for the system.

pisolve(self, initial_state, tlist, options=None)
Solve for diagonal Hamiltonians and initial states faster.

Parameters

initial_state [qutip.Qobj] An initial state specified as a density matrix of qutip.Qbj
type.

tlist: ndarray A 1D numpy array of list of timesteps to integrate

options [qutip.solver.Options] The options for the solver.

Returns

result: list A dictionary of the type qutip.solver.Result which holds the results of the
evolution.

class Pim(N, emission=0.0, dephasing=0, pumping=0, collective_emission=0, collective_pumping=0,
collective_dephasing=0)

The Permutation Invariant Matrix class.

Initialize the class with the parameters for generating a Permutation Invariant matrix which evolves a given
diagonal initial state p as:

dp/dt = Mp

Parameters

N: int The number of two-level systems.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0

collective_pumping: float Collective pumping coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

Attributes

N: int The number of two-level systems.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

collective_pumping: float Collective pumping coefficient. default: 0.0

M: dict A nested dictionary of the structure {row: {col: val}} which holds non zero ele-
ments of the matrix M
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calculate_j_m(self, dicke_row, dicke_col)
Get the value of j and m for the particular Dicke space element.

Parameters

dicke_row, dicke_col: int The row and column from the Dicke space matrix

Returns

j, m: float The j and m values.

calculate_k(self, dicke_row, dicke_col)
Get k value from the current row and column element in the Dicke space.

Parameters

dicke_row, dicke_col: int The row and column from the Dicke space matrix.

Returns

——-

k: int The row index for the matrix M for given Dicke space element.

coefficient_matrix(self)
Generate the matrix M governing the dynamics for diagonal cases.

If the initial density matrix and the Hamiltonian is diagonal, the evolution of the system is given by
the simple ODE: dp/dt = Mp.

isdicke(self, dicke_row, dicke_col)
Check if an element in a matrix is a valid element in the Dicke space. Dicke row: j value index. Dicke
column: m value index. The function returns True if the element exists in the Dicke space and False
otherwise.

Parameters

dicke_row, dicke_col [int] Index of the element in Dicke space which needs to be
checked

solve(self, rho0, tlist, options=None)
Solve the ODE for the evolution of diagonal states and Hamiltonians.

tau1(self, j, m)
Calculate coefficient matrix element relative to (j, m, m).

tau2(self, j, m)
Calculate coefficient matrix element relative to (j, m+1, m+1).

tau3(self, j, m)
Calculate coefficient matrix element relative to (j+1, m+1, m+1).

tau4(self, j, m)
Calculate coefficient matrix element relative to (j-1, m+1, m+1).

tau5(self, j, m)
Calculate coefficient matrix element relative to (j+1, m, m).

tau6(self, j, m)
Calculate coefficient matrix element relative to (j-1, m, m).

tau7(self, j, m)
Calculate coefficient matrix element relative to (j+1, m-1, m-1).

tau8(self, j, m)
Calculate coefficient matrix element relative to (j, m-1, m-1).

tau9(self, j, m)
Calculate coefficient matrix element relative to (j-1, m-1, m-1).
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tau_valid(self, dicke_row, dicke_col)
Find the Tau functions which are valid for this value of (dicke_row, dicke_col) given the number of
TLS. This calculates the valid tau values and reurns a dictionary specifying the tau function name and
the value.

Parameters

dicke_row, dicke_col [int] Index of the element in Dicke space which needs to be
checked.

Returns

taus: dict A dictionary of key, val as {tau: value} consisting of the valid taus for this
row and column of the Dicke space element.

5.1.9 One-Dimensional Lattice

class Lattice1d(num_cell=10, boundary='periodic', cell_num_site=1, cell_site_dof=[1], Hamilto-
nian_of_cell=None, inter_hop=None)

A class for representing a 1d crystal.

The Lattice1d class can be defined with any specific unit cells and a specified number of unit cells in the
crystal. It can return dispersion relationship, position operators, Hamiltonian in the position represention
etc.

Parameters

num_cell [int] The number of cells in the crystal.

boundary [str] Specification of the type of boundary the crystal is defined with.

cell_num_site [int] The number of sites in the unit cell.

cell_site_dof [list of int/ int] The tensor structure of the degrees of freedom at each site of
a unit cell.

Hamiltonian_of_cell [qutip.Qobj] The Hamiltonian of the unit cell.

inter_hop [qutip.Qobj / list of Qobj] The coupling between the unit cell at i and at (i+unit
vector)

Attributes

num_cell [int] The number of unit cells in the crystal.

cell_num_site [int] The nuber of sites in a unit cell.

length_for_site [int] The length of the dimension per site of a unit cell.

cell_tensor_config [list of int] The tensor structure of the cell in the form
[cell_num_site,cell_site_dof[:][0] ]

lattice_tensor_config [list of int] The tensor structure of the crystal in the form
[num_cell,cell_num_site,cell_site_dof[:][0]]

length_of_unit_cell [int] The length of the dimension for a unit cell.

period_bnd_cond_x [int] 1 indicates “periodic” and 0 indicates “hardwall” boundary con-
dition

inter_vec_list [list of list] The list of list of coefficients of inter unitcell vectors’ compo-
nents along Cartesian uit vectors.

lattice_vectors_list [list of list] The list of list of coefficients of lattice basis vectors’ com-
ponents along Cartesian unit vectors.

H_intra [qutip.Qobj] The Qobj storing the Hamiltonian of the unnit cell.
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H_inter_list [list of Qobj/ qutip.Qobj] The list of coupling terms between unit cells of the
lattice.

is_real [bool] Indicates if the Hamiltonian is real or not.

Methods

Hamilto-
nian()

Hamiltonian of the crystal.

basis() basis with the particle localized at a certain cell, site with specified degree of freedom.
dis-
tribute_operator()

Distributes an input operator over all the cells.

x() Position operator for the crystal.
k() Crystal momentum operator for the crystal.
opera-
tor_at_cells()

Distributes an input operator over user specified cells .

opera-
tor_between_cells()

A function that returns an operator matrix that applies an operator between a two speci-
fied cells.

plot_dispersion()Plots dispersion relation of the crystal.
get_dispersion()Returns the dispersion relation of the crystal.
bloch_wave_functions()Returns the eigenstates of the Hamiltonian (which are Bloch wavefunctions) for a trans-

lationally symmetric periodic lattice.
ar-
ray_of_unk()

Returns eigenvectors of the bulk Hamiltonian, i.e. the cell periodic part of the Bloch
wavefunctios in a numpy.ndarray for translationally symmetric lattices with periodic
boundary condition.

bulk_Hamiltonians()Returns the bulk Hamiltonian for the lattice at the good quantum numbers of lattice
momentum, k in a numpy ndarray of Qobj’s.

Hamiltonian(self)
Returns the lattice Hamiltonian for the instance of Lattice1d.

Returns

Qobj(Hamil) [qutip.Qobj] oper type Quantum object representing the lattice Hamilto-
nian.

basis(self, cell, site, dof_ind)
Returns a single particle wavefunction ket with the particle localized at a specified dof at a specified
site of a specified cell.

Parameters

• cell (int) – The cell at which the particle is to be localized.

• site (int) – The site of the cell at which the particle is to be localized.

• dof_ind (int/ list of int) – The index of the degrees of freedom with
which the sigle particle is to be localized.

Returns

vec_i [qutip.Qobj] ket type Quantum object representing the localized particle.

bloch_wave_functions(self)

Returns eigenvectors ($psi_n(k)$) of the Hamiltonian in a numpy.ndarray for translationally
symmetric lattices with periodic boundary condition.

angle = |k angle otimes | u_{n}(k) angle

u_{n}(k)

angle = a_n(k)|a angle + b_n(k)|b angle
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end{eqnarray}

Please see section 1.2 of Asbóth, J. K., Oroszlány, L., & Pályi, A. (2016). A short course on
topological insulators. Lecture notes in physics, 919 for a review.

Returns

eigenstates [ordered np.array] eigenstates[j][0] is the jth eigenvalue. eigenstates[j][1] is
the corresponding eigenvector.

bulk_Hamiltonians(self)
Returns the bulk momentum space Hamiltonian ($H(k)$) for the lattice at the good quantum numbers
of k in a numpy ndarray of Qobj’s.

Please see section 1.2 of Asbóth, J. K., Oroszlány, L., & Pályi, A. (2016). A short course on topological
insulators. Lecture notes in physics, 919 for a review.

Returns

knxa [np.array] knxA[j][0] is the jth good Quantum number k.

qH_ks [np.ndarray of Qobj’s] qH_ks[j] is the Oobj of type oper that holds a bulk Hamil-
tonian for a good quantum number k.

cell_periodic_parts(self)

Returns eigenvectors of the bulk Hamiltonian, i.e. the cell periodic part($u_n(k)$) of the
Bloch wavefunctios in a numpy.ndarray for translationally symmetric lattices with periodic
boundary condition.

angle = |k angle otimes | u_{n}(k) angle

u_{n}(k)

angle = a_n(k)|a angle + b_n(k)|b angle

end{eqnarray}

Please see section 1.2 of Asbóth, J. K., Oroszlány, L., & Pályi, A. (2016). A short course on
topological insulators. Lecture notes in physics, 919 for a review.

Returns

knxa [np.array]

knxA[j][0] is the jth good Quantum number k.

vec_kns [np.ndarray of Qobj’s] vec_kns[j] is the Oobj of type ket that holds an eigen-
vector of the bulk Hamiltonian of the lattice.

display_lattice(self)
Produces a graphic portraying the lattice symbolically with a unit cell marked in it.

Returns

inter_T [Qobj] The coefficient of $psi_{i,N}^{dagger}psi_{0,i+1}$, i.e. the coupling
between the two boundary sites of the two unit cells i and i+1.

display_unit_cell(self, label_on=False)
Produces a graphic displaying the unit cell features with labels on if defined by user. Also returns a
dict of Qobj’s corresponding to the labeled elements on the display.

Returns

Hcell [dict] Hcell[i][j] is the Hamiltonian segment for $H_{i,j}$ labeled on the graphic.

distribute_operator(self, op)
A function that returns an operator matrix that applies op to all the cells in the 1d lattice
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Parameters op (qutip.Qobj) – Qobj representing the operator to be applied at all cells.

Returns

op_H [qutip.Qobj] Quantum object representing the operator with op applied at all cells.

get_dispersion(self, knpoints=0)
Returns dispersion relationship for the lattice with the specified number of unit cells with a k array and
a band energy array.

Returns

knxa [np.array] knxA[j][0] is the jth good Quantum number k.

val_kns [np.array] val_kns[j][:] is the array of band energies of the jth band good at all
the good Quantum numbers of k.

k(self)
Returns the crystal momentum operator. All degrees of freedom has the cell number at their corre-
spondig entry in the position operator.

Returns

Qobj(ks) [qutip.Qobj] The crystal momentum operator in units of 1/a. L is the number
of unit cells, a is the length of a unit cell which is always taken to be 1.

operator_at_cells(self, op, cells)
A function that returns an operator matrix that applies op to specific cells specified in the cells list

Parameters

op [qutip.Qobj] Qobj representing the operator to be applied at certain cells.

cells: list of int The cells at which the operator op is to be applied.

Returns

Qobj(op_H) [Qobj] Quantum object representing the operator with op applied at the
specified cells.

operator_between_cells(self, op, row_cell, col_cell)
A function that returns an operator matrix that applies op to specific cells specified in the cells list

Parameters

op [qutip.Qobj] Qobj representing the operator to be put between cells row_cell and
col_cell.

row_cell: int The row index for cell for the operator op to be applied.

col_cell: int The column index for cell for the operator op to be applied.

Returns

oper_bet_cell [Qobj] Quantum object representing the operator with op applied be-
tween the specified cells.

plot_dispersion(self)
Plots the dispersion relationship for the lattice with the specified number of unit cells. The dispersion
of the infinte crystal is also plotted if num_cell is smaller than MAXc.

winding_number(self)
Returns the winding number for a lattice that has chiral symmetry and also plots the trajectory of
(dx,dy)(dx,dy are the coefficients of sigmax and sigmay in the Hamiltonian respectively) on a plane.

Returns

winding_number [int or str] knxA[j][0] is the jth good Quantum number k.

x(self)
Returns the position operator. All degrees of freedom has the cell number at their correspondig entry
in the position operator.
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Returns

Qobj(xs) [qutip.Qobj] The position operator.

5.1.10 Distribution functions

class Distribution(data=None, xvecs=[], xlabels=[])
A class for representation spatial distribution functions.

The Distribution class can be used to prepresent spatial distribution functions of arbitray dimension (al-
though only 1D and 2D distributions are used so far).

It is indented as a base class for specific distribution function, and provide implementation of basic functions
that are shared among all Distribution functions, such as visualization, calculating marginal distributions,
etc.

Parameters

data [array_like] Data for the distribution. The dimensions must match the lengths of the
coordinate arrays in xvecs.

xvecs [list] List of arrays that spans the space for each coordinate.

xlabels [list] List of labels for each coordinate.

marginal(self, dim=0)
Calculate the marginal distribution function along the dimension dim. Return a new Distribution
instance describing this reduced- dimensionality distribution.

Parameters

dim [int] The dimension (coordinate index) along which to obtain the marginal distri-
bution.

Returns

d [Distributions] A new instances of Distribution that describes the marginal distribu-
tion.

project(self, dim=0)
Calculate the projection (max value) distribution function along the dimension dim. Return a new
Distribution instance describing this reduced-dimensionality distribution.

Parameters

dim [int] The dimension (coordinate index) along which to obtain the projected distri-
bution.

Returns

d [Distributions] A new instances of Distribution that describes the projection.

visualize(self, fig=None, ax=None, figsize=(8, 6), colorbar=True, cmap=None,
style='colormap', show_xlabel=True, show_ylabel=True)

Visualize the data of the distribution in 1D or 2D, depending on the dimensionality of the underlaying
distribution.

Parameters:

fig [matplotlib Figure instance] If given, use this figure instance for the visualization,

ax [matplotlib Axes instance] If given, render the visualization using this axis instance.

figsize [tuple] Size of the new Figure instance, if one needs to be created.

colorbar: Bool Whether or not the colorbar (in 2D visualization) should be used.

cmap: matplotlib colormap instance If given, use this colormap for 2D visualizations.

style [string] Type of visualization: ‘colormap’ (default) or ‘surface’.
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Returns

fig, ax [tuple] A tuple of matplotlib figure and axes instances.

class WignerDistribution(rho=None, extent=[[-5, 5], [-5, 5]], steps=250)

class QDistribution(rho=None, extent=[[-5, 5], [-5, 5]], steps=250)

class TwoModeQuadratureCorrelation(state=None, theta1=0.0, theta2=0.0, extent=[[-5, 5],
[-5, 5]], steps=250)

update(self, state)
calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunc-
tion or density matrix

update_psi(self, psi)
calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunc-
tion

update_rho(self, rho)
calculate probability distribution for quadrature measurement outcomes given a two-mode density
matrix

class HarmonicOscillatorWaveFunction(psi=None, omega=1.0, extent=[-5, 5], steps=250)

update(self, psi)
Calculate the wavefunction for the given state of an harmonic oscillator

class HarmonicOscillatorProbabilityFunction(rho=None, omega=1.0, extent=[-5, 5],
steps=250)

update(self, rho)
Calculate the probability function for the given state of an harmonic oscillator (as density matrix)

5.1.11 Quantum information processing

class Gate(*args, **kwargs)
Representation of a quantum gate, with its required parametrs, and target and control qubits.

Parameters

name [string] Gate name.

targets [list or int] Gate targets.

controls [list or int] Gate controls.

arg_value [float] Argument value(phi).

arg_label [string] Label for gate representation.

class QubitCircuit(*args, **kwargs)
Representation of a quantum program/algorithm, maintaining a sequence of gates.

Parameters

N [int] Number of qubits in the system.

user_gates [dict] Define a dictionary of the custom gates. See examples for detail.

input_states [list] A list of string such as 0,’+’, “A”, “Y”. Only used for latex.

dims [list] A list of integer for the dimension of each composite system. e.g [2,2,2,2,2] for
5 qubits system. If None, qubits system will be the default option.

190 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Examples

>>> def user_gate():
... mat = np.array([[1., 0],
... [0., 1.j]])
... return Qobj(mat, dims=[[2], [2]])
>>> qc.QubitCircuit(2, user_gates={"T":user_gate})
>>> qc.add_gate("T", targets=[0])

class Processor(N, t1=None, t2=None, dims=None, spline_kind='step_func')
A simulator of a quantum device based on the QuTiP solver qutip.mesolve. It is defined by the avail-
able driving Hamiltonian and the decoherence time for each component systems. The processor can simulate
the evolution under the given control pulses. Noisy evolution is supported by qutip.qip.Noise and
can be added to the processor.

Parameters

N: int The number of component systems.

t1: list or float, optional Characterize the decoherence of amplitude damping for each
qubit. A list of size N or a float for all qubits.

t2: list of float, optional Characterize the decoherence of dephasing for each qubit. A list
of size N or a float for all qubits.

dims: list, optional The dimension of each component system. Default value is a qubit
system of dim=[2,2,2,...,2]

spline_kind: str, optional Type of the coefficient interpolation. Default is “step_func”
Note that they have different requirement for the length of `coeff’.

-“step_func”: The coefficient will be treated as a step function. E.g. tlist=[0,
1,2] and coeff=[3,2], means that the coefficient is 3 in t=[0,1) and 2 in t=[2,3).
It requires len(coeff)=len(tlist)-1 or len(coeff)=len(tlist), but in
the second case the last element of coeff has no effect.

-“cubic”: Use cubic interpolation for the coefficient. It requires
len(coeff)=len(tlist)

Attributes

N: int The number of component systems.

pulses: list of :class:`qutip.qip.Pulse` A list of control pulses of this device

t1: float or list Characterize the decoherence of amplitude damping of each qubit.

t2: float or list Characterize the decoherence of dephasing for each qubit.

noise: :class:`qutip.qip.Noise`, optional A list of noise objects. They will be processed
when creating the noisy qutip.QobjEvo from the processor or run the simulation.

drift: :class:`qutip.qip.Drift` A Drift object representing the drift Hamiltonians.

dims: list The dimension of each component system. Default value is a qubit system of
dim=[2,2,2,...,2]

spline_kind: str Type of the coefficient interpolation. See parameters of qutip.qip.
Processor for details.

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..
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targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).

cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters

qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.

Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)

get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters

device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.
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drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns

noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc)
Translate an qutip.qip.QubitCircuit to its corresponding Hamiltonians. (Defined in sub-
classes)

plot_pulses(self, title=None, figsize=None, dpi=None)
Plot the pulse amplitude

Parameters

noisy: bool, optional If true, plot the noisy pulses.

title: str Title for the plot.

figsize: tuple The size of the figure

dpi: int The dpi of the figure

Returns

fig: matplotlib.figure.Figure The Figure object for the plot.

ax: matplotlib.axes._subplots.AxesSubplot The axes for the plot.

Notes

plot_pulses only works for array_like coefficients

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns

tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters
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indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, states=None, noisy=True, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices. Noise will be neglected in this
choice.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).

analytical: bool If True, calculate the evolution with matrices exponentiation.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters
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tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

class OptPulseProcessor(N, drift=None, t1=None, t2=None, dims=None)
A processor, which takes the Hamiltonian available as dynamic generators, calls the
qutip.control.optimize_pulse_unitary function to find an optimized pulse sequence for the desired quantum
circuit. The processor can simulate the evolution under the given control pulses using qutip.mesolve.
(For attributes documentation, please refer to the parent class qutip.qip.device.Processor)

Parameters

N: int The number of component systems.

drift: `:class:`qutip.Qobj` The drift Hamiltonian. The size must match the whole quantum
system.

t1: list or float Characterize the decoherence of amplitude damping for each qubit. A list
of size N or a float for all qubits.

t2: list of float Characterize the decoherence of dephasing for each qubit. A list of size N
or a float for all qubits.

dims: list The dimension of each component system. Default value is a qubit system of
dim=[2,2,2,...,2]

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..

targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).

cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters

qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.
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Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)

get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters

device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.

drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns

noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc, min_fid_err=inf, merge_gates=True, setting_args=None, verbose=False,
**kwargs)

Find the pulses realizing a given qutip.qip.Circuit using
qutip.control.optimize_pulse_unitary. Further parameter for for qutip.control.optimize_pulse_unitary
needs to be given as keyword arguments. By default, it first merge all the gates into one unitary and
then find the control pulses for it. It can be turned off and one can set different parameters for different
gates. See examples for details.

Parameters

qc: :class:`qutip.QubitCircuit` or list of Qobj The quantum circuit to be translated.

196 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

min_fid_err: float, optional The minimal fidelity tolerance, if the fidelity error of any
gate decomposition is higher, a warning will be given. Default is infinite.

merge_gates: boolean, optimal If True, merge all gate/Qobj into one Qobj and then
find the optimal pulses for this unitary matrix. If False, find the optimal pulses for
each gate/Qobj.

setting_args: dict, optional Only considered if merge_gates is False. It is a dictionary
containing keyword arguments for different gates.

E.g: setting_args = {“SNOT”: {“num_tslots”: 10, “evo_time”: 1},

“SWAP”: {“num_tslots”: 30, “evo_time”: 3}, “CNOT”: {“num_tslots”: 30,
“evo_time”: 3}}

verbose: boolean, optional If true, the information for each decomposed gate will be
shown. Default is False.

**kwargs keyword arguments for qutip.control.optimize_pulse_unitary

Returns

tlist: array_like A NumPy array specifies the time of each coefficient

coeffs: array_like A 2d NumPy array of the shape (len(ctrls), len(tlist)-1). Each row
corresponds to the control pulse sequence for one Hamiltonian.

Notes

len(tlist)-1=coeffs.shape[1] since tlist gives the beginning and the end of the pulses

Examples

# Same parameter for all the gates qc = QubitCircuit(N=1) qc.add_gate(“SNOT”, 0)

num_tslots = 10 evo_time = 10 processor = OptPulseProcessor(N=1, drift=sigmaz(), ctrls=[sigmax()])
# num_tslots and evo_time are two keyword arguments tlist, coeffs = processor.load_circuit(

qc, num_tslots=num_tslots, evo_time=evo_time)

# Different parameters for different gates qc = QubitCircuit(N=2) qc.add_gate(“SNOT”, 0)
qc.add_gate(“SWAP”, targets=[0, 1]) qc.add_gate(‘CNOT’, controls=1, targets=[0])

processor = OptPulseProcessor(N=2, drift=tensor([sigmaz()]*2)) processor.add_control(sigmax(),
cyclic_permutation=True) processor.add_control(sigmay(), cyclic_permutation=True) proces-
sor.add_control(tensor([sigmay(), sigmay()])) setting_args = {“SNOT”: {“num_tslots”: 10,
“evo_time”: 1},

“SWAP”: {“num_tslots”: 30, “evo_time”: 3}, “CNOT”: {“num_tslots”: 30, “evo_time”:
3}}

tlist, coeffs = processor.load_circuit(qc, setting_args=setting_args, merge_gates=False)

plot_pulses(self, title=None, figsize=None, dpi=None)
Plot the pulse amplitude

Parameters

noisy: bool, optional If true, plot the noisy pulses.

title: str Title for the plot.

figsize: tuple The size of the figure

dpi: int The dpi of the figure

Returns
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fig: matplotlib.figure.Figure The Figure object for the plot.

ax: matplotlib.axes._subplots.AxesSubplot The axes for the plot.

Notes

plot_pulses only works for array_like coefficients

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns

tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters

indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, states=None, noisy=True, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices. Noise will be neglected in this
choice.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).
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analytical: bool If True, calculate the evolution with matrices exponentiation.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

class ModelProcessor(N, correct_global_phase=True, t1=None, t2=None)
The base class for a circuit processor simulating a physical device, e.g cavityQED, spinchain. The avail-
able Hamiltonian of the system is predefined. The processor can simulate the evolution under the given
control pulses either numerically or analytically. It cannot be used alone, please refer to the sub-classes.
(Only additional attributes are documented here, for others please refer to the parent class qutip.qip.
device.Processor)

Parameters

N: int The number of component systems.

correct_global_phase: boolean, optional If true, the analytical solution will track the
global phase. It has no effect on the numerical solution.

t1: list or float Characterize the decoherence of amplitude damping for each qubit. A list
of size N or a float for all qubits.

t2: list of float Characterize the decoherence of dephasing for each qubit. A list of size N
or a float for all qubits.

Attributes

params: dict A Python dictionary contains the name and the value of the parameters in the
physical realization, such as laser frequency, detuning etc.

correct_global_phase: float Save the global phase, the analytical solution will track the
global phase. It has no effect on the numerical solution.

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..

targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).
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cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters

qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.

Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)

get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters

device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.

drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns
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noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_ops_and_u(self)
Get the labels for each Hamiltonian.

Returns

ctrls: list The list of Hamiltonians

coeffs: array_like The transposed pulse matrix

get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc)
Translate an qutip.qip.QubitCircuit to its corresponding Hamiltonians. (Defined in sub-
classes)

plot_pulses(self, title=None, noisy=None, figsize=(12, 6), dpi=None)
Maps the physical interaction between the circuit components for the desired physical system.

Returns

fig, ax: Figure Maps the physical interaction between the circuit components.

pulse_matrix(self)
Generates the pulse matrix for the desired physical system.

Returns

t, u, labels: Returns the total time and label for every operation.

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns

tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters

indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.
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Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, qc=None, states=None, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).

analytical: boolean If True, calculate the evolution with matrices exponentiation.

qc: :class:`qutip.qip.QubitCircuit`, optional A quantum circuit. If given, it first calls
the load_circuit and then calculate the evolution.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

set_up_params(self)
Save the parameters in the attribute params and check the validity. (Defined in subclasses)
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Notes

All parameters will be multiplied by 2*pi for simplicity

class SpinChain(N, correct_global_phase, sx, sz, sxsy, t1, t2)
The processor based on the physical implementation of a spin chain qubits system. The available Hamilto-
nian of the system is predefined. The processor can simulate the evolution under the given control pulses
either numerically or analytically. It is a base class and should not be used directly, please refer the the
subclasses qutip.qip.LinearSpinChain and qutip.qip.CircularSpinChain. (Only addi-
tional attributes are documented here, for others please refer to the parent class qutip.qip.device.
ModelProcessor)

Parameters

N: int The number of qubits in the system.

correct_global_phase: float Save the global phase, the analytical solution will track the
global phase. It has no effect on the numerical solution.

sx: int or list The delta for each of the qubits in the system.

sz: int or list The epsilon for each of the qubits in the system.

sxsy: int or list The interaction strength for each of the qubit pair in the system.

t1: list or float Characterize the decoherence of amplitude damping for each qubit. A list
of size N or a float for all qubits.

t2: list of float Characterize the decoherence of dephasing for each qubit. A list of size N
or a float for all qubits.

Attributes

sx: list The delta for each of the qubits in the system.

sz: list The epsilon for each of the qubits in the system.

sxsy: list The interaction strength for each of the qubit pair in the system.

sx_ops: list A list of sigmax Hamiltonians for each qubit.

sz_ops: list A list of sigmaz Hamiltonians for each qubit.

sxsy_ops: list A list of tensor(sigmax, sigmay) interacting Hamiltonians for each qubit.

sx_u: array_like Pulse matrix for sigmax Hamiltonians.

sz_u: array_like Pulse matrix for sigmaz Hamiltonians.

sxsy_u: array_like Pulse matrix for tensor(sigmax, sigmay) interacting Hamiltonians.

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..

targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).

cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters
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qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.

adjacent_gates(self, qc, setup='linear')
Method to resolve 2 qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent
interactions for linear/circular spin chain system.

Parameters

qc: :class:`qutip.QubitCircuit` The circular spin chain circuit to be resolved

setup: Boolean Linear of Circular spin chain setup

Returns

qc: qutip.QubitCircuit Returns QubitCircuit of resolved gates for the qubit cir-
cuit in the desired basis.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.

Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)

get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters
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device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.

drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns

noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_ops_and_u(self)
Get the labels for each Hamiltonian.

Returns

ctrls: list The list of Hamiltonians

coeffs: array_like The transposed pulse matrix

get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc, setup)
Decompose a qutip.QubitCircuit in to the control amplitude generating the corresponding
evolution.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

setup: string “linear” or “circular” for two sub-calsses.

Returns

tlist: array_like A NumPy array specifies the time of each coefficient

coeffs: array_like A 2d NumPy array of the shape (len(ctrls), len(tlist)). Each row
corresponds to the control pulse sequence for one Hamiltonian.

optimize_circuit(self, qc)
Take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired physical
system.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

Returns

qc: qutip.QubitCircuit The circuit representation with elementary gates that
can be implemented in this model.

plot_pulses(self, title=None, noisy=None, figsize=(12, 6), dpi=None)
Maps the physical interaction between the circuit components for the desired physical system.

Returns

fig, ax: Figure Maps the physical interaction between the circuit components.
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pulse_matrix(self)
Generates the pulse matrix for the desired physical system.

Returns

t, u, labels: Returns the total time and label for every operation.

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns

tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters

indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, qc=None, states=None, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).

analytical: boolean If True, calculate the evolution with matrices exponentiation.
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qc: :class:`qutip.qip.QubitCircuit`, optional A quantum circuit. If given, it first calls
the load_circuit and then calculate the evolution.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

set_up_ops(self, N)
Generate the Hamiltonians for the spinchain model and save them in the attribute ctrls.

Parameters

N: int The number of qubits in the system.

set_up_params(self, sx, sz)
Save the parameters in the attribute params and check the validity.

Parameters

sx: float or list The coefficient of sigmax in the model

sz: flaot or list The coefficient of sigmaz in the model

Notes

The coefficient of sxsy is defined in the submethods. All parameters will be multiplied by 2*pi for
simplicity

class LinearSpinChain(N, correct_global_phase=True, sx=0.25, sz=1.0, sxsy=0.1, t1=None,
t2=None)

A processor based on the physical implementation of a linear spin chain qubits system. The available
Hamiltonian of the system is predefined. The processor can simulate the evolution under the given control
pulses either numerically or analytically.

Parameters

N: int The number of qubits in the system.

correct_global_phase: float Save the global phase, the analytical solution will track the
global phase. It has no effect on the numerical solution.

sx: int or list The delta for each of the qubits in the system.

sz: int or list The epsilon for each of the qubits in the system.

sxsy: int or list The interaction strength for each of the qubit pair in the system.
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t1: list or float, optional Characterize the decoherence of amplitude damping for each
qubit.

t2: list of float, optional Characterize the decoherence of dephasing for each qubit.

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..

targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).

cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters

qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.

adjacent_gates(self, qc)
Method to resolve 2 qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent
interactions for linear/circular spin chain system.

Parameters

qc: :class:`qutip.QubitCircuit` The circular spin chain circuit to be resolved

setup: Boolean Linear of Circular spin chain setup

Returns

qc: qutip.QubitCircuit Returns QubitCircuit of resolved gates for the qubit cir-
cuit in the desired basis.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.

Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)
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get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters

device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.

drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns

noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_ops_and_u(self)
Get the labels for each Hamiltonian.

Returns

ctrls: list The list of Hamiltonians

coeffs: array_like The transposed pulse matrix

get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc)
Decompose a qutip.QubitCircuit in to the control amplitude generating the corresponding
evolution.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

setup: string “linear” or “circular” for two sub-calsses.
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Returns

tlist: array_like A NumPy array specifies the time of each coefficient

coeffs: array_like A 2d NumPy array of the shape (len(ctrls), len(tlist)). Each row
corresponds to the control pulse sequence for one Hamiltonian.

optimize_circuit(self, qc)
Take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired physical
system.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

Returns

qc: qutip.QubitCircuit The circuit representation with elementary gates that
can be implemented in this model.

plot_pulses(self, title=None, noisy=None, figsize=(12, 6), dpi=None)
Maps the physical interaction between the circuit components for the desired physical system.

Returns

fig, ax: Figure Maps the physical interaction between the circuit components.

pulse_matrix(self)
Generates the pulse matrix for the desired physical system.

Returns

t, u, labels: Returns the total time and label for every operation.

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns

tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters

indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.
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Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, qc=None, states=None, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).

analytical: boolean If True, calculate the evolution with matrices exponentiation.

qc: :class:`qutip.qip.QubitCircuit`, optional A quantum circuit. If given, it first calls
the load_circuit and then calculate the evolution.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

set_up_ops(self, N)
Generate the Hamiltonians for the spinchain model and save them in the attribute ctrls.

Parameters

N: int The number of qubits in the system.

set_up_params(self, sx, sz, sxsy)
Save the parameters in the attribute params and check the validity.

Parameters

sx: float or list The coefficient of sigmax in the model

sz: flaot or list The coefficient of sigmaz in the model
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Notes

The coefficient of sxsy is defined in the submethods. All parameters will be multiplied by 2*pi for
simplicity

class CircularSpinChain(N, correct_global_phase=True, sx=0.25, sz=1.0, sxsy=0.1, t1=None,
t2=None)

A processor based on the physical implementation of a circular spin chain qubits system. The available
Hamiltonian of the system is predefined. The processor can simulate the evolution under the given control
pulses either numerically or analytically.

Parameters

N: int The number of qubits in the system.

correct_global_phase: float Save the global phase, the analytical solution will track the
global phase. It has no effect on the numerical solution.

sx: int or list The delta for each of the qubits in the system.

sz: int or list The epsilon for each of the qubits in the system.

sxsy: int or list The interaction strength for each of the qubit pair in the system.

t1: list or float, optional Characterize the decoherence of amplitude damping for each
qubit.

t2: list of float, optional Characterize the decoherence of dephasing for each qubit.

add_control(self, qobj, targets=None, cyclic_permutation=False, label=None)
Add a control Hamiltonian to the processor. It creates a new qutip.qip.Pulse object for the
device that is turned off (tlist = None, coeff = None). To activate the pulse, one can set its
tlist and coeff.

Parameters

qobj: :class:`qutip.Qobj` The Hamiltonian for the control pulse..

targets: list, optional The indices of the target qubits (or subquantum system of other
dimensions).

cyclic_permutation: bool, optional If true, the Hamiltonian will be expanded for all
cyclic permutation of the target qubits.

label: str, optional The label (name) of the pulse

add_drift(self, qobj, targets, cyclic_permutation=False)
Add one Hamiltonian to the drift Hamiltonians

Parameters

qobj: :class:`qutip.Qobj` The drift Hamiltonian.

targets: list The indices of the target qubits (or subquantum system of other dimen-
sions).

add_noise(self, noise)
Add a noise object to the processor

Parameters

noise: :class:`qutip.qip.Noise` The noise object defined outside the processor

add_pulse(self, pulse)
Add a new pulse to the device.

Parameters

pulse: :class:`qutip.qip.Pulse` Pulse object to be added.
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adjacent_gates(self, qc)
Method to resolve 2 qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent
interactions for linear/circular spin chain system.

Parameters

qc: :class:`qutip.QubitCircuit` The circular spin chain circuit to be resolved

setup: Boolean Linear of Circular spin chain setup

Returns

qc: qutip.QubitCircuit Returns QubitCircuit of resolved gates for the qubit cir-
cuit in the desired basis.

property coeffs
A list of the coefficients for all control pulses.

property ctrls
A list of Hamiltonian of all pulses.

Type list

eliminate_auxillary_modes(self, U)
Eliminate the auxillary modes like the cavity modes in cqed. (Defined in subclasses)

get_full_coeffs(self)
Return the full coefficients in a 2d matrix form. Each row corresponds to one pulse. If the tlist
are different for different pulses, the length of each row will be same as the full_tlist (see method
get_full_tlist). Interpolation is used for adding the missing coefficient according to spline_kind.

Returns

coeffs: array-like 2d The coefficients for all ideal pulses.

get_full_tlist(self)
Return the full tlist of the ideal pulses. It means that if different `tlist`s are present, they will be merged
to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the ideal evolution.

get_noisy_pulses(self, device_noise=False, drift=False)
It takes the pulses defined in the Processor and adds noise according to Processor.noise. It does not
modify the pulses saved in Processor.pulses but returns a new list. The length of the new list of noisy
pulses might be longer because of drift Hamiltonian and device noise. They will be added to the end
of the pulses list.

Parameters

device_noise: bool, optional If true, include pulse independent noise such as single
qubit Relaxation. Default is False.

drift: bool, optional If true, include drift Hamiltonians. Default is False.

Returns

noisy_pulses: list of :class”qutip.qip.Pulse/qutip.qip.Drift A list of noisy
pulses.

get_ops_and_u(self)
Get the labels for each Hamiltonian.

Returns

ctrls: list The list of Hamiltonians

coeffs: array_like The transposed pulse matrix
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get_qobjevo(self, args=None, noisy=False)
Create a qutip.QobjEvo representation of the evolution. It calls the method get_noisy_pulses and
create the QobjEvo from it.

Parameters

args: dict, optional Arguments for qutip.QobjEvo

noisy: bool, optional If noise are included. Default is False.

Returns

qobjevo: qutip.QobjEvo The qutip.QobjEvo representation of the unitary evo-
lution.

c_ops: list of qutip.QobjEvo A list of lindblad operators is also returned. if
noisy==Flase, it is always an empty list.

load_circuit(self, qc)
Decompose a qutip.QubitCircuit in to the control amplitude generating the corresponding
evolution.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

setup: string “linear” or “circular” for two sub-calsses.

Returns

tlist: array_like A NumPy array specifies the time of each coefficient

coeffs: array_like A 2d NumPy array of the shape (len(ctrls), len(tlist)). Each row
corresponds to the control pulse sequence for one Hamiltonian.

optimize_circuit(self, qc)
Take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired physical
system.

Parameters

qc: :class:`qutip.QubitCircuit` Takes the quantum circuit to be implemented.

Returns

qc: qutip.QubitCircuit The circuit representation with elementary gates that
can be implemented in this model.

plot_pulses(self, title=None, noisy=None, figsize=(12, 6), dpi=None)
Maps the physical interaction between the circuit components for the desired physical system.

Returns

fig, ax: Figure Maps the physical interaction between the circuit components.

pulse_matrix(self)
Generates the pulse matrix for the desired physical system.

Returns

t, u, labels: Returns the total time and label for every operation.

read_coeff(self, file_name, inctime=True)
Read the control amplitudes matrix and time list saved in the file by save_amp.

Parameters

file_name: string Name of the file.

inctime: bool, optional True if the time list in included in the first column.

Returns
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tlist: array_like The time list read from the file.

coeffs: array_like The pulse matrix read from the file.

remove_pulse(self, indices)
Remove the control pulse with given indices.

Parameters

indices: int or list of int The indices of the control Hamiltonians to be removed.

run(self, qc=None)
Calculate the propagator of the evolution by matrix exponentiation. This method won’t include noise
or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be imple-
mented. If not given, use the quantum circuit saved in the processor by load_circuit.

Returns

U_list: list The propagator matrix obtained from the physical implementation.

run_analytically(self, init_state=None, qc=None)
Simulate the state evolution under the given qutip.QubitCircuit with matrice exponentiation. It will
calculate the propagator with matrix exponentiation and return a list of qutip.Qobj. This method
won’t include noise or collpase.

Parameters

qc: :class:`qutip.qip.QubitCircuit`, optional Takes the quantum circuit to be im-
plemented. If not given, use the quantum circuit saved in the processor by
load_circuit.

init_state: :class:`qutip.Qobj`, optional The initial state of the qubits in the register.

Returns

evo_result: qutip.Result An instance of the class qutip.Result will be re-
turned.

run_state(self, init_state=None, analytical=False, qc=None, states=None, **kwargs)
If analytical is False, use qutip.mesolve to calculate the time of the state evolution and return the
result. Other arguments of mesolve can be given as keyword arguments. If analytical is True, calculate
the propagator with matrix exponentiation and return a list of matrices.

Parameters

init_state: Qobj Initial density matrix or state vector (ket).

analytical: boolean If True, calculate the evolution with matrices exponentiation.

qc: :class:`qutip.qip.QubitCircuit`, optional A quantum circuit. If given, it first calls
the load_circuit and then calculate the evolution.

states: :class:`qutip.Qobj`, optional Old API, same as init_state.

**kwargs Keyword arguments for the qutip solver.

Returns

evo_result: qutip.Result If analytical is False, an instance of the class
qutip.Result will be returned.

If analytical is True, a list of matrices representation is returned.

save_coeff(self, file_name, inctime=True)
Save a file with the control amplitudes in each timeslot.

Parameters
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file_name: string Name of the file.

inctime: bool, optional True if the time list should be included in the first column.

set_all_tlist(self, tlist)
Set tlist for all the pulses. It can be used to set tlist if all pulses are controlled by the same time
sequence.

Parameters

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. See qutip.qip.Pulse for detailed information`

set_up_ops(self, N)
Generate the Hamiltonians for the spinchain model and save them in the attribute ctrls.

Parameters

N: int The number of qubits in the system.

set_up_params(self, sx, sz, sxsy)
Save the parameters in the attribute params and check the validity.

Parameters

sx: float or list The coefficient of sigmax in the model

sz: flaot or list The coefficient of sigmaz in the model

Notes

The coefficient of sxsy is defined in the submethods. All parameters will be multiplied by 2*pi for
simplicity

class DecoherenceNoise(c_ops, targets=None, coeff=None, tlist=None, all_qubits=False)
The decoherence noise in a processor. It generates lindblad noise according to the given collapse operator
c_ops.

Parameters

c_ops: :class:`qutip.Qobj` or list The Hamiltonian representing the dynamics of the
noise.

targets: int or list, optional The indices of qubits that are acted on. Default is on all qubits

coeff: list, optional A list of the coefficients for the control Hamiltonians.

tlist: array_like, optional A NumPy array specifies the time of each coefficient.

all_qubits: bool, optional If c_ops contains only single qubits collapse operator,
all_qubits=True will allow it to be applied to all qubits.

Attributes

c_ops: :class:`qutip.Qobj` or list The Hamiltonian representing the dynamics of the
noise.

targets: int or list The indices of qubits that are acted on.

coeff: list A list of the coefficients for the control Hamiltonians.

tlist: array_like A NumPy array specifies the time of each coefficient.

all_qubits: bool If c_ops contains only single qubits collapse operator,
all_qubits=True will allow it to be applied to all qubits.

get_noisy_dynamics(self, dims)
Return a list of Pulse object with only trivial ideal pulse (H=0) but non-trivial lindblad noise.

Parameters
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dims: list, optional The dimension of the components system, the default value is
[2,2. . . ,2] for qubits system.

Returns

lindblad_noise: list of qutip.qip.Pulse A list of Pulse object with only trivial
ideal pulse (H=0) but non-trivial lindblad noise.

class RelaxationNoise(t1=None, t2=None, targets=None)
The decoherence on each qubit characterized by two time scales t1 and t2.

Parameters

t1: float or list, optional Characterize the decoherence of amplitude damping for each
qubit.

t2: float or list, optional Characterize the decoherence of dephasing for each qubit.

targets: int or list, optional The indices of qubits that are acted on. Default is on all qubits

Attributes

t1: float or list Characterize the decoherence of amplitude damping for each qubit.

t2: float or list Characterize the decoherence of dephasing for each qubit.

targets: int or list The indices of qubits that are acted on.

get_noisy_dynamics(self, dims)
Return a list of Pulse object with only trivial ideal pulse (H=0) but non-trivial relaxation noise.

Parameters

dims: list, optional The dimension of the components system, the default value is
[2,2. . . ,2] for qubits system.

Returns

lindblad_noise: list of qutip.qip.Pulse A list of Pulse object with only trivial
ideal pulse (H=0) but non-trivial relaxation noise.

class ControlAmpNoise(coeff, tlist=None, indices=None)
The noise in the amplitude of the control pulse.

Parameters

coeff: list A list of the coefficients for the control Hamiltonians. For available choices, see
qutip.QobjEvo.

tlist: array_like, optional A NumPy array specifies the time of each coefficient.

indices: list of int, optional The indices of target pulse in the list of pulses.

Attributes

———-

coeff: list A list of the coefficients for the control Hamiltonians. For available choices, see
qutip.QobjEvo.

tlist: array_like A NumPy array specifies the time of each coefficient.

indices: list of int The indices of target pulse in the list of pulses.

get_noisy_dynamics(self, pulses)
Return a list of pulses containing the input pulse with additional coherent noise.

Parameters

pulses: list of :class:`qutip.qip.Pulse` The input pulses, on which the noise object will
be applied.

Returns
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noisy_pulses: list of qutip.qip.Pulse The input Pulse object with additional co-
herent noise.

class RandomNoise(dt, rand_gen, indices=None, **kwargs)
Random noise in the amplitude of the control pulse. The arguments for the random generator need to be
given as key word arguments.

Parameters

dt: float, optional The time interval between two random amplitude. The coefficients of
the noise are the same within this time range.

rand_gen: numpy.random, optional A random generator in numpy.random, it has to take
a size parameter as the size of random numbers in the output array.

indices: list of int, optional The indices of target pulse in the list of pulses.

kwargs: Key word arguments for the random number generator.

Examples

>>> gaussnoise = RandomNoise(
dt=0.1, rand_gen=np.random.normal, loc=mean, scale=std)

Attributes

dt: float, optional The time interval between two random amplitude. The coefficients of
the noise are the same within this time range.

rand_gen: numpy.random, optional A random generator in numpy.random, it has to take
a size parameter.

indices: list of int The indices of target pulse in the list of pulses.

kwargs: Key word arguments for the random number generator.

get_noisy_dynamics(self, pulses)
Return a list of pulses containing the input pulse with additional coherent noise.

Parameters

pulses: list of :class:`qutip.qip.Pulse` The input pulses, on which the noise object will
be applied.

Returns

noisy_pulses: list of qutip.qip.Pulse The input Pulse object with additional co-
herent noise.

class UserNoise
Template class for user defined noise. It is classified as a pulse dependent noise. By calling the method
get_noisy_dynamics, it should return the input pulses with additional coherent and/or lindblad noise. If there
are pulse independent noise, a dummy Pulse can be created by Pulse(None, None). The modified
input pulses should always be at the begining of the list, followed by the dummy pulses.

get_noisy_dynamics(self, pulses, dims)
Template method. It should return a list of pulses with noise.

Parameters

pulses: list of :class:`qutip.qip.Pulse` The input pulses, on which the noise object will
be applied.

dims: list, optional The dimension of the components system, the default value is
[2,2. . . ,2] for qubits system.

Returns
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noisy_pulses: list of qutip.qip.Pulse The input Pulse object with additional
noise.

class Pulse(qobj, targets, tlist=None, coeff=None, spline_kind=None, label=None)
Representation of a control pulse and the pulse dependent noise. The pulse is characterized by the ideal
control pulse, the coherent noise and the lindblad noise. The later two are lists of noisy evolution dynamics.
Each dynamic element is characterized by four variables: qobj, targets, tlist and coeff.

See examples for different construction behavior.

Parameters

qobj: :class:’qutip.Qobj’ The Hamiltonian of the ideal pulse.

targets: list target qubits of the ideal pulse (or subquantum system of other dimensions).

tlist: array-like, optional tlist of the ideal pulse. A list of time at which the time-dependent
coefficients are applied. tlist does not have to be equidistant, but must have the same
length or one element shorter compared to coeff. See documentation for the parameter
spline_kind.

coeff: array-like or bool, optional Time-dependent coefficients of the ideal control pulse.
If an array, the length must be the same or one element longer compared to tlist. See
documentation for the parameter spline_kind. If a bool, the coefficient is a constant 1 or
0.

spline_kind: str, optional Type of the coefficient interpolation: “step_func” or “cubic”.

-“step_func”: The coefficient will be treated as a step function. E.g. tlist=[0,
1,2] and coeff=[3,2], means that the coefficient is 3 in t=[0,1) and 2 in t=[2,3).
It requires len(coeff)=len(tlist)-1 or len(coeff)=len(tlist), but in
the second case the last element of coeff has no effect.

-“cubic”: Use cubic interpolation for the coefficient. It requires
len(coeff)=len(tlist)

label: str The label (name) of the pulse.

Examples

Create a pulse that is turned off

>>> Pulse(sigmaz(), 0)
>>> Pulse(sigmaz(), 0, None, None)

Create a time dependent pulse

>>> tlist = np.array([0., 1., 2., 4.])
>>> coeff = np.array([0.5, 1.2, 0.8])
>>> spline_kind = "step_func"
>>> Pulse(sigmaz(), 0, tlist=tlist, coeff=coeff, spline_kind="step_func")

Create a time independent pulse

>>> Pulse(sigmaz(), 0, coeff=True)

Create a constant pulse with time range

>>> Pulse(sigmaz(), 0, tlist=tlist, coeff=True)

Create an dummy Pulse (H=0)

>>> Pulse(None, None)

5.1. Classes 219



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Attributes

ideal_pulse: :class:`qutip.qip.pulse._EvoElement` The ideal dynamic of the control
pulse.

coherent_noise: list of :class:`qutip.qip.pulse._EvoElement` The coherent noise caused
by the control pulse. Each dynamic element is still characterized by a time-dependent
Hamiltonian.

lindblad_noise: list of :class:`qutip.qip.pulse._EvoElement` The dissipative noise of the
control pulse. Each dynamic element will be treated as a (time-dependent) lindblad
operator in the master equation.

spline_kind: str See parameter spline_kind.

label: str See parameter label.

add_coherent_noise(self, qobj, targets, tlist=None, coeff=None)
Add a new (time-dependent) Hamiltonian to the coherent noise.

Parameters

qobj: :class:’qutip.Qobj’ The Hamiltonian of the pulse.

targets: list target qubits of the pulse (or subquantum system of other dimensions).

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. tlist does not have to be equidistant, but must have the same length or one
element shorter compared to coeff. See documentation for the parameter spline_kind
of qutip.qip.Pulse.

coeff: array-like or bool, optional Time-dependent coefficients of the pulse noise. If
an array, the length must be the same or one element longer compared to tlist. See
documentation for the parameter spline_kind of qutip.qip.Pulse. If a bool, the
coefficient is a constant 1 or 0.

add_lindblad_noise(self, qobj, targets, tlist=None, coeff=None)
Add a new (time-dependent) lindblad noise to the coherent noise.

Parameters

qobj: :class:’qutip.Qobj’ The collapse operator of the lindblad noise.

targets: list target qubits of the collapse operator (or subquantum system of other di-
mensions).

tlist: array-like, optional A list of time at which the time-dependent coefficients are
applied. tlist does not have to be equidistant, but must have the same length or one
element shorter compared to coeff. See documentation for the parameter spline_kind
of qutip.qip.Pulse.

coeff: array-like or bool, optional Time-dependent coefficients of the pulse noise. If
an array, the length must be the same or one element longer compared to tlist. See
documentation for the parameter spline_kind of qutip.qip.Pulse. If a bool, the
coefficient is a constant 1 or 0.

property coeff
See parameter coeff.

get_full_tlist(self)
Return the full tlist of the pulses and noise. It means that if different `tlist`s are present, they will be
merged to one with all time points stored in a sorted array.

Returns

full_tlist: array-like 1d The full time sequence for the nosiy evolution.

get_ideal_qobj(self, dims)
Get the Hamiltonian of the ideal pulse.

220 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Parameters

dims: int or list Dimension of the system. If int, we assume it is the number of qubits
in the system. If list, it is the dimension of the component systems.

Returns

qobj: qutip.Qobj The Hamiltonian of the ideal pulse.

get_ideal_qobjevo(self, dims)
Get a QobjEvo representation of the ideal evolution.

Parameters

dims: int or list Dimension of the system. If int, we assume it is the number of qubits
in the system. If list, it is the dimension of the component systems.

Returns

ideal_evo: qutip.QobjEvo A QobjEvo representing the ideal evolution.

get_noisy_qobjevo(self, dims)
Get the QobjEvo representation of the noisy evolution. The result can be used directly as input for the
qutip solvers.

Parameters

dims: int or list Dimension of the system. If int, we assume it is the number of qubits
in the system. If list, it is the dimension of the component systems.

Returns

noisy_evo: qutip.QobjEvo A QobjEvo representing the ideal evolution and coher-
ent noise.

c_ops: list of qutip.QobjEvo A list of (time-dependent) lindbald operators.

print_info(self)
Print the information of the pulse, including the ideal dynamics, the coherent noise and the lindblad
noise.

property qobj
See parameter qobj.

property targets
See parameter targets.

property tlist
See parameter tlist

5.1.12 Optimal control

class Optimizer(config, dyn, params=None)
Base class for all control pulse optimisers. This class should not be instantiated, use its subclasses This class
implements the fidelity, gradient and interation callback functions. All subclass objects must be initialised
with a

OptimConfig instance - various configuration options Dynamics instance - describes the dynam-
ics of the (quantum) system

to be control optimised

Attributes

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
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above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

params: Dictionary The key value pairs are the attribute name and value Note: attributes
are created if they do not exist already, and are overwritten if they do.

alg [string] Algorithm to use in pulse optimisation. Options are:

‘GRAPE’ (default) - GRadient Ascent Pulse Engineering ‘CRAB’ - Chopped
RAndom Basis

alg_params [Dictionary] options that are specific to the pulse optim algorithm that is
GRAPE or CRAB

disp_conv_msg [bool] Set true to display a convergence message (for
scipy.optimize.minimize methods anyway)

optim_method [string] a scipy.optimize.minimize method that will be used to optimise the
pulse for minimum fidelity error

method_params [Dictionary] Options for the optim_method. Note that where there is an
equivalent attribute of this instance or the termination_conditions (for example maxiter)
it will override an value in these options

approx_grad [bool] If set True then the method will approximate the gradient itself (if
it has requirement and facility for this) This will mean that the fid_err_grad_wrapper
will not get called Note it should be left False when using the Dynamics to calculate
approximate gradients Note it is set True automatically when the alg is CRAB

amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

bounds [List of floats] Bounds for the parameters. If not set before the run_optimization
call then the list is built automatically based on the amp_lbound and amp_ubound at-
tributes. Setting this attribute directly allows specific bounds to be set for individual
parameters. Note: Only some methods use bounds

dynamics [Dynamics (subclass instance)] describes the dynamics of the (quantum) system
to be control optimised (see Dynamics classes for details)

config [OptimConfig instance] various configuration options (see OptimConfig for details)

termination_conditions [TerminationCondition instance] attributes determine when the
optimisation will end

pulse_generator [PulseGen (subclass instance)] (can be) used to create initial pulses not
used by the class, but set by pulseoptim.create_pulse_optimizer

stats [Stats] attributes of which give performance stats for the optimisation set to None
to reduce overhead of calculating stats. Note it is (usually) shared with the Dynamics
instance

dump [dump.OptimDump] Container for data dumped during the optimisation. Can be
set by specifying the dumping level or set directly. Note this is mainly intended for user
and a development debugging but could be used for status information during a long
optimisation.

dumping [string] The level of data dumping that will occur during the optimisation -
NONE : No processing data dumped (Default) - SUMMARY : A summary at each
iteration will be recorded - FULL : All logs will be generated and dumped - CUSTOM
: Some customised level of dumping When first set to CUSTOM this is equivalent to
SUMMARY.
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dump_to_file [bool] If set True then data will be dumped to file during the optimisation
dumping will be set to SUMMARY during init_optim if dump_to_file is True and dump-
ing not set. Default is False

dump_dir [string] Basically a link to dump.dump_dir. Exists so that it can be set through
optim_params. If dump is None then will return None or will set dumping to SUM-
MARY when setting a path

iter_summary [OptimIterSummary] Summary of the most recent iteration. Note this
is only set if dummping is on

apply_method_params(self, params=None)
Loops through all the method_params (either passed here or the method_params attribute) If the name
matches an attribute of this object or the termination conditions object, then the value of this attribute
is set. Otherwise it is assumed to a method_option for the scipy.optimize.minimize function

apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value Note: attributes are created if they do not exist already, and are overwritten if they do.

property dumping

The level of data dumping that will occur during the optimisation

• NONE : No processing data dumped (Default)

• SUMMARY : A summary at each iteration will be recorded

• FULL : All logs will be generated and dumped

• CUSTOM : Some customised level of dumping

When first set to CUSTOM this is equivalent to SUMMARY. It is then up to the user to specify which
logs are dumped

fid_err_func_wrapper(self, *args)
Get the fidelity error achieved using the ctrl amplitudes passed in as the first argument.

This is called by generic optimisation algorithm as the func to the minimised. The argument is the
current variable values, i.e. control amplitudes, passed as a flat array. Hence these are reshaped as
[nTimeslots, n_ctrls] and then used to update the stored ctrl values (if they have changed)

The error is checked against the target, and the optimisation is terminated if the target has been
achieved.

fid_err_grad_wrapper(self, *args)
Get the gradient of the fidelity error with respect to all of the variables, i.e. the ctrl amplidutes in each
timeslot

This is called by generic optimisation algorithm as the gradients of func to the minimised wrt the
variables. The argument is the current variable values, i.e. control amplitudes, passed as a flat array.
Hence these are reshaped as [nTimeslots, n_ctrls] and then used to update the stored ctrl values (if they
have changed)

Although the optimisation algorithms have a check within them for function convergence, i.e. local
minima, the sum of the squares of the normalised gradient is checked explicitly, and the optimisation
is terminated if this is below the min_gradient_norm condition

init_optim(self, term_conds)
Check optimiser attribute status and passed parameters before running the optimisation. This is called
by run_optimization, but could called independently to check the configuration.

iter_step_callback_func(self, *args)
Check the elapsed wall time for the optimisation run so far. Terminate if this has exceeded the maxi-
mum allowed time

5.1. Classes 223



QuTiP: Quantum Toolbox in Python, Release 4.5.0

run_optimization(self, term_conds=None)
This default function optimisation method is a wrapper to the scipy.optimize.minimize function.

It will attempt to minimise the fidelity error with respect to some parameters, which are determined by
_get_optim_var_vals (see below)

The optimisation end when one of the passed termination conditions has been met, e.g. target achieved,
wall time, or function call or iteration count exceeded. Note these conditions include gradient mini-
mum met (local minima) for methods that use a gradient.

The function minimisation method is taken from the optim_method attribute. Note that not all of these
methods have been tested. Note that some of these use a gradient and some do not. See the scipy
documentation for details. Options specific to the method can be passed setting the method_params
attribute.

If the parameter term_conds=None, then the termination_conditions attribute must already be set. It
will be overwritten if the parameter is not None

The result is returned in an OptimResult object, which includes the final fidelity, time evolution, reason
for termination etc

class OptimizerBFGS(config, dyn, params=None)
Implements the run_optimization method using the BFGS algorithm

run_optimization(self, term_conds=None)
Optimise the control pulse amplitudes to minimise the fidelity error using the BFGS (Broy-
den–Fletcher–Goldfarb–Shanno) algorithm The optimisation end when one of the passed termination
conditions has been met, e.g. target achieved, gradient minimum met (local minima), wall time /
iteration count exceeded.

Essentially this is wrapper to the: scipy.optimize.fmin_bfgs function

If the parameter term_conds=None, then the termination_conditions attribute must already be set. It
will be overwritten if the parameter is not None

The result is returned in an OptimResult object, which includes the final fidelity, time evolution, reason
for termination etc

class OptimizerLBFGSB(config, dyn, params=None)
Implements the run_optimization method using the L-BFGS-B algorithm

Attributes

max_metric_corr [integer] The maximum number of variable metric corrections used to
define the limited memory matrix. That is the number of previous gradient values that
are used to approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documenta-
tion for description of m argument

init_optim(self, term_conds)
Check optimiser attribute status and passed parameters before running the optimisation. This is called
by run_optimization, but could called independently to check the configuration.

run_optimization(self, term_conds=None)
Optimise the control pulse amplitudes to minimise the fidelity error using the L-BFGS-B algo-
rithm, which is the constrained (bounded amplitude values), limited memory, version of the Broy-
den–Fletcher–Goldfarb–Shanno algorithm.

The optimisation end when one of the passed termination conditions has been met, e.g. target achieved,
gradient minimum met (local minima), wall time / iteration count exceeded.

Essentially this is wrapper to the: scipy.optimize.fmin_l_bfgs_b function This in turn is a warpper for
well established implementation of the L-BFGS-B algorithm written in Fortran, which is therefore
very fast. See SciPy documentation for credit and details on this function.

If the parameter term_conds=None, then the termination_conditions attribute must already be set. It
will be overwritten if the parameter is not None
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The result is returned in an OptimResult object, which includes the final fidelity, time evolution, reason
for termination etc

class OptimizerCrab(config, dyn, params=None)
Optimises the pulse using the CRAB algorithm [1]. It uses the scipy.optimize.minimize function with the
method specified by the optim_method attribute. See Optimizer.run_optimization for details It minimises
the fidelity error function with respect to the CRAB basis function coefficients.

AJGP ToDo: Add citation here

init_optim(self, term_conds)
Check optimiser attribute status and passed parameters before running the optimisation. This is called
by run_optimization, but could called independently to check the configuration.

class OptimizerCrabFmin(config, dyn, params=None)
Optimises the pulse using the CRAB algorithm [1, 2]. It uses the scipy.optimize.fmin function which is
effectively a wrapper for the Nelder-mead method. It minimises the fidelity error function with respect to
the CRAB basis function coefficients. This is the default Optimizer for CRAB.

Notes

[1] P. Doria, T. Calarco & S. Montangero. Phys. Rev. Lett. 106, 190501 (2011).

[2] T. Caneva, T. Calarco, & S. Montangero. Phys. Rev. A 84, 022326 (2011).

run_optimization(self, term_conds=None)
This function optimisation method is a wrapper to the scipy.optimize.fmin function.

It will attempt to minimise the fidelity error with respect to some parameters, which are determined by
_get_optim_var_vals which in the case of CRAB are the basis function coefficients

The optimisation end when one of the passed termination conditions has been met, e.g. target achieved,
wall time, or function call or iteration count exceeded. Specifically to the fmin method, the optimisa-
tion will stop when change parameter values is less than xtol or the change in function value is below
ftol.

If the parameter term_conds=None, then the termination_conditions attribute must already be set. It
will be overwritten if the parameter is not None

The result is returned in an OptimResult object, which includes the final fidelity, time evolution, reason
for termination etc

class OptimIterSummary
A summary of the most recent iteration of the pulse optimisation

Attributes

iter_num [int] Iteration number of the pulse optimisation

fid_func_call_num [int] Fidelity function call number of the pulse optimisation

grad_func_call_num [int] Gradient function call number of the pulse optimisation

fid_err [float] Fidelity error

grad_norm [float] fidelity gradient (wrt the control parameters) vector norm that is the
magnitude of the gradient

wall_time [float] Time spent computing the pulse optimisation so far (in seconds of elapsed
time)

class TerminationConditions
Base class for all termination conditions Used to determine when to stop the optimisation algorithm Note
different subclasses should be used to match the type of optimisation being used

Attributes
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fid_err_targ [float] Target fidelity error

fid_goal [float] goal fidelity, e.g. 1 - self.fid_err_targ It its typical to set this for unitary
systems

max_wall_time [float] # maximum time for optimisation (seconds)

min_gradient_norm [float] Minimum normalised gradient after which optimisation will
terminate

max_iterations [integer] Maximum iterations of the optimisation algorithm

max_fid_func_calls [integer] Maximum number of calls to the fidelity function during the
optimisation algorithm

accuracy_factor [float] Determines the accuracy of the result. Typical values for accu-
racy_factor are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
high accuracy scipy.optimize.fmin_l_bfgs_b factr argument. Only set for specific meth-
ods (fmin_l_bfgs_b) that uses this Otherwise the same thing is passed as method_option
ftol (although the scale is different) Hence it is not defined here, but may be set by the
user

class OptimResult
Attributes give the result of the pulse optimisation attempt

Attributes

termination_reason [string] Description of the reason for terminating the optimisation

fidelity [float] final (normalised) fidelity that was achieved

initial_fid_err [float] fidelity error before optimisation starting

fid_err [float] final fidelity error that was achieved

goal_achieved [boolean] True is the fidely error achieved was below the target

grad_norm_final [float] Final value of the sum of the squares of the (normalised) fidelity
error gradients

grad_norm_min_reached [float] True if the optimisation terminated due to the minimum
value of the gradient being reached

num_iter [integer] Number of iterations of the optimisation algorithm completed

max_iter_exceeded [boolean] True if the iteration limit was reached

max_fid_func_exceeded [boolean] True if the fidelity function call limit was reached

wall_time [float] time elapsed during the optimisation

wall_time_limit_exceeded [boolean] True if the wall time limit was reached

time [array[num_tslots+1] of float] Time are the start of each timeslot with the final value
being the total evolution time

initial_amps [array[num_tslots, n_ctrls]] The amplitudes at the start of the optimisation

final_amps [array[num_tslots, n_ctrls]] The amplitudes at the end of the optimisation

evo_full_final [Qobj] The evolution operator from t=0 to t=T based on the final amps

evo_full_initial [Qobj] The evolution operator from t=0 to t=T based on the initial amps

stats [Stats] Object contaning the stats for the run (if any collected)

optimizer [Optimizer] Instance of the Optimizer used to generate the result

class Dynamics(optimconfig, params=None)
This is a base class only. See subclass descriptions and choose an appropriate one for the application.

Note that initialize_controls must be called before most of the methods can be used. init_timeslots can be
called sometimes earlier in order to access timeslot related attributes
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This acts as a container for the operators that are used to calculate time evolution of the system under study.
That is the dynamics generators (Hamiltonians, Lindbladians etc), the propagators from one timeslot to the
next, and the evolution operators. Due to the large number of matrix additions and multiplications, for small
systems at least, the optimisation performance is much better using ndarrays to represent these operators.
However

Attributes

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

params: Dictionary The key value pairs are the attribute name and value Note: attributes
are created if they do not exist already, and are overwritten if they do.

stats [Stats] Attributes of which give performance stats for the optimisation set to None
to reduce overhead of calculating stats. Note it is (usually) shared with the Optimizer
object

tslot_computer [TimeslotComputer (subclass instance)] Used to manage when the timeslot
dynamics generators, propagators, gradients etc are updated

prop_computer [PropagatorComputer (subclass instance)] Used to compute the propaga-
tors and their gradients

fid_computer [FidelityComputer (subclass instance)] Used to computer the fidelity error
and the fidelity error gradient.

memory_optimization [int] Level of memory optimisation. Setting to 0 (default) means
that execution speed is prioritized over memory. Setting to 1 means that some memory
prioritisation steps will be taken, for instance using Qobj (and hence sparse arrays) as
the the internal operator data type, and not caching some operators Potentially further
memory saving maybe made with memory_optimization > 1. The options are processed
in _set_memory_optimizations, see this for more information. Individual memory sav-
ing options can be switched by settting them directly (see below)

oper_dtype [type] Data type for internal dynamics generators, propagators and time evolu-
tion operators. This can be ndarray or Qobj, or (in theory) any other representaion that
supports typical matrix methods (e.g. dot) ndarray performs best for smaller quan-
tum systems. Qobj may perform better for larger systems, and will also perform
better when (custom) fidelity measures use Qobj methods such as partial trace. See
_choose_oper_dtype for how this is chosen when not specified

cache_phased_dyn_gen [bool] If True then the dynamics generators will be saved with
and without the propagation prefactor (if there is one) Defaults to True when mem-
ory_optimization=0, otherwise False

cache_prop_grad [bool] If the True then the propagator gradients (for exact gradients)
will be computed when the propagator are computed and cache until the are used by
the fidelity computer. If False then the fidelity computer will calculate them as needed.
Defaults to True when memory_optimization=0, otherwise False

cache_dyn_gen_eigenvectors_adj: bool If True then DynamicsUnitary will cached
the adjoint of the Hamiltion eignvector matrix Defaults to True when mem-
ory_optimization=0, otherwise False

sparse_eigen_decomp: bool If True then DynamicsUnitary will use the sparse eigenvalue
decomposition. Defaults to True when memory_optimization<=1, otherwise False

num_tslots [integer] Number of timeslots (aka timeslices)

num_ctrls [integer] calculate the of controls from the length of the control list
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evo_time [float] Total time for the evolution

tau [array[num_tslots] of float] Duration of each timeslot Note that if this is set before
initialize_controls is called then num_tslots and evo_time are calculated from tau, oth-
erwise tau is generated from num_tslots and evo_time, that is equal size time slices

time [array[num_tslots+1] of float] Cumulative time for the evolution, that is the time at
the start of each time slice

drift_dyn_gen [Qobj or list of Qobj] Drift or system dynamics generator (Hamiltonian)
Matrix defining the underlying dynamics of the system Can also be a list of Qobj (length
num_tslots) for time varying drift dynamics

ctrl_dyn_gen [List of Qobj] Control dynamics generator (Hamiltonians) List of matrices
defining the control dynamics

initial [Qobj] Starting state / gate The matrix giving the initial state / gate, i.e. at time 0
Typically the identity for gate evolution

target [Qobj] Target state / gate: The matrix giving the desired state / gate for the evolution

ctrl_amps [array[num_tslots, num_ctrls] of float] Control amplitudes The amplitude (scale
factor) for each control in each timeslot

initial_ctrl_scaling [float] Scale factor applied to be applied the control amplitudes when
they are initialised This is used by the PulseGens rather than in any fucntions in this
class

initial_ctrl_offset [float] Linear offset applied to be applied the control amplitudes when
they are initialised This is used by the PulseGens rather than in any fucntions in this
class

dyn_gen [List of Qobj] List of combined dynamics generators (Qobj) for each timeslot

prop [list of Qobj] List of propagators (Qobj) for each timeslot

prop_grad [array[num_tslots, num_ctrls] of Qobj] Array of propagator gradients (Qobj)
for each timeslot, control

fwd_evo [List of Qobj] List of evolution operators (Qobj) from the initial to the given

onwd_evo [List of Qobj] List of evolution operators (Qobj) from the initial to the given

onto_evo [List of Qobj] List of evolution operators (Qobj) from the initial to the given

evo_current [Boolean] Used to flag that the dynamics used to calculate the evolution oper-
ators is current. It is set to False when the amplitudes change

fact_mat_round_prec [float] Rounding precision used when calculating the factor matrix
to determine if two eigenvalues are equivalent Only used when the PropagatorComputer
uses diagonalisation

def_amps_fname [string] Default name for the output used when save_amps is called

unitarity_check_level [int] If > 0 then unitarity of the system evolution is checked at at
evolution recomputation. level 1 checks all propagators level 2 checks eigen basis as
well Default is 0

unitarity_tol : Tolerance used in checking if operator is unitary Default is 1e-10

dump [dump.DynamicsDump] Store of historical calculation data. Set to None (Default)
for no storing of historical data Use dumping property to set level of data dumping

dumping [string] The level of data dumping that will occur during the time evolution
calculation.

dump_to_file [bool] If set True then data will be dumped to file during the calculations
dumping will be set to SUMMARY during init_evo if dump_to_file is True and dumping
not set. Default is False
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dump_dir [string] Basically a link to dump.dump_dir. Exists so that it can be set through
dyn_params. If dump is None then will return None or will set dumping to SUMMARY
when setting a path

apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value Note: attributes are created if they do not exist already, and are overwritten if they do.

combine_dyn_gen(self, k)
Computes the dynamics generator for a given timeslot The is the combined Hamiltion for unitary
systems

compute_evolution(self)
Recalculate the time evolution operators Dynamics generators (e.g. Hamiltonian) and prop (propaga-
tors) are calculated as necessary Actual work is completed by the recompute_evolution method of the
timeslot computer

property dumping
The level of data dumping that will occur during the time evolution calculation.

• NONE : No processing data dumped (Default)

• SUMMARY : A summary of each time evolution will be recorded

• FULL : All operators used or created in the calculation dumped

• CUSTOM : Some customised level of dumping

When first set to CUSTOM this is equivalent to SUMMARY. It is then up to the user to specify which
operators are dumped WARNING: FULL could consume a lot of memory!

property dyn_gen
List of combined dynamics generators (Qobj) for each timeslot

property dyn_gen_phase
Some op that is applied to the dyn_gen before expontiating to get the propagator. See
phase_application for how this is applied

flag_system_changed(self)
Flag evolution, fidelity and gradients as needing recalculation

property full_evo
Full evolution - time evolution at final time slot

property fwd_evo
List of evolution operators (Qobj) from the initial to the given timeslot

get_ctrl_dyn_gen(self, j)
Get the dynamics generator for the control Not implemented in the base class. Choose a subclass

get_drift_dim(self)
Returns the size of the matrix that defines the drift dynamics that is assuming the drift is NxN, then
this returns N

get_dyn_gen(self, k)
Get the combined dynamics generator for the timeslot Not implemented in the base class. Choose a
subclass

get_num_ctrls(self)
calculate the of controls from the length of the control list sets the num_ctrls property, which can be
used alternatively subsequently

init_timeslots(self)
Generate the timeslot duration array ‘tau’ based on the evo_time and num_tslots attributes, unless the
tau attribute is already set in which case this step in ignored Generate the cumulative time array ‘time’
based on the tau values
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initialize_controls(self, amps, init_tslots=True)
Set the initial control amplitudes and time slices Note this must be called after the configuration is
complete before any dynamics can be calculated

property num_ctrls
calculate the of controls from the length of the control list sets the num_ctrls property, which can be
used alternatively subsequently

property onto_evo
List of evolution operators (Qobj) from the initial to the given timeslot

property onwd_evo
List of evolution operators (Qobj) from the initial to the given timeslot

property phase_application
scalar(string), default=’preop’ Determines how the phase is applied to the dynamics generators

• ‘preop’ : P = expm(phase*dyn_gen)

• ‘postop’ : P = expm(dyn_gen*phase)

• ‘custom’ : Customised phase application

The ‘custom’ option assumes that the _apply_phase method has been set to a custom function

Type phase_application

property prop
List of propagators (Qobj) for each timeslot

property prop_grad
Array of propagator gradients (Qobj) for each timeslot, control

refresh_drift_attribs(self)
Reset the dyn_shape, dyn_dims and time_depend_drift attribs

save_amps(self, file_name=None, times=None, amps=None, verbose=False)
Save a file with the current control amplitudes in each timeslot The first column in the file will be the
start time of the slot

Parameters

file_name [string] Name of the file If None given the def_amps_fname attribuite will be
used

times [List type (or string)] List / array of the start times for each slot If None given this
will be retrieved through get_amp_times() If ‘exclude’ then times will not be saved in
the file, just the amplitudes

amps [Array[num_tslots, num_ctrls]] Amplitudes to be saved If None given the
ctrl_amps attribute will be used

verbose [Boolean] If True then an info message will be logged

unitarity_check(self)
Checks whether all propagators are unitary

update_ctrl_amps(self, new_amps)
Determine if any amplitudes have changed. If so, then mark the timeslots as needing recalculation The
actual work is completed by the compare_amps method of the timeslot computer

class DynamicsGenMat(optimconfig, params=None)
This sub class can be used for any system where no additional operator is applied to the dynamics generator
before calculating the propagator, e.g. classical dynamics, Lindbladian

class DynamicsUnitary(optimconfig, params=None)
This is the subclass to use for systems with dynamics described by unitary matrices. E.g. closed systems
with Hermitian Hamiltonians Note a matrix diagonalisation is used to compute the exponent The eigen
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decomposition is also used to calculate the propagator gradient. The method is taken from DYNAMO (see
file header)

Attributes

drift_ham [Qobj] This is the drift Hamiltonian for unitary dynamics It is mapped to
drift_dyn_gen during initialize_controls

ctrl_ham [List of Qobj] These are the control Hamiltonians for unitary dynamics It is
mapped to ctrl_dyn_gen during initialize_controls

H [List of Qobj] The combined drift and control Hamiltonians for each timeslot These
are the dynamics generators for unitary dynamics. It is mapped to dyn_gen during
initialize_controls

check_unitarity(self)
Checks whether all propagators are unitary For propagators found not to be unitary, the potential
underlying causes are investigated.

initialize_controls(self, amplitudes, init_tslots=True)
Set the initial control amplitudes and time slices Note this must be called after the configuration is
complete before any dynamics can be calculated

property num_ctrls
calculate the of controls from the length of the control list sets the num_ctrls property, which can be
used alternatively subsequently

class DynamicsSymplectic(optimconfig, params=None)
Symplectic systems This is the subclass to use for systems where the dynamics is described by symplectic
matrices, e.g. coupled oscillators, quantum optics

Attributes

omega [array[drift_dyn_gen.shape]] matrix used in the calculation of propagators (time
evolution) with symplectic systems.

property dyn_gen_phase
The phasing operator for the symplectic group generators usually refered to as Omega By default this is
applied as ‘postop’ dyn_gen*-Omega If phase_application is ‘preop’ it is applied as Omega*dyn_gen

class PropagatorComputer(dynamics, params=None)
Base for all Propagator Computer classes that are used to calculate the propagators, and also the propagator
gradient when exact gradient methods are used Note: they must be instantiated with a Dynamics object,
that is the container for the data that the functions operate on This base class cannot be used directly. See
subclass descriptions and choose the appropriate one for the application

Attributes

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip_utils.logging, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

grad_exact [boolean] indicates whether the computer class instance is capable of com-
puting propagator gradients. It is used to determine whether to create the Dynamics
prop_grad array

apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value Note: attributes are created if they do not exist already, and are overwritten if they do.

reset(self)
reset any configuration data
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class PropCompApproxGrad(dynamics, params=None)
This subclass can be used when the propagator is calculated simply by expm of the dynamics generator, i.e.
when gradients will be calculated using approximate methods.

reset(self)
reset any configuration data

class PropCompDiag(dynamics, params=None)
Coumputes the propagator exponentiation using diagonalisation of of the dynamics generator

reset(self)
reset any configuration data

class PropCompFrechet(dynamics, params=None)

Frechet method for calculating the propagator: exponentiating the combined dynamics generator

and the propagator gradient It should work for all systems, e.g. unitary, open, symplectic There are other
PropagatorComputer subclasses that may be more efficient

reset(self)
reset any configuration data

class FidelityComputer(dynamics, params=None)
Base class for all Fidelity Computers. This cannot be used directly. See subclass descriptions and choose
one appropriate for the application Note: this must be instantiated with a Dynamics object, that is the
container for the data that the methods operate on

Attributes

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

dimensional_norm [float] Normalisation constant

fid_norm_func [function] Used to normalise the fidelity See SU and PSU options for the
unitary dynamics

grad_norm_func [function] Used to normalise the fidelity gradient See SU and PSU op-
tions for the unitary dynamics

uses_onwd_evo [boolean] flag to specify whether the onwd_evo evolution operator (see
Dynamics) is used by the FidelityComputer

uses_onto_evo [boolean]

flag to specify whether the onto_evo evolution operator (see Dynamics) is used by
the FidelityComputer

fid_err [float] Last computed value of the fidelity error

fidelity [float] Last computed value of the normalised fidelity

fidelity_current [boolean] flag to specify whether the fidelity / fid_err are based on the
current amplitude values. Set False when amplitudes change

fid_err_grad: array[num_tslot, num_ctrls] of float Last computed values for the fidelity
error gradients wrt the control in the timeslot

grad_norm [float] Last computed value for the norm of the fidelity error gradients (sqrt of
the sum of the squares)

fid_err_grad_current [boolean] flag to specify whether the fidelity / fid_err are based on
the current amplitude values. Set False when amplitudes change
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apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value Note: attributes are created if they do not exist already, and are overwritten if they do.

clear(self)
clear any temporarily held status data

flag_system_changed(self)
Flag fidelity and gradients as needing recalculation

get_fid_err(self)
returns the absolute distance from the maximum achievable fidelity

get_fid_err_gradient(self)
Returns the normalised gradient of the fidelity error in a (nTimeslots x n_ctrls) array wrt the timeslot
control amplitude

init_comp(self)
initialises the computer based on the configuration of the Dynamics

reset(self)
reset any configuration data and clear any temporarily held status data

class FidCompUnitary(dynamics, params=None)
Computes fidelity error and gradient assuming unitary dynamics, e.g. closed qubit systems Note fidelity
and gradient calculations were taken from DYNAMO (see file header)

Attributes

phase_option [string]

determines how global phase is treated in fidelity calculations: PSU - global phase
ignored SU - global phase included

fidelity_prenorm [complex] Last computed value of the fidelity before it is normalised It
is stored to use in the gradient normalisation calculation

fidelity_prenorm_current [boolean] flag to specify whether fidelity_prenorm are based on
the current amplitude values. Set False when amplitudes change

clear(self)
clear any temporarily held status data

compute_fid_grad(self)
Calculates exact gradient of function wrt to each timeslot control amplitudes. Note these gradients are
not normalised These are returned as a (nTimeslots x n_ctrls) array

flag_system_changed(self)
Flag fidelity and gradients as needing recalculation

get_fid_err(self)
Gets the absolute error in the fidelity

get_fid_err_gradient(self)
Returns the normalised gradient of the fidelity error in a (nTimeslots x n_ctrls) array The gradients are
cached in case they are requested mutliple times between control updates (although this is not typically
found to happen)

get_fidelity(self)
Gets the appropriately normalised fidelity value The normalisation is determined by the fid_norm_func
pointer which should be set in the config

get_fidelity_prenorm(self)
Gets the current fidelity value prior to normalisation Note the gradient function uses this value The
value is cached, because it is used in the gradient calculation
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init_comp(self)
Check configuration and initialise the normalisation

init_normalization(self)
Calc norm of <Ufinal | Ufinal> to scale subsequent norms When considering unitary time evolution
operators, this basically results in calculating the trace of the identity matrix and is hence equal to the
size of the target matrix There may be situations where this is not the case, and hence it is not assumed
to be so. The normalisation function called should be set to either the PSU - global phase ignored SU
- global phase respected

normalize_PSU(self, A)

normalize_SU(self, A)

normalize_gradient_PSU(self, grad)
Normalise the gradient matrix passed as grad This PSU version is independent of global phase

normalize_gradient_SU(self, grad)
Normalise the gradient matrix passed as grad This SU version respects global phase

reset(self)
reset any configuration data and clear any temporarily held status data

set_phase_option(self, phase_option=None)
Deprecated - use phase_option Phase options are SU - global phase important PSU - global phase is
not important

class FidCompTraceDiff(dynamics, params=None)
Computes fidelity error and gradient for general system dynamics by calculating the the fidelity error as the
trace of the overlap of the difference between the target and evolution resulting from the pulses with the
transpose of the same. This should provide a distance measure for dynamics described by matrices Note the
gradient calculation is taken from: ‘Robust quantum gates for open systems via optimal control: Markovian
versus non-Markovian dynamics’ Frederik F Floether, Pierre de Fouquieres, and Sophie G Schirmer

Attributes

scale_factor [float] The fidelity error calculated is of some arbitary scale. This factor can
be used to scale the fidelity error such that it may represent some physical measure If
None is given then it is caculated as 1/2N, where N is the dimension of the drift, when
the Dynamics are initialised.

compute_fid_err_grad(self)
Calculate exact gradient of the fidelity error function wrt to each timeslot control amplitudes. Uses the
trace difference norm fidelity These are returned as a (nTimeslots x n_ctrls) array

get_fid_err(self)
Gets the absolute error in the fidelity

get_fid_err_gradient(self)
Returns the normalised gradient of the fidelity error in a (nTimeslots x n_ctrls) array The gradients are
cached in case they are requested mutliple times between control updates (although this is not typically
found to happen)

init_comp(self)
initialises the computer based on the configuration of the Dynamics Calculates the scale_factor is not
already set

reset(self)
reset any configuration data and clear any temporarily held status data

class FidCompTraceDiffApprox(dynamics, params=None)
As FidCompTraceDiff, except uses the finite difference method to compute approximate gradients

Attributes

epsilon [float] control amplitude offset to use when approximating the gradient wrt a times-
lot control amplitude
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compute_fid_err_grad(self)
Calculates gradient of function wrt to each timeslot control amplitudes. Note these gradients are not
normalised They are calulated These are returned as a (nTimeslots x n_ctrls) array

reset(self)
reset any configuration data and clear any temporarily held status data

class TimeslotComputer(dynamics, params=None)
Base class for all Timeslot Computers Note: this must be instantiated with a Dynamics object, that is the
container for the data that the methods operate on

Attributes

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

evo_comp_summary [EvoCompSummary] A summary of the most recent evolution com-
putation Used in the stats and dump Will be set to None if neither stats or dump are
set

apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value Note: attributes are created if they do not exist already, and are overwritten if they do.

dump_current(self)
Store a copy of the current time evolution

class TSlotCompUpdateAll(dynamics, params=None)
Timeslot Computer - Update All Updates all dynamics generators, propagators and evolutions when ctrl
amplitudes are updated

compare_amps(self, new_amps)
Determine if any amplitudes have changed. If so, then mark the timeslots as needing recalculation
Returns: True if amplitudes are the same, False if they have changed

get_timeslot_for_fidelity_calc(self)
Returns the timeslot index that will be used calculate current fidelity value. This (default) method
simply returns the last timeslot

recompute_evolution(self)
Recalculates the evolution operators. Dynamics generators (e.g. Hamiltonian) and prop (propagators)
are calculated as necessary

class PulseGen(dyn=None, params=None)
Pulse generator Base class for all Pulse generators The object can optionally be instantiated with a Dynamics
object, in which case the timeslots and amplitude scaling and offset are copied from that. Otherwise the
class can be used independently by setting: tau (array of timeslot durations) or num_tslots and pulse_time
for equally spaced timeslots

Attributes

num_tslots [integer] Number of timeslots, aka timeslices (copied from Dynamics if given)

pulse_time [float] total duration of the pulse (copied from Dynamics.evo_time if given)

scaling [float] linear scaling applied to the pulse (copied from Dynamics.initial_ctrl_scaling
if given)

offset [float] linear offset applied to the pulse (copied from Dynamics.initial_ctrl_offset if
given)

tau [array[num_tslots] of float] Duration of each timeslot (copied from Dynamics if given)
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lbound [float] Lower boundary for the pulse amplitudes Note that the scaling and offset
attributes can be used to fully bound the pulse for all generators except some of the
random ones This bound (if set) may result in additional shifting / scaling Default is
-Inf

ubound [float] Upper boundary for the pulse amplitudes Note that the scaling and offset
attributes can be used to fully bound the pulse for all generators except some of the
random ones This bound (if set) may result in additional shifting / scaling Default is Inf

periodic [boolean] True if the pulse generator produces periodic pulses

random [boolean] True if the pulse generator produces random pulses

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

apply_params(self, params=None)
Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter
This is called during the instantiation automatically. The key value pairs are the attribute name and
value

gen_pulse(self)
returns the pulse as an array of vales for each timeslot Must be implemented by subclass

init_pulse(self)
Initialise the pulse parameters

reset(self)
reset attributes to default values

class PulseGenRandom(dyn=None, params=None)
Generates random pulses as simply random values for each timeslot

gen_pulse(self)
Generate a pulse of random values between 1 and -1 Values are scaled using the scaling property and
shifted using the offset property Returns the pulse as an array of vales for each timeslot

reset(self)
reset attributes to default values

class PulseGenZero(dyn=None, params=None)
Generates a flat pulse

gen_pulse(self)
Generate a pulse with the same value in every timeslot. The value will be zero, unless the offset is not
zero, in which case it will be the offset

class PulseGenLinear(dyn=None, params=None)
Generates linear pulses

Attributes

gradient [float] Gradient of the line. Note this is calculated from the start_val and end_val
if these are given

start_val [float] Start point of the line. That is the starting amplitude

end_val [float] End point of the line. That is the amplitude at the start of the last timeslot

gen_pulse(self, gradient=None, start_val=None, end_val=None)
Generate a linear pulse using either the gradient and start value or using the end point to calulate the
gradient Note that the scaling and offset parameters are still applied, so unless these values are the
default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales
for each timeslot
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init_pulse(self, gradient=None, start_val=None, end_val=None)
Calculate the gradient if pulse is defined by start and end point values

reset(self)
reset attributes to default values

class PulseGenPeriodic(dyn=None, params=None)
Intermediate class for all periodic pulse generators All of the periodic pulses range from -1 to 1 All have a
start phase that can be set between 0 and 2pi

Attributes

num_waves [float] Number of complete waves (cycles) that occur in the pulse. wavelen
and freq calculated from this if it is given

wavelen [float] Wavelength of the pulse (assuming the speed is 1) freq is calculated from
this if it is given

freq [float] Frequency of the pulse

start_phase [float] Phase of the pulse signal when t=0

init_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None)
Calculate the wavelength, frequency, number of waves etc from the each other and the other parameters
If num_waves is given then the other parameters are worked from this Otherwise if the wavelength is
given then it is the driver Otherwise the frequency is used to calculate wavelength and num_waves

reset(self)
reset attributes to default values

class PulseGenSine(dyn=None, params=None)
Generates sine wave pulses

gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a sine wave pulse If no params are provided then the class object attributes are used. If they
are provided, then these will reinitialise the object attribs. returns the pulse as an array of vales for
each timeslot

class PulseGenSquare(dyn=None, params=None)
Generates square wave pulses

gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a square wave pulse If no parameters are pavided then the class object attributes are used. If
they are provided, then these will reinitialise the object attribs

class PulseGenSaw(dyn=None, params=None)
Generates saw tooth wave pulses

gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a saw tooth wave pulse If no parameters are pavided then the class object attributes are used.
If they are provided, then these will reinitialise the object attribs

class PulseGenTriangle(dyn=None, params=None)
Generates triangular wave pulses

gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a sine wave pulse If no parameters are pavided then the class object attributes are used. If
they are provided, then these will reinitialise the object attribs

class PulseGenGaussian(dyn=None, params=None)
Generates pulses with a Gaussian profile

gen_pulse(self, mean=None, variance=None)
Generate a pulse with Gaussian shape. The peak is centre around the mean and the variance determines
the breadth The scaling and offset attributes are applied as an amplitude and fixed linear offset. Note
that the maximum amplitude will be scaling + offset.
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reset(self)
reset attributes to default values

class PulseGenGaussianEdge(dyn=None, params=None)
Generate pulses with inverted Gaussian ramping in and out It’s intended use for a ramping modulation,
which is often required in experimental setups.

Attributes

decay_time [float] Determines the ramping rate. It is approximately the time required to
bring the pulse to full amplitude It is set to 1/10 of the pulse time by default

gen_pulse(self, decay_time=None)
Generate a pulse that starts and ends at zero and 1.0 in between then apply scaling and offset The
tailing in and out is an inverted Gaussian shape

reset(self)
reset attributes to default values

class PulseGenCrab(dyn=None, num_coeffs=None, params=None)
Base class for all CRAB pulse generators Note these are more involved in the optimisation process as they
are used to produce piecewise control amplitudes each time new optimisation parameters are tried

Attributes

num_coeffs [integer] Number of coefficients used for each basis function

num_basis_funcs [integer] Number of basis functions In this case set at 2 and should not
be changed

coeffs [float array[num_coeffs, num_basis_funcs]] The basis coefficient values

randomize_coeffs [bool] If True (default) then the coefficients are set to some random
values when initialised, otherwise they will all be equal to self.scaling

estimate_num_coeffs(self, dim)
Estimate the number coefficients based on the dimensionality of the system. :returns: num_coeffs –
estimated number of coefficients :rtype: int

get_optim_var_vals(self)
Get the parameter values to be optimised :returns: :rtype: list (or 1d array) of floats

init_coeffs(self, num_coeffs=None)
Generate the initial ceofficent values.

Parameters

num_coeffs [integer] Number of coefficients used for each basis function If given this
overides the default and sets the attribute of the same name.

init_pulse(self, num_coeffs=None)
Set the initial freq and coefficient values

reset(self)
reset attributes to default values

set_optim_var_vals(self, param_vals)
Set the values of the any of the pulse generation parameters based on new values from the optimisation
method Typically this will be the basis coefficients

class PulseGenCrabFourier(dyn=None, num_coeffs=None, params=None)
Generates a pulse using the Fourier basis functions, i.e. sin and cos

Attributes

freqs [float array[num_coeffs]] Frequencies for the basis functions

randomize_freqs [bool] If True (default) the some random offset is applied to the frequen-
cies

238 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

gen_pulse(self, coeffs=None)
Generate a pulse using the Fourier basis with the freqs and coeffs attributes.

Parameters

coeffs [float array[num_coeffs, num_basis_funcs]] The basis coefficient values If given
this overides the default and sets the attribute of the same name.

init_freqs(self)
Generate the frequencies These are the Fourier harmonics with a uniformly distributed random offset

init_pulse(self, num_coeffs=None)
Set the initial freq and coefficient values

reset(self)
reset attributes to default values

class Stats
Base class for all optimisation statistics Used for configurations where all timeslots are updated each itera-
tion e.g. exact gradients Note that all times are generated using timeit.default_timer() and are in seconds

Attributes

dyn_gen_name [string] Text used in some report functions. Makes sense to set it to ‘Hamil-
tonian’ when using unitary dynamics Default is simply ‘dynamics generator’

num_iter [integer] Number of iterations of the optimisation algorithm

wall_time_optim_start [float] Start time for the optimisation

wall_time_optim_end [float] End time for the optimisation

wall_time_optim [float] Time elasped during the optimisation

wall_time_dyn_gen_compute [float] Total wall (elasped) time computing combined dy-
namics generator (for example combining drift and control Hamiltonians)

wall_time_prop_compute [float] Total wall (elasped) time computing propagators, that is
the time evolution from one timeslot to the next Includes calculating the propagator
gradient for exact gradients

wall_time_fwd_prop_compute [float] Total wall (elasped) time computing combined for-
ward propagation, that is the time evolution from the start to a specific timeslot. Ex-
cludes calculating the propagators themselves

wall_time_onwd_prop_compute [float] Total wall (elasped) time computing combined
onward propagation, that is the time evolution from a specific timeslot to the end time.
Excludes calculating the propagators themselves

wall_time_gradient_compute [float] Total wall (elasped) time computing the fidelity error
gradient. Excludes calculating the propagator gradients (in exact gradient methods)

num_fidelity_func_calls [integer] Number of calls to fidelity function by the optimisation
algorithm

num_grad_func_calls [integer] Number of calls to gradient function by the optimisation
algorithm

num_tslot_recompute [integer] Number of time the timeslot evolution is recomputed (It is
only computed if any amplitudes changed since the last call)

num_fidelity_computes [integer] Number of time the fidelity is computed (It is only com-
puted if any amplitudes changed since the last call)

num_grad_computes [integer] Number of time the gradient is computed (It is only com-
puted if any amplitudes changed since the last call)

num_ctrl_amp_updates [integer] Number of times the control amplitudes are updated
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mean_num_ctrl_amp_updates_per_iter [float] Mean number of control amplitude up-
dates per iteration

num_timeslot_changes [integer] Number of times the amplitudes of a any control in a
timeslot changes

mean_num_timeslot_changes_per_update [float] Mean average number of timeslot am-
plitudes that are changed per update

num_ctrl_amp_changes [integer] Number of times individual control amplitudes that are
changed

mean_num_ctrl_amp_changes_per_update [float] Mean average number of control am-
plitudes that are changed per update

calculate(self)
Perform the calculations (e.g. averages) that are required on the stats Should be called before calling
report

report(self)
Print a report of the stats to the console

class Dump
A container for dump items. The lists for dump items is depends on the type Note: abstract class

Attributes

parent [some control object (Dynamics or Optimizer)] aka the host. Object that generates
the data that is dumped and is host to this dump object.

dump_dir [str] directory where files (if any) will be written out the path and be relative
or absolute use ~/ to specify user home directory Note: files are only written when
write_to_file is True of writeout is called explicitly Defaults to ~/.qtrl_dump

level [string] The level of data dumping that will occur - SUMMARY : A summary will
be recorded - FULL : All possible dumping - CUSTOM : Some customised level of
dumping When first set to CUSTOM this is equivalent to SUMMARY.

write_to_file [bool] When set True data and summaries (as configured) will be written
interactively to file during the processing Set during instantiation by the host based on
its dump_to_file attrib

dump_file_ext [str] Default file extension for any file names that are auto generated

fname_base [str] First part of any auto generated file names. This is usually overridden in
the subclass

dump_summary [bool] If True a summary is recorded each time a new item is added to
the the dump. Default is True

summary_sep [str] delimiter for the summary file. default is a space

data_sep [str] delimiter for the data files (arrays saved to file). default is a space

summary_file [str] File path for summary file. Automatically generated. Can be set specif-
ically

create_dump_dir(self)
Checks dump directory exists, creates it if not

property level

The level of data dumping that will occur

• SUMMARY : A summary will be recorded

• FULL : All possible dumping

• CUSTOM : Some customised level of dumping
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When first set to CUSTOM this is equivalent to SUMMARY. It is then up to the user to specify what
specifically is dumped

class OptimDump(optim, level='SUMMARY')
A container for dumps of optimisation data generated during the pulse optimisation.

Attributes

dump_summary [bool] When True summary items are appended to the iter_summary

iter_summary [list of optimizer.OptimIterSummary] Summary at each iteration

dump_fid_err [bool] When True values are appended to the fid_err_log

fid_err_log [list of float] Fidelity error at each call of the fid_err_func

dump_grad_norm [bool] When True values are appended to the fid_err_log

grad_norm_log [list of float] Gradient norm at each call of the grad_norm_log

dump_grad [bool] When True values are appended to the grad_log

grad_log [list of ndarray] Gradients at each call of the fid_grad_func

add_iter_summary(self)
add copy of current optimizer iteration summary

property dump_all
True if everything (ignoring the summary) is to be dumped

property dump_any
True if anything other than the summary is to be dumped

update_fid_err_log(self, fid_err)
add an entry to the fid_err log

update_grad_log(self, grad)
add an entry to the grad log

update_grad_norm_log(self, grad_norm)
add an entry to the grad_norm log

writeout(self, f=None)
write all the logs and the summary out to file(s)

Parameters

f [filename or filehandle] If specified then all summary and object data will go in one
file. If None is specified then type specific files will be generated in the dump_dir If a
filehandle is specified then it must be a byte mode file as numpy.savetxt is used, and
requires this.

class DynamicsDump(dynamics, level='SUMMARY')
A container for dumps of dynamics data. Mainly time evolution calculations

Attributes

dump_summary [bool] If True a summary is recorded

evo_summary [list of :class:`tslotcomp.EvoCompSummary’] Summary items are ap-
pended if dump_summary is True at each recomputation of the evolution.

dump_amps [bool] If True control amplitudes are dumped

dump_dyn_gen [bool] If True the dynamics generators (Hamiltonians) are dumped

dump_prop [bool] If True propagators are dumped

dump_prop_grad [bool] If True propagator gradients are dumped

dump_fwd_evo [bool] If True forward evolution operators are dumped

dump_onwd_evo [bool] If True onward evolution operators are dumped
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dump_onto_evo [bool] If True onto (or backward) evolution operators are dumped

evo_dumps [list of EvoCompDumpItem] A new dump item is appended at each recom-
putation of the evolution. That is if any of the calculation objects are to be dumped.

add_evo_comp_summary(self, dump_item_idx=None)
add copy of current evo comp summary

add_evo_dump(self)
Add dump of current time evolution generating objects

property dump_all
True if all of the calculation objects are to be dumped

property dump_any
True if any of the calculation objects are to be dumped

writeout(self, f=None)
write all the dump items and the summary out to file(s) :param f: If specified then all summary and
object data will go in one file.

If None is specified then type specific files will be generated in the dump_dir If a filehandle
is specified then it must be a byte mode file as numpy.savetxt is used, and requires this.

class DumpItem
An item in a dump list

class EvoCompDumpItem(dump)
A copy of all objects generated to calculate one time evolution Note the attributes are only set if the corre-
sponding DynamicsDump dump_ attribute is set.

writeout(self, f=None)
write all the objects out to files

Parameters

f [filename or filehandle] If specified then all object data will go in one file. If None is
specified then type specific files will be generated in the dump_dir If a filehandle is
specified then it must be a byte mode file as numpy.savetxt is used, and requires this.

class DumpSummaryItem
A summary of the most recent iteration Abstract class only

Attributes: idx : int

Index in the summary list in which this is stored

5.2 Functions

5.2.1 Manipulation and Creation of States and Operators

Quantum States

basis(dimensions, n=None, offset=None)
Generates the vector representation of a Fock state.

Parameters

dimensions [int or list of ints] Number of Fock states in Hilbert space. If a list, then the
resultant object will be a tensor product over spaces with those dimensions.
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n [int or list of ints, optional (default 0 for all dimensions)] Integer corresponding to de-
sired number state, defaults to 0 for all dimensions if omitted. The shape must match
dimensions, e.g. if dimensions is a list, then n must either be omitted or a list of
equal length.

offset [int or list of ints, optional (default 0 for all dimensions)] The lowest number state
that is included in the finite number state representation of the state in the relevant
dimension.

Returns

state [qutip.Qobj] Qobj representing the requested number state |n>.

Notes

A subtle incompatibility with the quantum optics toolbox: In QuTiP:

basis(N, 0) = ground state

but in the qotoolbox:

basis(N, 1) = ground state

Examples

>>> basis(5,2)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.+0.j]
[ 0.+0.j]
[ 1.+0.j]
[ 0.+0.j]
[ 0.+0.j]]
>>> basis([2,2,2], [0,1,0])
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =
[[0.]
[0.]
[1.]
[0.]
[0.]
[0.]
[0.]
[0.]]

bell_state(state='00')
Returns the Bell state:

|B00> = 1 / sqrt(2)*[|0>|0>+|1>|1>] |B01> = 1 / sqrt(2)*[|0>|0>-|1>|1>] |B10> = 1 /
sqrt(2)*[|0>|1>+|1>|0>] |B11> = 1 / sqrt(2)*[|0>|1>-|1>|0>]

Returns

Bell_state [qobj] Bell state

bra(seq, dim=2)
Produces a multiparticle bra state for a list or string, where each element stands for state of the respective
particle.

Parameters
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seq [str / list of ints or characters] Each element defines state of the respective particle.
(e.g. [1,1,0,1] or a string “1101”). For qubits it is also possible to use the following
conventions: - ‘g’/’e’ (ground and excited state) - ‘u’/’d’ (spin up and down) - ‘H’/’V’
(horizontal and vertical polarization) Note: for dimension > 9 you need to use a list.

dim [int (default: 2) / list of ints] Space dimension for each particle: int if there are the
same, list if they are different.

Returns

bra [qobj]

Examples

>>> bra("10")
Quantum object: dims = [[1, 1], [2, 2]], shape = [1, 4], type = bra
Qobj data =
[[ 0. 0. 1. 0.]]

>>> bra("Hue")
Quantum object: dims = [[1, 1, 1], [2, 2, 2]], shape = [1, 8], type = bra
Qobj data =
[[ 0. 1. 0. 0. 0. 0. 0. 0.]]

>>> bra("12", 3)
Quantum object: dims = [[1, 1], [3, 3]], shape = [1, 9], type = bra
Qobj data =
[[ 0. 0. 0. 0. 0. 1. 0. 0. 0.]]

>>> bra("31", [5, 2])
Quantum object: dims = [[1, 1], [5, 2]], shape = [1, 10], type = bra
Qobj data =
[[ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]]

coherent(N, alpha, offset=0, method='operator')
Generates a coherent state with eigenvalue alpha.

Constructed using displacement operator on vacuum state.

Parameters

N [int] Number of Fock states in Hilbert space.

alpha [float/complex] Eigenvalue of coherent state.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the state. Using a non-zero offset will make the default method ‘ana-
lytic’.

method [string {‘operator’, ‘analytic’}] Method for generating coherent state.

Returns

state [qobj] Qobj quantum object for coherent state
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Notes

Select method ‘operator’ (default) or ‘analytic’. With the ‘operator’ method, the coherent state is generated
by displacing the vacuum state using the displacement operator defined in the truncated Hilbert space of
size ‘N’. This method guarantees that the resulting state is normalized. With ‘analytic’ method the coherent
state is generated using the analytical formula for the coherent state coefficients in the Fock basis. This
method does not guarantee that the state is normalized if truncated to a small number of Fock states, but
would in that case give more accurate coefficients.

Examples

>>> coherent(5,0.25j)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 9.69233235e-01+0.j ]
[ 0.00000000e+00+0.24230831j]
[ -4.28344935e-02+0.j ]
[ 0.00000000e+00-0.00618204j]
[ 7.80904967e-04+0.j ]]

coherent_dm(N, alpha, offset=0, method='operator')
Density matrix representation of a coherent state.

Constructed via outer product of qutip.states.coherent

Parameters

N [int] Number of Fock states in Hilbert space.

alpha [float/complex] Eigenvalue for coherent state.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the state.

method [string {‘operator’, ‘analytic’}] Method for generating coherent density matrix.

Returns

dm [qobj] Density matrix representation of coherent state.

Notes

Select method ‘operator’ (default) or ‘analytic’. With the ‘operator’ method, the coherent density matrix is
generated by displacing the vacuum state using the displacement operator defined in the truncated Hilbert
space of size ‘N’. This method guarantees that the resulting density matrix is normalized. With ‘analytic’
method the coherent density matrix is generated using the analytical formula for the coherent state coeffi-
cients in the Fock basis. This method does not guarantee that the state is normalized if truncated to a small
number of Fock states, but would in that case give more accurate coefficients.

Examples

>>> coherent_dm(3,0.25j)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.93941695+0.j 0.00000000-0.23480733j -0.04216943+0.j ]
[ 0.00000000+0.23480733j 0.05869011+0.j 0.00000000-0.01054025j]
[-0.04216943+0.j 0.00000000+0.01054025j 0.00189294+0.j ]]

enr_state_dictionaries(dims, excitations)
Return the number of states, and lookup-dictionaries for translating a state tuple to a state index, and vice
versa, for a system with a given number of components and maximum number of excitations.
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Parameters

dims: list A list with the number of states in each sub-system.

excitations [integer] The maximum numbers of dimension

Returns

nstates, state2idx, idx2state: integer, dict, dict The number of states nstates, a dictionary
for looking up state indices from a state tuple, and a dictionary for looking up state state
tuples from state indices.

enr_thermal_dm(dims, excitations, n)
Generate the density operator for a thermal state in the excitation-number- restricted state space defined by
the dims and exciations arguments. See the documentation for enr_fock for a more detailed description of
these arguments. The temperature of each mode in dims is specified by the average number of excitatons n.

Parameters

dims [list] A list of the dimensions of each subsystem of a composite quantum system.

excitations [integer] The maximum number of excitations that are to be included in the
state space.

n [integer] The average number of exciations in the thermal state. n can be a float (which
then applies to each mode), or a list/array of the same length as dims, in which each
element corresponds specifies the temperature of the corresponding mode.

Returns

dm [Qobj] Thermal state density matrix.

enr_fock(dims, excitations, state)
Generate the Fock state representation in a excitation-number restricted state space. The dims argument
is a list of integers that define the number of quantums states of each component of a composite quantum
system, and the excitations specifies the maximum number of excitations for the basis states that are to be
included in the state space. The state argument is a tuple of integers that specifies the state (in the number
basis representation) for which to generate the Fock state representation.

Parameters

dims [list] A list of the dimensions of each subsystem of a composite quantum system.

excitations [integer] The maximum number of excitations that are to be included in the
state space.

state [list of integers] The state in the number basis representation.

Returns

ket [Qobj] A Qobj instance that represent a Fock state in the exication-number- restricted
state space defined by dims and exciations.

fock(dimensions, n=None, offset=None)
Bosonic Fock (number) state.

Same as qutip.states.basis.

Parameters

dimensions [int or list of ints] Number of Fock states in Hilbert space. If a list, then the
resultant object will be a tensor product over spaces with those dimensions.

n [int or list of ints, optional (default 0 for all dimensions)] Integer corresponding to de-
sired number state, defaults to 0 for all dimensions if omitted. The shape must match
dimensions, e.g. if dimensions is a list, then n must either be omitted or a list of
equal length.
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offset [int or list of ints, optional (default 0 for all dimensions)] The lowest number state
that is included in the finite number state representation of the state in the relevant
dimension.

Returns

Requested number state |𝑛⟩.

Examples

>>> fock(4,3)
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
Qobj data =
[[ 0.+0.j]
[ 0.+0.j]
[ 0.+0.j]
[ 1.+0.j]]

fock_dm(dimensions, n=None, offset=None)
Density matrix representation of a Fock state

Constructed via outer product of qutip.states.fock.

Parameters

dimensions [int or list of ints] Number of Fock states in Hilbert space. If a list, then the
resultant object will be a tensor product over spaces with those dimensions.

n [int or list of ints, optional (default 0 for all dimensions)] Integer corresponding to de-
sired number state, defaults to 0 for all dimensions if omitted. The shape must match
dimensions, e.g. if dimensions is a list, then n must either be omitted or a list of
equal length.

offset [int or list of ints, optional (default 0 for all dimensions)] The lowest number state
that is included in the finite number state representation of the state in the relevant
dimension.

Returns

dm [qobj] Density matrix representation of Fock state.

Examples

>>> fock_dm(3,1)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j]]

ghz_state(N=3)
Returns the N-qubit GHZ-state.

Parameters

N [int (default=3)] Number of qubits in state

Returns

G [qobj] N-qubit GHZ-state

maximally_mixed_dm(N)
Returns the maximally mixed density matrix for a Hilbert space of dimension N.

Parameters
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N [int] Number of basis states in Hilbert space.

Returns

dm [qobj] Thermal state density matrix.

ket(seq, dim=2)
Produces a multiparticle ket state for a list or string, where each element stands for state of the respective
particle.

Parameters

seq [str / list of ints or characters] Each element defines state of the respective particle.
(e.g. [1,1,0,1] or a string “1101”). For qubits it is also possible to use the following
conventions: - ‘g’/’e’ (ground and excited state) - ‘u’/’d’ (spin up and down) - ‘H’/’V’
(horizontal and vertical polarization) Note: for dimension > 9 you need to use a list.

dim [int (default: 2) / list of ints] Space dimension for each particle: int if there are the
same, list if they are different.

Returns

ket [qobj]

Examples

>>> ket("10")
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 1.]
[ 0.]]

>>> ket("Hue")
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[ 0.]
[ 1.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]

>>> ket("12", 3)
Quantum object: dims = [[3, 3], [1, 1]], shape = [9, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]
[ 0.]
[ 0.]]

>>> ket("31", [5, 2])
Quantum object: dims = [[5, 2], [1, 1]], shape = [10, 1], type = ket
Qobj data =

(continues on next page)
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(continued from previous page)

[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]
[ 0.]]

ket2dm(Q)
Takes input ket or bra vector and returns density matrix formed by outer product.

Parameters

Q [qobj] Ket or bra type quantum object.

Returns

dm [qobj] Density matrix formed by outer product of Q.

Examples

>>> x=basis(3,2)
>>> ket2dm(x)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j]]

phase_basis(N, m, phi0=0)
Basis vector for the mth phase of the Pegg-Barnett phase operator.

Parameters

N [int] Number of basis vectors in Hilbert space.

m [int] Integer corresponding to the mth discrete phase phi_m=phi0+2*pi*m/N

phi0 [float (default=0)] Reference phase angle.

Returns

state [qobj] Ket vector for mth Pegg-Barnett phase operator basis state.

Notes

The Pegg-Barnett basis states form a complete set over the truncated Hilbert space.

projection(N, n, m, offset=None)
The projection operator that projects state |𝑚 > on state |𝑛 >.

Parameters

N [int] Number of basis states in Hilbert space.

n, m [float] The number states in the projection.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the projector.

Returns
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oper [qobj] Requested projection operator.

qutrit_basis()
Basis states for a three level system (qutrit)

Returns

qstates [array] Array of qutrit basis vectors

singlet_state()
Returns the two particle singlet-state:

|S>=1/sqrt(2)*[|0>|1>-|1>|0>]

that is identical to the fourth bell state.

Returns

Bell_state [qobj] |B11> Bell state

spin_state(j, m, type='ket')
Generates the spin state |j, m>, i.e. the eigenstate of the spin-j Sz operator with eigenvalue m.

Parameters

j [float] The spin of the state ().

m [int] Eigenvalue of the spin-j Sz operator.

type [string {‘ket’, ‘bra’, ‘dm’}] Type of state to generate.

Returns

state [qobj] Qobj quantum object for spin state

spin_coherent(j, theta, phi, type='ket')
Generate the coherent spin state |theta, phi>.

Parameters

j [float] The spin of the state.

theta [float] Angle from z axis.

phi [float] Angle from x axis.

type [string {‘ket’, ‘bra’, ‘dm’}] Type of state to generate.

Returns

state [qobj] Qobj quantum object for spin coherent state

state_number_enumerate(dims, excitations=None, state=None, idx=0)
An iterator that enumerate all the state number arrays (quantum numbers on the form [n1, n2, n3, . . . ]) for
a system with dimensions given by dims.

Example

>>> for state in state_number_enumerate([2,2]):
>>> print(state)
[ 0 0 ]
[ 0 1 ]
[ 1 0 ]
[ 1 1 ]

Parameters

dims [list or array] The quantum state dimensions array, as it would appear in a Qobj.

state [list] Current state in the iteration. Used internally.
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excitations [integer (None)] Restrict state space to states with excitation numbers below or
equal to this value.

idx [integer] Current index in the iteration. Used internally.

Returns

state_number [list] Successive state number arrays that can be used in loops and other
iterations, using standard state enumeration by definition.

state_number_index(dims, state)
Return the index of a quantum state corresponding to state, given a system with dimensions given by dims.

Example

>>> state_number_index([2, 2, 2], [1, 1, 0])
6

Parameters

dims [list or array] The quantum state dimensions array, as it would appear in a Qobj.

state [list] State number array.

Returns

idx [int] The index of the state given by state in standard enumeration ordering.

state_index_number(dims, index)
Return a quantum number representation given a state index, for a system of composite structure defined by
dims.

Example

>>> state_index_number([2, 2, 2], 6)
[1, 1, 0]

Parameters

dims [list or array] The quantum state dimensions array, as it would appear in a Qobj.

index [integer] The index of the state in standard enumeration ordering.

Returns

state [list] The state number array corresponding to index index in standard enumeration
ordering.

state_number_qobj(dims, state)
Return a Qobj representation of a quantum state specified by the state array state.
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Example

>>> state_number_qobj([2, 2, 2], [1, 0, 1])
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]
[ 0.]]

Parameters

dims [list or array] The quantum state dimensions array, as it would appear in a Qobj.

state [list] State number array.

Returns

state [qutip.Qobj.qobj] The state as a qutip.Qobj.qobj instance.

thermal_dm(N, n, method='operator')
Density matrix for a thermal state of n particles

Parameters

N [int] Number of basis states in Hilbert space.

n [float] Expectation value for number of particles in thermal state.

method [string {‘operator’, ‘analytic’}] string that sets the method used to generate the
thermal state probabilities

Returns

dm [qobj] Thermal state density matrix.

Notes

The ‘operator’ method (default) generates the thermal state using the truncated number operator num(N).
This is the method that should be used in computations. The ‘analytic’ method uses the analytic coeffi-
cients derived in an infinite Hilbert space. The analytic form is not necessarily normalized, if truncated too
aggressively.

Examples

>>> thermal_dm(5, 1)
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =
[[ 0.51612903 0. 0. 0. 0. ]
[ 0. 0.25806452 0. 0. 0. ]
[ 0. 0. 0.12903226 0. 0. ]
[ 0. 0. 0. 0.06451613 0. ]
[ 0. 0. 0. 0. 0.03225806]]

>>> thermal_dm(5, 1, 'analytic')
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =

(continues on next page)
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[[ 0.5 0. 0. 0. 0. ]
[ 0. 0.25 0. 0. 0. ]
[ 0. 0. 0.125 0. 0. ]
[ 0. 0. 0. 0.0625 0. ]
[ 0. 0. 0. 0. 0.03125]]

zero_ket(N, dims=None)
Creates the zero ket vector with shape Nx1 and dimensions dims.

Parameters

N [int] Hilbert space dimensionality

dims [list] Optional dimensions if ket corresponds to a composite Hilbert space.

Returns

zero_ket [qobj] Zero ket on given Hilbert space.

Quantum Operators

This module contains functions for generating Qobj representation of a variety of commonly occuring quantum
operators.

charge(Nmax, Nmin=None, frac=1)
Generate the diagonal charge operator over charge states from Nmin to Nmax.

Parameters

Nmax [int] Maximum charge state to consider.

Nmin [int (default = -Nmax)] Lowest charge state to consider.

frac [float (default = 1)] Specify fractional charge if needed.

Returns

C [Qobj] Charge operator over [Nmin,Nmax].

Notes

New in version 3.2.

commutator(A, B, kind='normal')
Return the commutator of kind kind (normal, anti) of the two operators A and B.

create(N, offset=0)
Creation (raising) operator.

Parameters

N [int] Dimension of Hilbert space.

Returns

oper [qobj] Qobj for raising operator.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.
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Examples

>>> create(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[ 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[ 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j 0.00000000+0.j]]

destroy(N, offset=0)
Destruction (lowering) operator.

Parameters

N [int] Dimension of Hilbert space.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper [qobj] Qobj for lowering operator.

Examples

>>> destroy(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.00000000+0.j 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j]
[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]]

displace(N, alpha, offset=0)
Single-mode displacement operator.

Parameters

N [int] Dimension of Hilbert space.

alpha [float/complex] Displacement amplitude.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper [qobj] Displacement operator.

Examples

>>> displace(4,0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j]
[ 0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j]
[ 0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j]
[ 0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]]

enr_destroy(dims, excitations)
Generate annilation operators for modes in a excitation-number-restricted state space. For example, consider
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a system consisting of 4 modes, each with 5 states. The total hilbert space size is 5**4 = 625. If we are only
interested in states that contain up to 2 excitations, we only need to include states such as

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) . . .

This function creates annihilation operators for the 4 modes that act within this state space:

a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2)

From this point onwards, the annihiltion operators a1, . . . , a4 can be used to setup a Hamiltonian, collapse
operators and expectation-value operators, etc., following the usual pattern.

Parameters

dims [list] A list of the dimensions of each subsystem of a composite quantum system.

excitations [integer] The maximum number of excitations that are to be included in the
state space.

Returns

a_ops [list of qobj] A list of annihilation operators for each mode in the composite quantum
system described by dims.

enr_identity(dims, excitations)
Generate the identity operator for the excitation-number restricted state space defined by the dims and
exciations arguments. See the docstring for enr_fock for a more detailed description of these arguments.

Parameters

dims [list] A list of the dimensions of each subsystem of a composite quantum system.

excitations [integer] The maximum number of excitations that are to be included in the
state space.

state [list of integers] The state in the number basis representation.

Returns

op [Qobj] A Qobj instance that represent the identity operator in the exication-number-
restricted state space defined by dims and exciations.

jmat(j, *args)
Higher-order spin operators:

Parameters

j [float] Spin of operator

args [str] Which operator to return ‘x’,’y’,’z’,’+’,’-‘. If no args given, then output is
[‘x’,’y’,’z’]

Returns

jmat [qobj / ndarray] qobj for requested spin operator(s).

Notes

If no ‘args’ input, then returns array of [‘x’,’y’,’z’] operators.
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Examples

>>> jmat(1)
[ Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0. 0.70710678 0. ]
[ 0.70710678 0. 0.70710678]
[ 0. 0.70710678 0. ]]
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.-0.70710678j 0.+0.j ]
[ 0.+0.70710678j 0.+0.j 0.-0.70710678j]
[ 0.+0.j 0.+0.70710678j 0.+0.j ]]
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 1. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. -1.]]]

num(N, offset=0)
Quantum object for number operator.

Parameters

N [int] The dimension of the Hilbert space.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper: qobj Qobj for number operator.

Examples

>>> num(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[0 0 0 0]
[0 1 0 0]
[0 0 2 0]
[0 0 0 3]]

qeye(dimensions)
Identity operator.

Parameters

dimensions [(int) or (list of int) or (list of list of int)] Dimension of Hilbert space. If pro-
vided as a list of ints, then the dimension is the product over this list, but the dims
property of the new Qobj are set to this list. This can produce either oper or super
depending on the passed dimensions.

Returns

oper [qobj] Identity operator Qobj.
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Examples

>>> qeye(3)
Quantum object: dims = [[3], [3]], shape = (3, 3), type = oper, isherm = True
Qobj data =
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
>>> qeye([2,2])
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
→˓True
Qobj data =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

identity(dims)
Identity operator. Alternative name to qeye.

Parameters

dimensions [(int) or (list of int) or (list of list of int)] Dimension of Hilbert space. If pro-
vided as a list of ints, then the dimension is the product over this list, but the dims
property of the new Qobj are set to this list. This can produce either oper or super
depending on the passed dimensions.

Returns

oper [qobj] Identity operator Qobj.

momentum(N, offset=0)
Momentum operator p=-1j/sqrt(2)*(a-a.dag())

Parameters

N [int] Number of Fock states in Hilbert space.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper [qobj] Momentum operator as Qobj.

phase(N, phi0=0)
Single-mode Pegg-Barnett phase operator.

Parameters

N [int] Number of basis states in Hilbert space.

phi0 [float] Reference phase.

Returns

oper [qobj] Phase operator with respect to reference phase.
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Notes

The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space.

position(N, offset=0)
Position operator x=1/sqrt(2)*(a+a.dag())

Parameters

N [int] Number of Fock states in Hilbert space.

offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper [qobj] Position operator as Qobj.

qdiags(diagonals, offsets, dims=None, shape=None)
Constructs an operator from an array of diagonals.

Parameters

diagonals [sequence of array_like] Array of elements to place along the selected diagonals.

offsets [sequence of ints]

Sequence for diagonals to be set:

• k=0 main diagonal

• k>0 kth upper diagonal

• k<0 kth lower diagonal

dims [list, optional] Dimensions for operator

shape [list, tuple, optional] Shape of operator. If omitted, a square operator large enough
to contain the diagonals is generated.

See also:

scipy.sparse.diags for usage information.

Notes

This function requires SciPy 0.11+.

Examples

>>> qdiags(sqrt(range(1, 4)), 1)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[ 0. 1. 0. 0. ]
[ 0. 0. 1.41421356 0. ]
[ 0. 0. 0. 1.73205081]
[ 0. 0. 0. 0. ]]

qutrit_ops()
Operators for a three level system (qutrit).

Returns

opers: array array of qutrit operators.

qzero(dimensions)
Zero operator.
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Parameters

dimensions [(int) or (list of int) or (list of list of int)] Dimension of Hilbert space. If pro-
vided as a list of ints, then the dimension is the product over this list, but the dims
property of the new Qobj are set to this list. This can produce either oper or super
depending on the passed dimensions.

Returns

qzero [qobj] Zero operator Qobj.

sigmam()
Annihilation operator for Pauli spins.

Examples

>>> sigmam()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 0.]
[ 1. 0.]]

sigmap()
Creation operator for Pauli spins.

Examples

>>> sigmap()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 1.]
[ 0. 0.]]

sigmax()
Pauli spin 1/2 sigma-x operator

Examples

>>> sigmax()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 1.]
[ 1. 0.]]

sigmay()
Pauli spin 1/2 sigma-y operator.

Examples

>>> sigmay()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.-1.j]
[ 0.+1.j 0.+0.j]]

sigmaz()
Pauli spin 1/2 sigma-z operator.
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Examples

>>> sigmaz()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]

spin_Jx(j)
Spin-j x operator

Parameters

j [float] Spin of operator

Returns

op [Qobj] qobj representation of the operator.

spin_Jy(j)
Spin-j y operator

Parameters

j [float] Spin of operator

Returns

op [Qobj] qobj representation of the operator.

spin_Jz(j)
Spin-j z operator

Parameters

j [float] Spin of operator

Returns

op [Qobj] qobj representation of the operator.

spin_Jm(j)
Spin-j annihilation operator

Parameters

j [float] Spin of operator

Returns

op [Qobj] qobj representation of the operator.

spin_Jp(j)
Spin-j creation operator

Parameters

j [float] Spin of operator

Returns

op [Qobj] qobj representation of the operator.

squeeze(N, z, offset=0)
Single-mode Squeezing operator.

Parameters

N [int] Dimension of hilbert space.

z [float/complex] Squeezing parameter.
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offset [int (default 0)] The lowest number state that is included in the finite number state
representation of the operator.

Returns

oper [qutip.qobj.Qobj] Squeezing operator.

Examples

>>> squeeze(4, 0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.98441565+0.j 0.00000000+0.j 0.17585742+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.95349007+0.j 0.00000000+0.j 0.30142443+0.j]
[-0.17585742+0.j 0.00000000+0.j 0.98441565+0.j 0.00000000+0.j]
[ 0.00000000+0.j -0.30142443+0.j 0.00000000+0.j 0.95349007+0.j]]

squeezing(a1, a2, z)
Generalized squeezing operator.

𝑆(𝑧) = exp

(︂
1

2

(︁
𝑧*𝑎1𝑎2 − 𝑧𝑎†1𝑎

†
2

)︁)︂
Parameters

a1 [qutip.qobj.Qobj] Operator 1.

a2 [qutip.qobj.Qobj] Operator 2.

z [float/complex] Squeezing parameter.

Returns

oper [qutip.qobj.Qobj] Squeezing operator.

tunneling(N, m=1)
Tunneling operator with elements of the form

∑︀
|𝑁 >< 𝑁 +𝑚| + |𝑁 +𝑚 >< 𝑁 |.

Parameters

N [int] Number of basis states in Hilbert space.

m [int (default = 1)] Number of excitations in tunneling event.

Returns

T [Qobj] Tunneling operator.

Notes

New in version 3.2.

Quantum Objects

Random Operators and States

This module is a collection of random state and operator generators. The sparsity of the ouput Qobj’s is controlled
by varing the density parameter.

rand_dm(N, density=0.75, pure=False, dims=None, seed=None)
Creates a random NxN density matrix.

Parameters
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N [int, ndarray, list] If int, then shape of output operator. If list/ndarray then eigenvalues of
generated density matrix.

density [float] Density between [0,1] of output density matrix.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns

oper [qobj] NxN density matrix quantum operator.

Notes

For small density matrices., choosing a low density will result in an error as no diagonal elements will be
generated such that 𝑇𝑟(𝜌) = 1.

rand_dm_ginibre(N=2, rank=None, dims=None, seed=None)
Returns a Ginibre random density operator of dimension dim and rank rank by using the algorithm of
[BCSZ08]. If rank is None, a full-rank (Hilbert-Schmidt ensemble) random density operator will be re-
turned.

Parameters

N [int] Dimension of the density operator to be returned.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

rank [int or None] Rank of the sampled density operator. If None, a full-rank density
operator is generated.

Returns

rho [Qobj] An N × N density operator sampled from the Ginibre or Hilbert-Schmidt distri-
bution.

rand_dm_hs(N=2, dims=None, seed=None)
Returns a Hilbert-Schmidt random density operator of dimension dim and rank rank by using the algo-
rithm of [BCSZ08].

Parameters

N [int] Dimension of the density operator to be returned.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns

rho [Qobj] A dim × dim density operator sampled from the Ginibre or Hilbert-Schmidt
distribution.

rand_herm(N, density=0.75, dims=None, pos_def=False, seed=None)
Creates a random NxN sparse Hermitian quantum object.

If ‘N’ is an integer, uses 𝐻 = 0.5 * (𝑋 +𝑋+) where 𝑋 is a randomly generated quantum operator with a
given density. Else uses complex Jacobi rotations when ‘N’ is given by an array.

Parameters

N [int, list/ndarray] If int, then shape of output operator. If list/ndarray then eigenvalues of
generated operator.

density [float] Density between [0,1] of output Hermitian operator.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].
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pos_def [bool (default=False)] Return a positive semi-definite matrix (by diagonal domi-
nance).

seed [int] seed for the random number generator

Returns

oper [qobj] NxN Hermitian quantum operator.

rand_ket(N=0, density=1, dims=None, seed=None)
Creates a random Nx1 sparse ket vector.

Parameters

N [int] Number of rows for output quantum operator. If None or 0, N is deduced from dims.

density [float] Density between [0,1] of output ket state.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[1]].

Returns

oper [qobj] Nx1 ket state quantum operator.

rand_ket_haar(N=2, dims=None, seed=None)
Returns a Haar random pure state of dimension dim by applying a Haar random unitary to a fixed pure
state.

Parameters

N [int] Dimension of the state vector to be returned. If None or 0, N is deduced from dims.

dims [list of ints, or None] Dimensions of the resultant quantum object. If None, [[N],[1]]
is used.

Returns

psi [Qobj] A random state vector drawn from the Haar measure.

rand_stochastic(N, density=0.75, kind='left', dims=None, seed=None)
Generates a random stochastic matrix.

Parameters

N [int] Dimension of matrix.

density [float] Density between [0,1] of output density matrix.

kind [str (Default = ‘left’)] Generate ‘left’ or ‘right’ stochastic matrix.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns

oper [qobj] Quantum operator form of stochastic matrix.

rand_unitary(N, density=0.75, dims=None, seed=None)
Creates a random NxN sparse unitary quantum object.

Uses exp(−𝑖𝐻) where H is a randomly generated Hermitian operator.

Parameters

N [int] Shape of output quantum operator.

density [float] Density between [0,1] of output Unitary operator.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[N],[N]].

Returns
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oper [qobj] NxN Unitary quantum operator.

rand_unitary_haar(N=2, dims=None, seed=None)
Returns a Haar random unitary matrix of dimension dim, using the algorithm of [Mez07].

Parameters

N [int] Dimension of the unitary to be returned.

dims [list of lists of int, or None] Dimensions of quantum object. Used for specifying
tensor structure. Default is dims=[[N],[N]].

Returns

U [Qobj] Unitary of dims [[dim], [dim]] drawn from the Haar measure.

rand_super(N=5, dims=None, seed=None)
Returns a randomly drawn superoperator acting on operators acting on N dimensions.

Parameters

N [int] Square root of the dimension of the superoperator to be returned.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[[N],[N]], [[N],[N]]].

rand_super_bcsz(N=2, enforce_tp=True, rank=None, dims=None, seed=None)
Returns a random superoperator drawn from the Bruzda et al ensemble for CPTP maps [BCSZ08]. Note
that due to finite numerical precision, for ranks less than full-rank, zero eigenvalues may become slightly
negative, such that the returned operator is not actually completely positive.

Parameters

N [int] Square root of the dimension of the superoperator to be returned.

enforce_tp [bool] If True, the trace-preserving condition of [BCSZ08] is enforced; other-
wise only complete positivity is enforced.

rank [int or None] Rank of the sampled superoperator. If None, a full-rank superoperator
is generated.

dims [list] Dimensions of quantum object. Used for specifying tensor structure. Default is
dims=[[[N],[N]], [[N],[N]]].

Returns

rho [Qobj] A superoperator acting on vectorized dim × dim density operators, sampled
from the BCSZ distribution.

Three-Level Atoms

This module provides functions that are useful for simulating the three level atom with QuTiP. A three level atom
(qutrit) has three states, which are linked by dipole transitions so that 1 <-> 2 <-> 3. Depending on there relative
energies they are in the ladder, lambda or vee configuration. The structure of the relevant operators is the same for
any of the three configurations:

Ladder: Lambda: Vee:
|two> |three>

-------|three> ------- -------
| / \ |one> /
| / \ ------- /
| / \ \ /

-------|two> / \ \ /
| / \ \ /
| / \ \ /
| / -------- \ /

(continues on next page)
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(continued from previous page)

-------|one> ------- |three> -------
|one> |two>

References

The naming of qutip operators follows the convention in [R0be8dcf25d86-1] .

Notes

Contributed by Markus Baden, Oct. 07, 2011

three_level_basis()
Basis states for a three level atom.

Returns

states [array] array of three level atom basis vectors.

three_level_ops()
Operators for a three level system (qutrit)

Returns

ops [array] array of three level operators.

Superoperators and Liouvillians

operator_to_vector(op)
Create a vector representation of a quantum operator given the matrix representation.

vector_to_operator(op)
Create a matrix representation given a quantum operator in vector form.

liouvillian(H, c_ops=[], data_only=False, chi=None)
Assembles the Liouvillian superoperator from a Hamiltonian and a list of collapse operators. Like liou-
villian, but with an experimental implementation which avoids creating extra Qobj instances, which can be
advantageous for large systems.

Parameters

H [Qobj or QobjEvo] System Hamiltonian.

c_ops [array_like of Qobj or QobjEvo] A list or array of collapse operators.

Returns

L [Qobj or QobjEvo] Liouvillian superoperator.

spost(A)
Superoperator formed from post-multiplication by operator A

Parameters

A [Qobj or QobjEvo] Quantum operator for post multiplication.

Returns

super [Qobj or QobjEvo] Superoperator formed from input qauntum object.

spre(A)
Superoperator formed from pre-multiplication by operator A.

Parameters

A [Qobj or QobjEvo] Quantum operator for pre-multiplication.
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Returns

super :Qobj or QobjEvo Superoperator formed from input quantum object.

sprepost(A, B)
Superoperator formed from pre-multiplication by operator A and post- multiplication of operator B.

Parameters

A [Qobj or QobjEvo] Quantum operator for pre-multiplication.

B [Qobj or QobjEvo] Quantum operator for post-multiplication.

Returns

super [Qobj or QobjEvo] Superoperator formed from input quantum objects.

lindblad_dissipator(a, b=None, data_only=False, chi=None)
Lindblad dissipator (generalized) for a single pair of collapse operators (a, b), or for a single collapse
operator (a) when b is not specified:

𝒟[𝑎, 𝑏]𝜌 = 𝑎𝜌𝑏† − 1

2
𝑎†𝑏𝜌− 1

2
𝜌𝑎†𝑏

Parameters

a [Qobj or QobjEvo] Left part of collapse operator.

b [Qobj or QobjEvo (optional)] Right part of collapse operator. If not specified, b defaults
to a.

Returns

D [qobj, QobjEvo] Lindblad dissipator superoperator.

Superoperator Representations

This module implements transformations between superoperator representations, including supermatrix, Kraus,
Choi and Chi (process) matrix formalisms.

super_to_choi(q_oper)
Takes a superoperator to a Choi matrix TODO: Sanitize input, incorporate as method on Qobj if
type==’super’

choi_to_super(q_oper)
Takes a Choi matrix to a superoperator TODO: Sanitize input, Abstract-ify application of channels to states

choi_to_kraus(q_oper, tol=1e-09)
Takes a Choi matrix and returns a list of Kraus operators. TODO: Create a new class structure for quantum
channels, perhaps as a strict sub-class of Qobj.

kraus_to_choi(kraus_list)
Takes a list of Kraus operators and returns the Choi matrix for the channel represented by the Kraus operators
in kraus_list

kraus_to_super(kraus_list)
Converts a list of Kraus operators and returns a super operator.

choi_to_chi(q_oper)
Converts a Choi matrix to a Chi matrix in the Pauli basis.

NOTE: this is only supported for qubits right now. Need to extend to Heisenberg-Weyl for other subsystem
dimensions.

chi_to_choi(q_oper)
Converts a Choi matrix to a Chi matrix in the Pauli basis.

NOTE: this is only supported for qubits right now. Need to extend to Heisenberg-Weyl for other subsystem
dimensions.
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to_choi(q_oper)
Converts a Qobj representing a quantum map to the Choi representation, such that the trace of the returned
operator is equal to the dimension of the system.

Parameters

q_oper [Qobj] Superoperator to be converted to Choi representation. If q_oper is
type="oper", then it is taken to act by conjugation, such that to_choi(A) ==
to_choi(sprepost(A, A.dag())).

Returns

choi [Qobj] A quantum object representing the same map as q_oper, such that choi.
superrep == "choi".

Raises

TypeError: if the given quantum object is not a map, or cannot be converted to Choi
representation.

to_chi(q_oper)
Converts a Qobj representing a quantum map to a representation as a chi (process) matrix in the Pauli basis,
such that the trace of the returned operator is equal to the dimension of the system.

Parameters

q_oper [Qobj] Superoperator to be converted to Chi representation. If q_oper is
type="oper", then it is taken to act by conjugation, such that to_chi(A) ==
to_chi(sprepost(A, A.dag())).

Returns

chi [Qobj] A quantum object representing the same map as q_oper, such that chi.
superrep == "chi".

Raises

TypeError: if the given quantum object is not a map, or cannot be converted to Chi
representation.

to_super(q_oper)
Converts a Qobj representing a quantum map to the supermatrix (Liouville) representation.

Parameters

q_oper [Qobj] Superoperator to be converted to supermatrix representation. If q_oper is
type="oper", then it is taken to act by conjugation, such that to_super(A) ==
sprepost(A, A.dag()).

Returns

superop [Qobj] A quantum object representing the same map as q_oper, such that
superop.superrep == "super".

Raises

TypeError If the given quantum object is not a map, or cannot be converted to supermatrix
representation.

to_kraus(q_oper, tol=1e-09)
Converts a Qobj representing a quantum map to a list of quantum objects, each representing an operator in
the Kraus decomposition of the given map.

Parameters

q_oper [Qobj] Superoperator to be converted to Kraus representation. If q_oper is
type="oper", then it is taken to act by conjugation, such that to_kraus(A) ==
to_kraus(sprepost(A, A.dag())) == [A].
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tol [Float] Optional threshold parameter for eigenvalues/Kraus ops to be discarded. The
default is to=1e-9.

Returns

kraus_ops [list of Qobj] A list of quantum objects, each representing a Kraus operator in
the decomposition of q_oper.

Raises

TypeError: if the given quantum object is not a map, or cannot be decomposed into
Kraus operators.

to_stinespring(q_oper)
Converts a Qobj representing a quantum map $Lambda$ to a pair of partial isometries $A$ and $B$ such
that $Lambda(X) = Tr_2(A X B^dagger)$ for all inputs $X$, where the partial trace is taken over a a new
index on the output dimensions of $A$ and $B$.

For completely positive inputs, $A$ will always equal $B$ up to precision errors.

Parameters

q_oper [Qobj] Superoperator to be converted to a Stinespring pair.

Returns

A, B [Qobj] Quantum objects representing each of the Stinespring matrices for the input
Qobj.

Operators and Superoperator Dimensions

Internal use module for manipulating dims specifications.

is_scalar(dims)
Returns True if a dims specification is effectively a scalar (has dimension 1).

flatten(l)
Flattens a list of lists to the first level.

Given a list containing a mix of scalars and lists, flattens down to a list of the scalars within the original list.

Examples

>>> print(flatten([[[0], 1], 2]))
[0, 1, 2]

deep_remove(l, *what)
Removes scalars from all levels of a nested list.

Given a list containing a mix of scalars and lists, returns a list of the same structure, but where one or more
scalars have been removed.

Examples

>>> print(deep_remove([[[[0, 1, 2]], [3, 4], [5], [6, 7]]], 0, 5))
[[[[1, 2]], [3, 4], [], [6, 7]]]

unflatten(l, idxs)
Unflattens a list by a given structure.

Given a list of scalars and a deep list of indices as produced by flatten, returns an “unflattened” form of the
list. This perfectly inverts flatten.
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Examples

>>> l = [[[10, 20, 30], [40, 50, 60]], [[70, 80, 90], [100, 110, 120]]]
>>> idxs = enumerate_flat(l)
>>> print(unflatten(flatten(l)), idxs) == l
True

collapse_dims_oper(dims)
Given the dimensions specifications for a ket-, bra- or oper-type Qobj, returns a dimensions specification
describing the same shape by collapsing all composite systems. For instance, the bra-type dimensions
specification [[2, 3], [1]] collapses to [[6], [1]].

Parameters

dims [list of lists of ints] Dimensions specifications to be collapsed.

Returns

collapsed_dims [list of lists of ints] Collapsed dimensions specification de-
scribing the same shape such that len(collapsed_dims[0]) ==
len(collapsed_dims[1]) == 1.

collapse_dims_super(dims)
Given the dimensions specifications for an operator-ket-, operator-bra- or super-type Qobj, returns a dimen-
sions specification describing the same shape by collapsing all composite systems. For instance, the super-
type dimensions specification [[[2, 3], [2, 3]], [[2, 3], [2, 3]]] collapses to [[[6],
[6]], [[6], [6]]].

Parameters

dims [list of lists of ints] Dimensions specifications to be collapsed.

Returns

collapsed_dims [list of lists of ints] Collapsed dimensions specification describing the
same shape such that len(collapsed_dims[i][j]) == 1 for i and j in
range(2).

enumerate_flat(l)
Labels the indices at which scalars occur in a flattened list.

Given a list containing a mix of scalars and lists, returns a list of the same structure, where each scalar has
been replaced by an index into the flattened list.

Examples

>>> print(enumerate_flat([[[10], [20, 30]], 40]))
[[[0], [1, 2]], 3]

dims_to_tensor_perm(dims)
Given the dims of a Qobj instance, returns a list representing a permutation from the flattening of that dims
specification to the corresponding tensor indices.

Parameters

dims [list] Dimensions specification for a Qobj.

Returns

perm [list] A list such that data[flatten(dims)[idx]] gives the index of the tensor
data corresponding to the idx``th dimension of ``dims.

dims_to_tensor_shape(dims)
Given the dims of a Qobj instance, returns the shape of the corresponding tensor. This helps, for instance,
resolve the column-stacking convention for superoperators.
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Parameters

dims [list] Dimensions specification for a Qobj.

Returns

tensor_shape [tuple] NumPy shape of the corresponding tensor.

dims_idxs_to_tensor_idxs(dims, indices)
Given the dims of a Qobj instance, and some indices into dims, returns the corresponding tensor indices.
This helps resolve, for instance, that column-stacking for superoperators, oper-ket and oper-bra implies that
the input and output tensor indices are reversed from their order in dims.

Parameters

dims [list] Dimensions specification for a Qobj.

indices [int, list or tuple] Indices to convert to tensor indices. Can be specified as a single
index, or as a collection of indices. In the latter case, this can be nested arbitrarily deep.
For instance, [0, [0, (2, 3)]].

Returns

tens_indices [int, list or tuple] Container of the same structure as indices containing the
tensor indices for each element of indices.

5.2.2 Functions acting on states and operators

Expectation Values

expect(oper, state)
Calculates the expectation value for operator(s) and state(s).

Parameters

oper [qobj/array-like] A single or a list or operators for expectation value.

state [qobj/array-like] A single or a list of quantum states or density matrices.

Returns

expt [float/complex/array-like] Expectation value. real if oper is Hermitian, complex
otherwise. A (nested) array of expectaction values of state or operator are arrays.

Examples

>>> expect(num(4), basis(4, 3))
3

variance(oper, state)
Variance of an operator for the given state vector or density matrix.

Parameters

oper [qobj] Operator for expectation value.

state [qobj/list] A single or list of quantum states or density matrices..

Returns

var [float] Variance of operator ‘oper’ for given state.
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Tensor

Module for the creation of composite quantum objects via the tensor product.

tensor(*args)
Calculates the tensor product of input operators.

Parameters

args [array_like] list or array of quantum objects for tensor product.

Returns

obj [qobj] A composite quantum object.

Examples

>>> tensor([sigmax(), sigmax()])
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]]

super_tensor(*args)
Calculates the tensor product of input superoperators, by tensoring together the underlying Hilbert spaces
on which each vectorized operator acts.

Parameters

args [array_like] list or array of quantum objects with type="super".

Returns

obj [qobj] A composite quantum object.

composite(*args)
Given two or more operators, kets or bras, returns the Qobj corresponding to a composite system over
each argument. For ordinary operators and vectors, this is the tensor product, while for superoperators and
vectorized operators, this is the column-reshuffled tensor product.

If a mix of Qobjs supported on Hilbert and Liouville spaces are passed in, the former are promoted. Ordinary
operators are assumed to be unitaries, and are promoted using to_super, while kets and bras are promoted
by taking their projectors and using operator_to_vector(ket2dm(arg)).

tensor_contract(qobj, *pairs)
Contracts a qobj along one or more index pairs. Note that this uses dense representations and thus should
not be used for very large Qobjs.

Parameters

pairs [tuple] One or more tuples (i, j) indicating that the i and j dimensions of the
original qobj should be contracted.

Returns

cqobj [Qobj] The original Qobj with all named index pairs contracted away.
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Partial Transpose

partial_transpose(rho, mask, method='dense')
Return the partial transpose of a Qobj instance rho, where mask is an array/list with length that equals the
number of components of rho (that is, the length of rho.dims[0]), and the values in mask indicates whether
or not the corresponding subsystem is to be transposed. The elements in mask can be boolean or integers 0
or 1, where True/1 indicates that the corresponding subsystem should be tranposed.

Parameters

rho [qutip.qobj] A density matrix.

mask [list / array] A mask that selects which subsystems should be transposed.

method [str] choice of method, dense or sparse. The default method is dense. The sparse
implementation can be faster for large and sparse systems (hundreds of quantum states).

Returns

rho_pr: qutip.qobj A density matrix with the selected subsystems transposed.

Entropy Functions

concurrence(rho)
Calculate the concurrence entanglement measure for a two-qubit state.

Parameters

state [qobj] Ket, bra, or density matrix for a two-qubit state.

Returns

concur [float] Concurrence

References

[1]

entropy_conditional(rho, selB, base=2.718281828459045, sparse=False)
Calculates the conditional entropy 𝑆(𝐴|𝐵) = 𝑆(𝐴,𝐵) − 𝑆(𝐵) of a selected density matrix component.

Parameters

rho [qobj] Density matrix of composite object

selB [int/list] Selected components for density matrix B

base [{e,2}] Base of logarithm.

sparse [{False,True}] Use sparse eigensolver.

Returns

ent_cond [float] Value of conditional entropy

entropy_linear(rho)
Linear entropy of a density matrix.

Parameters

rho [qobj] sensity matrix or ket/bra vector.

Returns

entropy [float] Linear entropy of rho.
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Examples

>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_linear(rho)
0.5

entropy_mutual(rho, selA, selB, base=2.718281828459045, sparse=False)
Calculates the mutual information S(A:B) between selection components of a system density matrix.

Parameters

rho [qobj] Density matrix for composite quantum systems

selA [int/list] int or list of first selected density matrix components.

selB [int/list] int or list of second selected density matrix components.

base [{e,2}] Base of logarithm.

sparse [{False,True}] Use sparse eigensolver.

Returns

ent_mut [float] Mutual information between selected components.

entropy_vn(rho, base=2.718281828459045, sparse=False)
Von-Neumann entropy of density matrix

Parameters

rho [qobj] Density matrix.

base [{e,2}] Base of logarithm.

sparse [{False,True}] Use sparse eigensolver.

Returns

entropy [float] Von-Neumann entropy of rho.

Examples

>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_vn(rho,2)
1.0

Density Matrix Metrics

This module contains a collection of functions for calculating metrics (distance measures) between states and
operators.

fidelity(A, B)
Calculates the fidelity (pseudo-metric) between two density matrices. See: Nielsen & Chuang, “Quantum
Computation and Quantum Information”

Parameters

A [qobj] Density matrix or state vector.

B [qobj] Density matrix or state vector with same dimensions as A.

Returns

fid [float] Fidelity pseudo-metric between A and B.
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Examples

>>> x = fock_dm(5,3)
>>> y = coherent_dm(5,1)
>>> fidelity(x,y)
0.24104350624628332

tracedist(A, B, sparse=False, tol=0)
Calculates the trace distance between two density matrices.. See: Nielsen & Chuang, “Quantum Computa-
tion and Quantum Information”

Parameters

A [qobj] Density matrix or state vector.

B [qobj] Density matrix or state vector with same dimensions as A.

tol [float] Tolerance used by sparse eigensolver, if used. (0=Machine precision)

sparse [{False, True}] Use sparse eigensolver.

Returns

tracedist [float] Trace distance between A and B.

Examples

>>> x=fock_dm(5,3)
>>> y=coherent_dm(5,1)
>>> tracedist(x,y)
0.9705143161472971

bures_dist(A, B)
Returns the Bures distance between two density matrices A & B.

The Bures distance ranges from 0, for states with unit fidelity, to sqrt(2).

Parameters

A [qobj] Density matrix or state vector.

B [qobj] Density matrix or state vector with same dimensions as A.

Returns

dist [float] Bures distance between density matrices.

bures_angle(A, B)
Returns the Bures Angle between two density matrices A & B.

The Bures angle ranges from 0, for states with unit fidelity, to pi/2.

Parameters

A [qobj] Density matrix or state vector.

B [qobj] Density matrix or state vector with same dimensions as A.

Returns

angle [float] Bures angle between density matrices.

hilbert_dist(A, B)
Returns the Hilbert-Schmidt distance between two density matrices A & B.

Parameters

A [qobj] Density matrix or state vector.
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B [qobj] Density matrix or state vector with same dimensions as A.

Returns

dist [float] Hilbert-Schmidt distance between density matrices.

Notes

See V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).

average_gate_fidelity(oper, target=None)
Given a Qobj representing the supermatrix form of a map, returns the average gate fidelity (pseudo-metric)
of that map.

Parameters

A [Qobj] Quantum object representing a superoperator.

target [Qobj] Quantum object representing the target unitary; the inverse is applied before
evaluating the fidelity.

Returns

fid [float] Fidelity pseudo-metric between A and the identity superoperator, or between A
and the target superunitary.

process_fidelity(U1, U2, normalize=True)
Calculate the process fidelity given two process operators.

Continuous Variables

This module contains a collection functions for calculating continuous variable quantities from fock-basis repre-
sentation of the state of multi-mode fields.

correlation_matrix(basis, rho=None)
Given a basis set of operators {𝑎}𝑛, calculate the correlation matrix:

𝐶𝑚𝑛 = ⟨𝑎𝑚𝑎𝑛⟩

Parameters

basis [list] List of operators that defines the basis for the correlation matrix.

rho [Qobj] Density matrix for which to calculate the correlation matrix. If rho is None,
then a matrix of correlation matrix operators is returned instead of expectation values of
those operators.

Returns

corr_mat [ndarray] A 2-dimensional array of correlation values or operators.

covariance_matrix(basis, rho, symmetrized=True)
Given a basis set of operators {𝑎}𝑛, calculate the covariance matrix:

𝑉𝑚𝑛 =
1

2
⟨𝑎𝑚𝑎𝑛 + 𝑎𝑛𝑎𝑚⟩ − ⟨𝑎𝑚⟩⟨𝑎𝑛⟩

or, if of the optional argument symmetrized=False,

𝑉𝑚𝑛 = ⟨𝑎𝑚𝑎𝑛⟩ − ⟨𝑎𝑚⟩⟨𝑎𝑛⟩

Parameters

basis [list] List of operators that defines the basis for the covariance matrix.

rho [Qobj] Density matrix for which to calculate the covariance matrix.
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symmetrized [bool {True, False}] Flag indicating whether the symmetrized (default) or
non-symmetrized correlation matrix is to be calculated.

Returns

corr_mat [ndarray] A 2-dimensional array of covariance values.

correlation_matrix_field(a1, a2, rho=None)
Calculates the correlation matrix for given field operators 𝑎1 and 𝑎2. If a density matrix is given the expec-
tation values are calculated, otherwise a matrix with operators is returned.

Parameters

a1 [Qobj] Field operator for mode 1.

a2 [Qobj] Field operator for mode 2.

rho [Qobj] Density matrix for which to calculate the covariance matrix.

Returns

cov_mat [ndarray] Array of complex numbers or Qobj’s A 2-dimensional array of covari-
ance values, or, if rho=0, a matrix of operators.

correlation_matrix_quadrature(a1, a2, rho=None, g=1.4142135623730951)
Calculate the quadrature correlation matrix with given field operators 𝑎1 and 𝑎2. If a density matrix is given
the expectation values are calculated, otherwise a matrix with operators is returned.

Parameters

a1 [Qobj] Field operator for mode 1.

a2 [Qobj] Field operator for mode 2.

rho [Qobj] Density matrix for which to calculate the covariance matrix.

g [float] Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2). The value of g is
related to the value of hbar in the commutation relation [x, y] = i * hbar via hbar=2/g
** 2 giving the default value hbar=1.

Returns

corr_mat [ndarray] Array of complex numbers or Qobj’s A 2-dimensional array of covari-
ance values for the field quadratures, or, if rho=0, a matrix of operators.

wigner_covariance_matrix(a1=None, a2=None, R=None, rho=None, g=1.4142135623730951)
Calculates the Wigner covariance matrix 𝑉𝑖𝑗 = 1

2 (𝑅𝑖𝑗 + 𝑅𝑗𝑖), given the quadrature correlation matrix
𝑅𝑖𝑗 = ⟨𝑅𝑖𝑅𝑗⟩ − ⟨𝑅𝑖⟩⟨𝑅𝑗⟩, where 𝑅 = (𝑞1, 𝑝1, 𝑞2, 𝑝2)𝑇 is the vector with quadrature operators for the two
modes.

Alternatively, if R = None, and if annihilation operators a1 and a2 for the two modes are supplied instead,
the quadrature correlation matrix is constructed from the annihilation operators before then the covariance
matrix is calculated.

Parameters

a1 [Qobj] Field operator for mode 1.

a2 [Qobj] Field operator for mode 2.

R [ndarray] The quadrature correlation matrix.

rho [Qobj] Density matrix for which to calculate the covariance matrix.

g [float] Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2). The value of g is
related to the value of hbar in the commutation relation [x, y] = i * hbar via hbar=2/g
** 2 giving the default value hbar=1.

Returns

cov_mat [ndarray] A 2-dimensional array of covariance values.
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logarithmic_negativity(V, g=1.4142135623730951)
Calculates the logarithmic negativity given a symmetrized covariance matrix, see qutip.
continous_variables.covariance_matrix. Note that the two-mode field state that is described
by V must be Gaussian for this function to applicable.

Parameters

V [2d array] The covariance matrix.

g [float] Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2). The value of g is
related to the value of hbar in the commutation relation [x, y] = i * hbar via hbar=2/g
** 2 giving the default value hbar=1.

Returns

N [float] The logarithmic negativity for the two-mode Gaussian state that is described by
the the Wigner covariance matrix V.

5.2.3 Dynamics and Time-Evolution

Schrödinger Equation

This module provides solvers for the unitary Schrodinger equation.

sesolve(H, psi0, tlist, e_ops=None, args=None, options=None, progress_bar=None,
_safe_mode=True)

Schrodinger equation evolution of a state vector or unitary matrix for a given Hamiltonian.

Evolve the state vector (psi0) using a given Hamiltonian (H), by integrating the set of ordinary differential
equations that define the system. Alternatively evolve a unitary matrix in solving the Schrodinger operator
equation.

The output is either the state vector or unitary matrix at arbitrary points in time (tlist), or the expectation
values of the supplied operators (e_ops). If e_ops is a callback function, it is invoked for each time in tlist
with time and the state as arguments, and the function does not use any return values. e_ops cannot be used
in conjunction with solving the Schrodinger operator equation

Parameters

H [qutip.qobj, qutip.qobjevo, list, callable] system Hamiltonian as a Qobj, list of
Qobj and coefficient, QobjEvo, or a callback function for time-dependent Hamiltonians.
list format and options can be found in QobjEvo’s description.

psi0 [qutip.qobj] initial state vector (ket) or initial unitary operator psi0 = U

tlist [list / array] list of times for 𝑡.

e_ops [None / list of qutip.qobj / callback function] single operator or list of operators
for which to evaluate expectation values. For list operator evolution, the overlapse is
computed:

tr(e_ops[i].dag()*op(t))

args [None / dictionary] dictionary of parameters for time-dependent Hamiltonians

options [None / qutip.Qdeoptions] with options for the ODE solver.

progress_bar [None / BaseProgressBar] Optional instance of BaseProgressBar, or a sub-
class thereof, for showing the progress of the simulation.

Returns

output: qutip.solver An instance of the class qutip.solver, which contains ei-
ther an array of expectation values for the times specified by tlist, or an array or state
vectors corresponding to the times in tlist [if e_ops is an empty list], or nothing if a
callback function was given inplace of operators for which to calculate the expectation
values.
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Master Equation

This module provides solvers for the Lindblad master equation and von Neumann equation.

mesolve(H, rho0, tlist, c_ops=None, e_ops=None, args=None, options=None, progress_bar=None,
_safe_mode=True)

Master equation evolution of a density matrix for a given Hamiltonian and set of collapse operators, or a
Liouvillian.

Evolve the state vector or density matrix (rho0) using a given Hamiltonian (H) and an [optional] set of col-
lapse operators (c_ops), by integrating the set of ordinary differential equations that define the system. In the
absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian.

The output is either the state vector at arbitrary points in time (tlist), or the expectation values of the supplied
operators (e_ops). If e_ops is a callback function, it is invoked for each time in tlist with time and the state
as arguments, and the function does not use any return values.

If either H or the Qobj elements in c_ops are superoperators, they will be treated as direct contributions to
the total system Liouvillian. This allows to solve master equations that are not on standard Lindblad form
by passing a custom Liouvillian in place of either the H or c_ops elements.

Time-dependent operators

For time-dependent problems, H and c_ops can be callback functions that takes two arguments, time and
args, and returns the Hamiltonian or Liouvillian for the system at that point in time (callback format).

Alternatively, H and c_ops can be a specified in a nested-list format where each element in the list is a list of
length 2, containing an operator (qutip.qobj) at the first element and where the second element is either
a string (list string format), a callback function (list callback format) that evaluates to the time-dependent
coefficient for the corresponding operator, or a NumPy array (list array format) which specifies the value of
the coefficient to the corresponding operator for each value of t in tlist.

Examples

H = [[H0, ‘sin(w*t)’], [H1, ‘sin(2*w*t)’]]

H = [[H0, f0_t], [H1, f1_t]]

where f0_t and f1_t are python functions with signature f_t(t, args).

H = [[H0, np.sin(w*tlist)], [H1, np.sin(2*w*tlist)]]

In the list string format and list callback format, the string expression and the callback function must eval-
uate to a real or complex number (coefficient for the corresponding operator).

In all cases of time-dependent operators, args is a dictionary of parameters that is used when evaluating
operators. It is passed to the callback functions as second argument.

Additional options

Additional options to mesolve can be set via the options argument, which should be an instance of
qutip.solver.Options. Many ODE integration options can be set this way, and the store_states
and store_final_state options can be used to store states even though expectation values are requested via
the e_ops argument.

Note: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in
superoperator form it will be added to the total Liouvillian of the problem with out further transformation.
This allows for using mesolve for solving master equations that are not on standard Lindblad form.

Note: On using callback function: mesolve transforms all qutip.qobj objects to sparse matrices before
handing the problem to the integrator function. In order for your callback function to work correctly, pass
all qutip.qobj objects that are used in constructing the Hamiltonian via args. mesolve will check for
qutip.qobj in args and handle the conversion to sparse matrices. All other qutip.qobj objects that
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are not passed via args will be passed on to the integrator in scipy which will raise an NotImplemented
exception.

Parameters

H [qutip.Qobj] System Hamiltonian, or a callback function for time-dependent Hamil-
tonians, or alternatively a system Liouvillian.

rho0 [qutip.Qobj] initial density matrix or state vector (ket).

tlist [list / array] list of times for 𝑡.

c_ops [None / list of qutip.Qobj] single collapse operator, or list of collapse operators,
or a list of Liouvillian superoperators.

e_ops [None / list of qutip.Qobj / callback function single] single operator or list of
operators for which to evaluate expectation values.

args [None / dictionary] dictionary of parameters for time-dependent Hamiltonians and
collapse operators.

options [None / qutip.Options] with options for the solver.

progress_bar [None / BaseProgressBar] Optional instance of BaseProgressBar, or a sub-
class thereof, for showing the progress of the simulation.

Returns

result: qutip.Result An instance of the class qutip.Result, which contains either
an array result.expect of expectation values for the times specified by tlist, or an array
result.states of state vectors or density matrices corresponding to the times in tlist [if
e_ops is an empty list], or nothing if a callback function was given in place of operators
for which to calculate the expectation values.

Monte Carlo Evolution

mcsolve(H, psi0, tlist, c_ops=[], e_ops=[], ntraj=0, args={}, options=None, progress_bar=True,
map_func=<function parallel_map at 0xd20de5510>, map_kwargs={}, _safe_mode=True)

Monte Carlo evolution of a state vector |𝜓⟩ for a given Hamiltonian and sets of collapse operators, and
possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by
the Options class.

mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of
strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one
constant term.

As an example of a time-dependent problem, consider a Hamiltonian with two terms H0 and H1, where
H1 is time-dependent with coefficient sin(w*t), and collapse operators C0 and C1, where C1 is time-
dependent with coeffcient exp(-a*t). Here, w and a are constant arguments with values W and A.

Using the Python function time-dependent format requires two Python functions, one for each collapse
coefficient. Therefore, this problem could be expressed as:

def H1_coeff(t,args):
return sin(args['w']*t)

def C1_coeff(t,args):
return exp(-args['a']*t)

H = [H0, [H1, H1_coeff]]

c_ops = [C0, [C1, C1_coeff]]

args={'a': A, 'w': W}
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or in String (Cython) format we could write:

H = [H0, [H1, 'sin(w*t)']]

c_ops = [C0, [C1, 'exp(-a*t)']]

args={'a': A, 'w': W}

Constant terms are preferably placed first in the Hamiltonian and collapse operator lists.

Parameters

H [qutip.Qobj, list] System Hamiltonian.

psi0 [qutip.Qobj] Initial state vector

tlist [array_like] Times at which results are recorded.

ntraj [int] Number of trajectories to run.

c_ops [qutip.Qobj, list] single collapse operator or a list of collapse operators.

e_ops [qutip.Qobj, list] single operator as Qobj or list or equivalent of Qobj op-
erators for calculating expectation values.

args [dict] Arguments for time-dependent Hamiltonian and collapse operator terms.

options [Options] Instance of ODE solver options.

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation. Set to None to disable the progress
bar.

map_func: function A map function for managing the calls to the single-trajactory solver.

map_kwargs: dictionary Optional keyword arguments to the map_func function.

Returns

results [qutip.solver.Result] Object storing all results from the simulation.

Note: It is possible to reuse the random number seeds from a previous run of the
mcsolver by passing the output Result object seeds via the Options class, i.e. Op-
tions(seeds=prev_result.seeds).

Exponential Series

essolve(H, rho0, tlist, c_op_list, e_ops)
Evolution of a state vector or density matrix (rho0) for a given Hamiltonian (H) and set of collapse operators
(c_op_list), by expressing the ODE as an exponential series. The output is either the state vector at arbitrary
points in time (tlist), or the expectation values of the supplied operators (e_ops).

Parameters

H [qobj/function_type] System Hamiltonian.

rho0 [qutip.qobj] Initial state density matrix.

tlist [list/array] list of times for 𝑡.

c_op_list [list of qutip.qobj] list of qutip.qobj collapse operators.

e_ops [list of qutip.qobj] list of qutip.qobj operators for which to evaluate ex-
pectation values.

Returns
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expt_array [array] Expectation values of wavefunctions/density matrices for the times
specified in tlist.

Note: This solver does not support time-dependent Hamiltonians. ..

ode2es(L, rho0)
Creates an exponential series that describes the time evolution for the initial density matrix (or state vector)
rho0, given the Liouvillian (or Hamiltonian) L.

Parameters

L [qobj] Liouvillian of the system.

rho0 [qobj] Initial state vector or density matrix.

Returns

eseries [qutip.eseries] eseries represention of the system dynamics.

Bloch-Redfield Master Equation

brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={}, use_secular=True, sec_cutoff=0.1,
tol=1e-12, spectra_cb=None, options=None, progress_bar=None, _safe_mode=True, ver-
bose=False)

Solves for the dynamics of a system using the Bloch-Redfield master equation, given an input Hamilto-
nian, Hermitian bath-coupling terms and their associated spectrum functions, as well as possible Lindblad
collapse operators.

For time-independent systems, the Hamiltonian must be given as a Qobj, whereas the bath-coupling terms
(a_ops), must be written as a nested list of operator - spectrum function pairs, where the frequency is
specified by the w variable.

Example

a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]]

For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse operators (c_ops), can be spec-
ified in the QuTiP string-based time-dependent format. For the a_op spectra, the frequency variable must be
w, and the string cannot contain any other variables other than the possibility of having a time-dependence
through the time variable t:

Example

a_ops = [[a+a.dag(), ‘0.2*exp(-t)*(w>=0)’]]

It is also possible to use Cubic_Spline objects for time-dependence. In the case of a_ops, Cubic_Splines
must be passed as a tuple:

Example

a_ops = [ [a+a.dag(), ( f(w), g(t)] ]

where f(w) and g(t) are strings or Cubic_spline objects for the bath spectrum and time-dependence, respec-
tively.

Finally, if one has bath-couplimg terms of the form H = f(t)*a + conj[f(t)]*a.dag(), then the correct input
format is

Example

a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],. . . ]

where f(w) is the spectrum of the operators while g1(t) and g2(t) are the time-dependence of the operators
a and a.dag(), respectively

Parameters
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H [Qobj / list] System Hamiltonian given as a Qobj or nested list in string-based format.

psi0: Qobj Initial density matrix or state vector (ket).

tlist [array_like] List of times for evaluating evolution

a_ops [list] Nested list of Hermitian system operators that couple to the bath degrees of
freedom, along with their associated spectra.

e_ops [list] List of operators for which to evaluate expectation values.

c_ops [list] List of system collapse operators, or nested list in string-based format.

args [dict] Placeholder for future implementation, kept for API consistency.

use_secular [bool {True}] Use secular approximation when evaluating bath-coupling
terms.

sec_cutoff [float {0.1}] Cutoff for secular approximation.

tol [float {qutip.setttings.atol}] Tolerance used for removing small values after basis trans-
formation.

spectra_cb [list] DEPRECIATED. Do not use.

options [qutip.solver.Options] Options for the solver.

progress_bar [BaseProgressBar] Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation.

Returns

result: qutip.solver.Result An instance of the class qutip.solver.Result,
which contains either an array of expectation values, for operators given in e_ops, or a
list of states for the times specified by tlist.

bloch_redfield_tensor()

Calculates the time-independent Bloch-Redfield tensor for a system given a set of operators and
corresponding spectral functions that describes the system’s couplingto its environment.

Parameters

H [qutip.qobj]

System Hamiltonian.

a_ops [list] Nested list of system operators that couple to the environment, and the
corresponding bath spectra represented as Python functions.

spectra_cb [list] Depreciated.

c_ops [list] List of system collapse operators.

use_secular [bool {True, False}] Flag that indicates if the secular approximation
should be used.

sec_cutoff [float {0.1}] Threshold for secular approximation.

atol [float {qutip.settings.atol}] Threshold for removing small parameters.

Returns

R, kets: qutip.Qobj, list of qutip.Qobj R is the Bloch-Redfield tensor and kets is a
list eigenstates of the Hamiltonian.

bloch_redfield_solve(R, ekets, rho0, tlist, e_ops=[], options=None, progress_bar=None)
Evolve the ODEs defined by Bloch-Redfield master equation. The Bloch-Redfield tensor can be calculated
by the function bloch_redfield_tensor.

Parameters
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R [qutip.qobj] Bloch-Redfield tensor.

ekets [array of qutip.qobj] Array of kets that make up a basis tranformation for the
eigenbasis.

rho0 [qutip.qobj] Initial density matrix.

tlist [list / array] List of times for 𝑡.

e_ops [list of qutip.qobj / callback function] List of operators for which to evaluate
expectation values.

options [qutip.Qdeoptions] Options for the ODE solver.

Returns

output: qutip.solver An instance of the class qutip.solver, which contains ei-
ther an array of expectation values for the times specified by tlist.

Floquet States and Floquet-Markov Master Equation

fmmesolve(H, rho0, tlist, c_ops=[], e_ops=[], spectra_cb=[], T=None, args={}, op-
tions=<qutip.solver.Options object at 0x1a2146ecf8>, floquet_basis=True, kmax=5,
_safe_mode=True)

Solve the dynamics for the system using the Floquet-Markov master equation.

Note: This solver currently does not support multiple collapse operators.

Parameters

H [qutip.qobj] system Hamiltonian.

rho0 / psi0 [qutip.qobj] initial density matrix or state vector (ket).

tlist [list / array] list of times for 𝑡.

c_ops [list of qutip.qobj] list of collapse operators.

e_ops [list of qutip.qobj / callback function] list of operators for which to evaluate
expectation values.

spectra_cb [list callback functions] List of callback functions that compute the noise power
spectrum as a function of frequency for the collapse operators in c_ops.

T [float] The period of the time-dependence of the hamiltonian. The default value ‘None’
indicates that the ‘tlist’ spans a single period of the driving.

args [dictionary] dictionary of parameters for time-dependent Hamiltonians and collapse
operators.

This dictionary should also contain an entry ‘w_th’, which is the temperature of the
environment (if finite) in the energy/frequency units of the Hamiltonian. For example,
if the Hamiltonian written in units of 2pi GHz, and the temperature is given in K, use
the following conversion

>>> temperature = 25e-3 # unit K
>>> h = 6.626e-34
>>> kB = 1.38e-23
>>> args['w_th'] = temperature * (kB / h) * 2 * pi * 1e-9

options [qutip.solver] options for the ODE solver.

k_max [int] The truncation of the number of sidebands (default 5).

Returns
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output [qutip.solver] An instance of the class qutip.solver, which contains ei-
ther an array of expectation values for the times specified by tlist.

floquet_modes(H, T, args=None, sort=False, U=None)
Calculate the initial Floquet modes Phi_alpha(0) for a driven system with period T.

Returns a list of qutip.qobj instances representing the Floquet modes and a list of corresponding
quasienergies, sorted by increasing quasienergy in the interval [-pi/T, pi/T]. The optional parameter sort
decides if the output is to be sorted in increasing quasienergies or not.

Parameters

H [qutip.qobj] system Hamiltonian, time-dependent with period T

args [dictionary] dictionary with variables required to evaluate H

T [float] The period of the time-dependence of the hamiltonian. The default value ‘None’
indicates that the ‘tlist’ spans a single period of the driving.

U [qutip.qobj] The propagator for the time-dependent Hamiltonian with period T. If
U is None (default), it will be calculated from the Hamiltonian H using qutip.
propagator.propagator.

Returns

output [list of kets, list of quasi energies] Two lists: the Floquet modes as kets and the
quasi energies.

floquet_modes_t(f_modes_0, f_energies, t, H, T, args=None)
Calculate the Floquet modes at times tlist Phi_alpha(tlist) propagting the initial Floquet modes Phi_alpha(0)

Parameters

f_modes_0 [list of qutip.qobj (kets)] Floquet modes at 𝑡

f_energies [list] Floquet energies.

t [float] The time at which to evaluate the floquet modes.

H [qutip.qobj] system Hamiltonian, time-dependent with period T

args [dictionary] dictionary with variables required to evaluate H

T [float] The period of the time-dependence of the hamiltonian.

Returns

output [list of kets] The Floquet modes as kets at time 𝑡

floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args=None)
Pre-calculate the Floquet modes for a range of times spanning the floquet period. Can later be used as a
table to look up the floquet modes for any time.

Parameters

f_modes_0 [list of qutip.qobj (kets)] Floquet modes at 𝑡

f_energies [list] Floquet energies.

tlist [array] The list of times at which to evaluate the floquet modes.

H [qutip.qobj] system Hamiltonian, time-dependent with period T

T [float] The period of the time-dependence of the hamiltonian.

args [dictionary] dictionary with variables required to evaluate H

Returns

output [nested list] A nested list of Floquet modes as kets for each time in tlist
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floquet_modes_t_lookup(f_modes_table_t, t, T)
Lookup the floquet mode at time t in the pre-calculated table of floquet modes in the first period of the
time-dependence.

Parameters

f_modes_table_t [nested list of qutip.qobj (kets)] A lookup-table of Floquet modes at
times precalculated by qutip.floquet.floquet_modes_table.

t [float] The time for which to evaluate the Floquet modes.

T [float] The period of the time-dependence of the hamiltonian.

Returns

output [nested list] A list of Floquet modes as kets for the time that most closely matching
the time t in the supplied table of Floquet modes.

floquet_states(f_modes_t, f_energies, t)
Evaluate the floquet states at time t given the Floquet modes at that time.

Parameters

f_modes_t [list of qutip.qobj (kets)] A list of Floquet modes for time 𝑡.

f_energies [array] The Floquet energies.

t [float] The time for which to evaluate the Floquet states.

Returns

output [list] A list of Floquet states for the time 𝑡.

floquet_states_t(f_modes_0, f_energies, t, H, T, args=None)
Evaluate the floquet states at time t given the initial Floquet modes.

Parameters

f_modes_t [list of qutip.qobj (kets)] A list of initial Floquet modes (for time 𝑡 = 0).

f_energies [array] The Floquet energies.

t [float] The time for which to evaluate the Floquet states.

H [qutip.qobj] System Hamiltonian, time-dependent with period T.

T [float] The period of the time-dependence of the hamiltonian.

args [dictionary] Dictionary with variables required to evaluate H.

Returns

output [list] A list of Floquet states for the time 𝑡.

floquet_wavefunction(f_modes_t, f_energies, f_coeff, t)
Evaluate the wavefunction for a time t using the Floquet state decompositon, given the Floquet modes at
time t.

Parameters

f_modes_t [list of qutip.qobj (kets)] A list of initial Floquet modes (for time 𝑡 = 0).

f_energies [array] The Floquet energies.

f_coeff [array] The coefficients for Floquet decomposition of the initial wavefunction.

t [float] The time for which to evaluate the Floquet states.

Returns

output [qutip.qobj] The wavefunction for the time 𝑡.

floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args=None)
Evaluate the wavefunction for a time t using the Floquet state decompositon, given the initial Floquet modes.
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Parameters

f_modes_t [list of qutip.qobj (kets)] A list of initial Floquet modes (for time 𝑡 = 0).

f_energies [array] The Floquet energies.

f_coeff [array] The coefficients for Floquet decomposition of the initial wavefunction.

t [float] The time for which to evaluate the Floquet states.

H [qutip.qobj] System Hamiltonian, time-dependent with period T.

T [float] The period of the time-dependence of the hamiltonian.

args [dictionary] Dictionary with variables required to evaluate H.

Returns

output [qutip.qobj] The wavefunction for the time 𝑡.

floquet_state_decomposition(f_states, f_energies, psi)
Decompose the wavefunction psi (typically an initial state) in terms of the Floquet states, 𝜓 =

∑︀
𝛼 𝑐𝛼𝜓𝛼(0).

Parameters

f_states [list of qutip.qobj (kets)] A list of Floquet modes.

f_energies [array] The Floquet energies.

psi [qutip.qobj] The wavefunction to decompose in the Floquet state basis.

Returns

output [array] The coefficients 𝑐𝛼 in the Floquet state decomposition.

fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100)
Solve the Schrodinger equation using the Floquet formalism.

Parameters

H [qutip.qobj.Qobj] System Hamiltonian, time-dependent with period T.

psi0 [qutip.qobj] Initial state vector (ket).

tlist [list / array] list of times for 𝑡.

e_ops [list of qutip.qobj / callback function] list of operators for which to evaluate
expectation values. If this list is empty, the state vectors for each time in tlist will be
returned instead of expectation values.

T [float] The period of the time-dependence of the hamiltonian.

args [dictionary] Dictionary with variables required to evaluate H.

Tsteps [integer] The number of time steps in one driving period for which to precalculate
the Floquet modes. Tsteps should be an even number.

Returns

output [qutip.solver.Result] An instance of the class qutip.solver.
Result, which contains either an array of expectation values or an array of state
vectors, for the times specified by tlist.

floquet_master_equation_rates(f_modes_0, f_energies, c_op, H, T, args, J_cb, w_th, kmax=5,
f_modes_table_t=None)

Calculate the rates and matrix elements for the Floquet-Markov master equation.

Parameters

f_modes_0 [list of qutip.qobj (kets)] A list of initial Floquet modes.

f_energies [array] The Floquet energies.

c_op [qutip.qobj] The collapse operators describing the dissipation.
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H [qutip.qobj] System Hamiltonian, time-dependent with period T.

T [float] The period of the time-dependence of the hamiltonian.

args [dictionary] Dictionary with variables required to evaluate H.

J_cb [callback functions] A callback function that computes the noise power spectrum, as
a function of frequency, associated with the collapse operator c_op.

w_th [float] The temperature in units of frequency.

k_max [int] The truncation of the number of sidebands (default 5).

f_modes_table_t [nested list of qutip.qobj (kets)] A lookup-table of Floquet modes at
times precalculated by qutip.floquet.floquet_modes_table (optional).

Returns

output [list] A list (Delta, X, Gamma, A) containing the matrices Delta, X, Gamma and A
used in the construction of the Floquet-Markov master equation.

floquet_master_equation_steadystate(H, A)
Returns the steadystate density matrix (in the floquet basis!) for the Floquet-Markov master equation.

floquet_basis_transform(f_modes, f_energies, rho0)
Make a basis transform that takes rho0 from the floquet basis to the computational basis.

floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None, options=None, flo-
quet_basis=True)

Solve the dynamics for the system using the Floquet-Markov master equation.

Stochastic Schrödinger Equation and Master Equation

ssesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs)
Solve stochastic schrodinger equation. Dispatch to specific solvers depending on the value of the solver
keyword argument.

Parameters

H [qutip.Qobj, or time dependent system.] System Hamiltonian. Can depend on time,
see StochasticSolverOptions help for format.

psi0 [qutip.Qobj] State vector (ket).

times [list / array] List of times for 𝑡. Must be uniformly spaced.

sc_ops [list of qutip.Qobj, or time dependent Qobjs.] List of stochastic collapse oper-
ators. Each stochastic collapse operator will give a deterministic and stochastic contri-
bution to the eqaution of motion according to how the d1 and d2 functions are defined.
Can depend on time, see StochasticSolverOptions help for format.

e_ops [list of qutip.Qobj] single operator or list of operators for which to evaluate ex-
pectation values.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

photocurrent_sesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, args={},
**kwargs)

Solve stochastic schrodinger equation using the photocurrent method.

Parameters

H [qutip.Qobj, or time dependent system.] System Hamiltonian. Can depend on time,
see StochasticSolverOptions help for format.
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psi0 [qutip.Qobj] Initial state vector (ket).

times [list / array] List of times for 𝑡. Must be uniformly spaced.

sc_ops [list of qutip.Qobj, or time dependent Qobjs.] List of stochastic collapse oper-
ators. Each stochastic collapse operator will give a deterministic and stochastic contri-
bution to the eqaution of motion according to how the d1 and d2 functions are defined.
Can depend on time, see StochasticSolverOptions help for format.

e_ops [list of qutip.Qobj / callback function single] single operator or list of operators
for which to evaluate expectation values.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs)
A stochastic (piecewse deterministic process) PDP solver for density matrix evolution.

Parameters

H [qutip.Qobj] System Hamiltonian.

rho0 [qutip.Qobj] Initial density matrix.

times [list / array] List of times for 𝑡. Must be uniformly spaced.

c_ops [list of qutip.Qobj] Deterministic collapse operator which will contribute with a
standard Lindblad type of dissipation.

sc_ops [list of qutip.Qobj] List of stochastic collapse operators. Each stochastic col-
lapse operator will give a deterministic and stochastic contribution to the eqaution of
motion according to how the d1 and d2 functions are defined.

e_ops [list of qutip.Qobj / callback function single] single operator or list of operators
for which to evaluate expectation values.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs)
Solve stochastic master equation. Dispatch to specific solvers depending on the value of the solver keyword
argument.

Parameters

H [qutip.Qobj, or time dependent system.] System Hamiltonian. Can depend on time,
see StochasticSolverOptions help for format.

rho0 [qutip.Qobj] Initial density matrix or state vector (ket).

times [list / array] List of times for 𝑡. Must be uniformly spaced.

c_ops [list of qutip.Qobj, or time dependent Qobjs.] Deterministic collapse operator
which will contribute with a standard Lindblad type of dissipation. Can depend on
time, see StochasticSolverOptions help for format.

sc_ops [list of qutip.Qobj, or time dependent Qobjs.] List of stochastic collapse oper-
ators. Each stochastic collapse operator will give a deterministic and stochastic contri-
bution to the eqaution of motion according to how the d1 and d2 functions are defined.
Can depend on time, see StochasticSolverOptions help for format.

e_ops [list of qutip.Qobj] single operator or list of operators for which to evaluate ex-
pectation values.
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kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

photocurrent_mesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True,
args={}, **kwargs)

Solve stochastic master equation using the photocurrent method.

Parameters

H [qutip.Qobj, or time dependent system.] System Hamiltonian. Can depend on time,
see StochasticSolverOptions help for format.

rho0 [qutip.Qobj] Initial density matrix or state vector (ket).

times [list / array] List of times for 𝑡. Must be uniformly spaced.

c_ops [list of qutip.Qobj, or time dependent Qobjs.] Deterministic collapse operator
which will contribute with a standard Lindblad type of dissipation. Can depend on
time, see StochasticSolverOptions help for format.

sc_ops [list of qutip.Qobj, or time dependent Qobjs.] List of stochastic collapse oper-
ators. Each stochastic collapse operator will give a deterministic and stochastic contri-
bution to the eqaution of motion according to how the d1 and d2 functions are defined.
Can depend on time, see StochasticSolverOptions help for format.

e_ops [list of qutip.Qobj / callback function single] single operator or list of operators
for which to evaluate expectation values.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs)
A stochastic (piecewse deterministic process) PDP solver for wavefunction evolution. For most purposes,
use qutip.mcsolve instead for quantum trajectory simulations.

Parameters

H [qutip.Qobj] System Hamiltonian.

psi0 [qutip.Qobj] Initial state vector (ket).

times [list / array] List of times for 𝑡. Must be uniformly spaced.

c_ops [list of qutip.Qobj] Deterministic collapse operator which will contribute with a
standard Lindblad type of dissipation.

e_ops [list of qutip.Qobj / callback function single] single operator or list of operators
for which to evaluate expectation values.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

stochastic_solvers()

Available solvers for ssesolve and smesolve

euler-maruyama: A simple generalization of the Euler method for ordinary differential equations to
stochastic differential equations. Only solver which could take non-commuting sc_ops. not tested
-Order 0.5 -Code: ‘euler-maruyama’, ‘euler’, 0.5
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milstein, Order 1.0 strong Taylor scheme: Better approximate numerical solution to stochastic dif-
ferential equations. -Order strong 1.0 -Code: ‘milstein’, 1.0 Numerical Solution of Stochastic
Differential Equations Chapter 10.3 Eq. (3.1), By Peter E. Kloeden, Eckhard Platen

milstein-imp, Order 1.0 implicit strong Taylor scheme: Implicit milstein scheme for the numeri-
cal simulation of stiff stochastic differential equations. -Order strong 1.0 -Code: ‘milstein-imp’
Numerical Solution of Stochastic Differential Equations Chapter 12.2 Eq. (2.9), By Peter E.
Kloeden, Eckhard Platen

predictor-corrector: Generalization of the trapezoidal method to stochastic differential equations.
More stable than explicit methods. -Order strong 0.5, weak 1.0 Only the stochastic part is cor-
rected.

(alpha = 0, eta = 1/2) -Code: ‘pred-corr’, ‘predictor-corrector’, ‘pc-euler’

Both the deterministic and stochastic part corrected. (alpha = 1/2, eta = 1/2) -Code: ‘pc-
euler-imp’, ‘pc-euler-2’, ‘pred-corr-2’

Numerical Solution of Stochastic Differential Equations Chapter 15.5 Eq. (5.4), By Peter E.
Kloeden, Eckhard Platen

platen: Explicit scheme, create the milstein using finite difference instead of derivatives. Also contain
some higher order terms, thus converge better than milstein while staying strong order 1.0. Do
not require derivatives, therefore usable for qutip.stochastic.general_stochastic
-Order strong 1.0, weak 2.0 -Code: ‘platen’, ‘platen1’, ‘explicit1’ The Theory of Open Quantum
Systems Chapter 7 Eq. (7.47), H.-P Breuer, F. Petruccione

rouchon: Scheme keeping the positivity of the density matrix. (smesolve only) -Order strong 1.0?
-Code: ‘rouchon’, ‘Rouchon’ Eq. 4 of arXiv:1410.5345 with eta=1 Efficient Quantum Filtering
for Quantum Feedback Control Pierre Rouchon, Jason F. Ralph arXiv:1410.5345 [quant-ph] Phys.
Rev. A 91, 012118, (2015)

taylor1.5, Order 1.5 strong Taylor scheme: Solver with more terms of the Ito-Taylor expansion.
Default solver for smesolve and ssesolve. -Order strong 1.5 -Code: ‘taylor1.5’, ‘taylor15’, 1.5,
None Numerical Solution of Stochastic Differential Equations Chapter 10.4 Eq. (4.6), By Peter
E. Kloeden, Eckhard Platen

taylor1.5-imp, Order 1.5 implicit strong Taylor scheme: implicit Taylor 1.5 (alpha = 1/2, beta =
doesn’t matter) -Order strong 1.5 -Code: ‘taylor1.5-imp’, ‘taylor15-imp’ Numerical Solution of
Stochastic Differential Equations Chapter 12.2 Eq. (2.18), By Peter E. Kloeden, Eckhard Platen

explicit1.5, Explicit Order 1.5 Strong Schemes: Reproduce the order 1.5 strong Taylor scheme us-
ing finite difference instead of derivatives. Slower than taylor15 but usable by qutip.
stochastic.general_stochastic -Order strong 1.5 -Code: ‘explicit1.5’, ‘explicit15’,
‘platen15’ Numerical Solution of Stochastic Differential Equations Chapter 11.2 Eq. (2.13), By
Peter E. Kloeden, Eckhard Platen

taylor2.0, Order 2 strong Taylor scheme: Solver with more terms of the Stratonovich expansion. -
Order strong 2.0 -Code: ‘taylor2.0’, ‘taylor20’, 2.0 Numerical Solution of Stochastic Differential
Equations Chapter 10.5 Eq. (5.2), By Peter E. Kloeden, Eckhard Platen

—All solvers, except taylor2.0, are usable in both smesolve and ssesolve and for both heterodyne and
homodyne. taylor2.0 only work for 1 stochastic operator not dependent of time with the homodyne
method. The qutip.stochastic.general_stochastic only accept derivatives free solvers:
[‘euler’, ‘platen’, ‘explicit1.5’].

Available solver for photocurrent_sesolve and photocurrent_mesolve:

Photocurrent use ordinary differential equations between stochastic “jump/collapse”.

euler: Euler method for ordinary differential equations between jumps. Only 1 jumps per time inter-
val. Default solver -Order 1.0 -Code: ‘euler’ Quantum measurement and control Chapter 4, Eq
4.19, 4.40, By Howard M. Wiseman, Gerard J. Milburn
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predictor–corrector: predictor–corrector method (PECE) for ordinary differential equations. Use
poisson distribution to obtain the number of jump at each timestep. -Order 2.0 -Code: ‘pred-corr’

general_stochastic(state0, times, d1, d2, e_ops=[], m_ops=[], _safe_mode=True, len_d2=1,
args={}, **kwargs)

Solve stochastic general equation. Dispatch to specific solvers depending on the value of the solver keyword
argument.

Parameters

state0 [qutip.Qobj] Initial state vector (ket) or density matrix as a vector.

times [list / array] List of times for 𝑡. Must be uniformly spaced.

d1 [function, callable class] Function representing the deterministic evolution of the sys-
tem.

def d1(time (double), state (as a np.array vector)): return 1d np.array

d2 [function, callable class] Function representing the stochastic evolution of the system.

def d2(time (double), state (as a np.array vector)): return 2d np.array (N_sc_ops,
len(state0))

len_d2 [int] Number of output vector produced by d2

e_ops [list of qutip.Qobj] single operator or list of operators for which to evaluate ex-
pectation values. Must be a superoperator if the state vector is a density matrix.

kwargs [dictionary] Optional keyword arguments. See qutip.stochastic.
StochasticSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

Correlation Functions

correlation(H, state0, tlist, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f940>)

Calculate the two-operator two-time correlation function: ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ along two time axes using the
quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

state0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

tlist [array_like] list of times for 𝑡. tlist must be positive and contain the element 0. When
taking steady-steady correlations only one tlist value is necessary, i.e. when 𝑡 → ∞;
here tlist is automatically set, ignoring user input.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

reverse [bool] If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).
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options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_mat [array] An 2-dimensional array (matrix) of correlation values for the times speci-
fied by tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_ss(H, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f908>)

Calculate the two-operator two-time correlation function:

lim
𝑡→∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩

along one time axis (given steady-state initial conditions) using the quantum regression theorem and the
evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

reverse [bool] If True, calculate lim𝑡→∞ ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of
lim𝑡→∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

solver [str] choice of solver (me for master-equation and es for exponential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_vec [array] An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_2op_1t(H, state0, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f7b8>)

Calculate the two-operator two-time correlation function: ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ along one time axis using the
quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

state0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.
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c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

reverse [bool {False, True}] If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

solver [str {‘me’, ‘mc’, ‘es’}] choice of solver (me for master-equation, mc for Monte
Carlo, and es for exponential series).

options [Options] Solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_vec [ndarray] An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_2op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args={},
options=<qutip.solver.Options object at 0x1a2152f7f0>)

Calculate the two-operator two-time correlation function: ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ along two time axes using the
quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

state0 [Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0. If ‘state0’ is ‘None’, then
the steady state will be used as the initial state. The ‘steady-state’ is only implemented
for the me and es solvers.

tlist [array_like] list of times for 𝑡. tlist must be positive and contain the element 0. When
taking steady-steady correlations only one tlist value is necessary, i.e. when 𝑡 → ∞;
here tlist is automatically set, ignoring user input.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

reverse [bool {False, True}] If True, calculate ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)⟩ instead of ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_mat [ndarray] An 2-dimensional array (matrix) of correlation values for the times
specified by tlist (first index) and taulist (second index). If tlist is None, then a 1-
dimensional array of correlation values is returned instead.
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References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_3op_1t(H, state0, taulist, c_ops, a_op, b_op, c_op, solver='me', args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f828>)

Calculate the three-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡)⟩ along one time axis using
the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

rho0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

c_op [Qobj] operator C.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_vec [array] An array of correlation values for the times specified by taulist

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_3op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op, solver='me', args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f860>)

Calculate the three-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡)⟩ along two time axes using
the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

rho0 [Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0. If ‘state0’ is ‘None’, then the
steady state will be used as the initial state. The ‘steady-state’ is only implemented for
the me and es solvers.

tlist [array_like] list of times for 𝑡. tlist must be positive and contain the element 0. When
taking steady-steady correlations only one tlist value is necessary, i.e. when 𝑡 → ∞;
here tlist is automatically set, ignoring user input.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.
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c_op [Qobj] operator C.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_mat [array] An 2-dimensional array (matrix) of correlation values for the times speci-
fied by tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_4op_1t(H, state0, taulist, c_ops, a_op, b_op, c_op, d_op, solver='me', args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f978>)

Calculate the four-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩ along one time
axis using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

rho0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

c_op [Qobj] operator C.

d_op [Qobj] operator D.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_vec [array] An array of correlation values for the times specified by taulist.
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References

See, Gardiner, Quantum Noise, Section 5.2.

Note: Deprecated in QuTiP 3.1 Use correlation_3op_1t() instead.

correlation_4op_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op, d_op, solver='me', args={},
options=<qutip.solver.Options object at 0x1a2152f9b0>)

Calculate the four-operator two-time correlation function: ⟨𝐴(𝑡)𝐵(𝑡+ 𝜏)𝐶(𝑡+ 𝜏)𝐷(𝑡)⟩ along two time
axes using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where 𝜏 < 0.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

rho0 [Qobj] Initial state density matrix 𝜌0 or state vector 𝜓0. If ‘state0’ is ‘None’, then the
steady state will be used as the initial state. The ‘steady-state’ is only implemented for
the me and es solvers.

tlist [array_like] list of times for 𝑡. tlist must be positive and contain the element 0. When
taking steady-steady correlations only one tlist value is necessary, i.e. when 𝑡 → ∞;
here tlist is automatically set, ignoring user input.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

c_op [Qobj] operator C.

d_op [Qobj] operator D.

solver [str] choice of solver (me for master-equation, mc for Monte Carlo, and es for expo-
nential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

corr_mat [array] An 2-dimensional array (matrix) of correlation values for the times speci-
fied by tlist (first index) and taulist (second index). If tlist is None, then a 1-dimensional
array of correlation values is returned instead.

References

See, Gardiner, Quantum Noise, Section 5.2.

spectrum(H, wlist, c_ops, a_op, b_op, solver='es', use_pinv=False)
Calculate the spectrum of the correlation function lim𝑡→∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of
the correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡→∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using the solver indicated by the solver parameter. Note: this spectrum is only defined for stationary statis-
tics (uses steady state rho0)

Parameters
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H [qutip.qobj] system Hamiltonian.

wlist [array_like] list of frequencies for 𝜔.

c_ops [list] list of collapse operators.

a_op [Qobj] operator A.

b_op [Qobj] operator B.

solver [str] choice of solver (es for exponential series and pi for psuedo-inverse).

use_pinv [bool] For use with the pi solver: if True use numpy’s pinv method, otherwise use
a generic solver.

Returns

spectrum [array] An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.

spectrum_ss(H, wlist, c_ops, a_op, b_op)
Calculate the spectrum of the correlation function lim𝑡→∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of
the correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡→∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using an eseries based solver Note: this spectrum is only defined for stationary statistics (uses steady state
rho0).

Parameters

H [qutip.qobj] system Hamiltonian.

wlist [array_like] list of frequencies for 𝜔.

c_ops [list of qutip.qobj] list of collapse operators.

a_op [qutip.qobj] operator A.

b_op [qutip.qobj] operator B.

use_pinv [bool] If True use numpy’s pinv method, otherwise use a generic solver.

Returns

spectrum [array] An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.

spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv=False)
Calculate the spectrum of the correlation function lim𝑡→∞ ⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩, i.e., the Fourier transform of
the correlation function:

𝑆(𝜔) =

∫︁ ∞

−∞
lim
𝑡→∞

⟨𝐴(𝑡+ 𝜏)𝐵(𝑡)⟩ 𝑒−𝑖𝜔𝜏𝑑𝜏.

using a psuedo-inverse method. Note: this spectrum is only defined for stationary statistics (uses steady
state rho0)

Parameters

H [qutip.qobj] system Hamiltonian.

wlist [array_like] list of frequencies for 𝜔.

c_ops [list of qutip.qobj] list of collapse operators.

a_op [qutip.qobj] operator A.

b_op [qutip.qobj] operator B.

use_pinv [bool] If True use numpy’s pinv method, otherwise use a generic solver.

Returns

spectrum [array] An array with spectrum 𝑆(𝜔) for the frequencies specified in wlist.
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spectrum_correlation_fft(tlist, y, inverse=False)
Calculate the power spectrum corresponding to a two-time correlation function using FFT.

Parameters

tlist [array_like] list/array of times 𝑡 which the correlation function is given.

y [array_like] list/array of correlations corresponding to time delays 𝑡.

inverse: boolean boolean parameter for using a positive exponent in the Fourier Transform
instead. Default is False.

Returns

w, S [tuple] Returns an array of angular frequencies ‘w’ and the corresponding two-sided
power spectrum ‘S(w)’.

coherence_function_g1(H, state0, taulist, c_ops, a_op, solver='me', args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f898>)

Calculate the normalized first-order quantum coherence function:

𝑔(1)(𝜏) =
⟨𝐴†(𝜏)𝐴(0)⟩√︀

⟨𝐴†(𝜏)𝐴(𝜏)⟩⟨𝐴†(0)𝐴(0)⟩

using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

state0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.

a_op [Qobj] operator A.

solver [str] choice of solver (me for master-equation and es for exponential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

g1, G1 [tuple] The normalized and unnormalized second-order coherence function.

coherence_function_g2(H, state0, taulist, c_ops, a_op, solver='me', args={}, op-
tions=<qutip.solver.Options object at 0x1a2152f8d0>)

Calculate the normalized second-order quantum coherence function:

𝑔(2)(𝜏) =
⟨𝐴†(0)𝐴†(𝜏)𝐴(𝜏)𝐴(0)⟩
⟨𝐴†(𝜏)𝐴(𝜏)⟩⟨𝐴†(0)𝐴(0)⟩

using the quantum regression theorem and the evolution solver indicated by the solver parameter.

Parameters

H [Qobj] system Hamiltonian, may be time-dependent for solver choice of me or mc.

state0 [Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0). If ‘state0’ is ‘None’,
then the steady state will be used as the initial state. The ‘steady-state’ is only imple-
mented for the me and es solvers.

taulist [array_like] list of times for 𝜏 . taulist must be positive and contain the element 0.

c_ops [list] list of collapse operators, may be time-dependent for solver choice of me or mc.
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a_op [Qobj] operator A.

args [dict] Dictionary of arguments to be passed to solver.

solver [str] choice of solver (me for master-equation and es for exponential series).

options [Options] solver options class. ntraj is taken as a two-element list because the
mc correlator calls mcsolve() recursively; by default, ntraj=[20, 100]. mc_corr_eps
prevents divide-by-zero errors in the mc correlator; by default, mc_corr_eps=1e-10.

Returns

g2, G2 [tuple] The normalized and unnormalized second-order coherence function.

Steady-state Solvers

Module contains functions for solving for the steady state density matrix of open quantum systems defined by a
Liouvillian or Hamiltonian and a list of collapse operators.

steadystate(A, c_op_list=[], method='direct', solver=None, **kwargs)
Calculates the steady state for quantum evolution subject to the supplied Hamiltonian or Liouvillian operator
and (if given a Hamiltonian) a list of collapse operators.

If the user passes a Hamiltonian then it, along with the list of collapse operators, will be converted into a
Liouvillian operator in Lindblad form.

Parameters

A [qobj] A Hamiltonian or Liouvillian operator.

c_op_list [list] A list of collapse operators.

solver [str {None, ‘scipy’, ‘mkl’}] Selects the sparse solver to use. Default is auto-select
based on the availability of the MKL library.

method [str {‘direct’, ‘eigen’, ‘iterative-gmres’,]

‘iterative-lgmres’, ‘iterative-bicgstab’, ‘svd’, ‘power’, ‘power-gmres’, ‘power-
lgmres’, ‘power-bicgstab’}

Method for solving the underlying linear equation. Direct LU solver ‘direct’ (default),
sparse eigenvalue problem ‘eigen’, iterative GMRES method ‘iterative-gmres’, iterative
LGMRES method ‘iterative-lgmres’, iterative BICGSTAB method ‘iterative-bicgstab’,
SVD ‘svd’ (dense), or inverse-power method ‘power’. The iterative power methods
‘power-gmres’, ‘power-lgmres’, ‘power-bicgstab’ use the same solvers as their direct
counterparts.

return_info [bool, optional, default = False] Return a dictionary of solver-specific infoma-
tion about the solution and how it was obtained.

sparse [bool, optional, default = True] Solve for the steady state using sparse algorithms. If
set to False, the underlying Liouvillian operator will be converted into a dense matrix.
Use only for ‘smaller’ systems.

use_rcm [bool, optional, default = False] Use reverse Cuthill-Mckee reordering to mini-
mize fill-in in the LU factorization of the Liouvillian.

use_wbm [bool, optional, default = False] Use Weighted Bipartite Matching reordering to
make the Liouvillian diagonally dominant. This is useful for iterative preconditioners
only, and is set to True by default when finding a preconditioner.

weight [float, optional] Sets the size of the elements used for adding the unity trace condi-
tion to the linear solvers. This is set to the average abs value of the Liouvillian elements
if not specified by the user.

max_iter_refine [int {10}] MKL ONLY. Max. number of iterative refinements to perform.
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scaling_vectors [bool {True, False}] MKL ONLY. Scale matrix to unit norm columns and
rows.

weighted_matching [bool {True, False}] MKL ONLY. Use weighted matching to better
condition diagonal.

x0 [ndarray, optional] ITERATIVE ONLY. Initial guess for solution vector.

maxiter [int, optional, default=1000] ITERATIVE ONLY. Maximum number of iterations
to perform.

tol [float, optional, default=1e-12] ITERATIVE ONLY. Tolerance used for terminating
solver.

mtol [float, optional, default=None] ITERATIVE ‘power’ methods ONLY. Tolerance for lu
solve method. If None given then max(0.1*tol, 1e-15) is used

matol [float, optional, default=1e-15] ITERATIVE ONLY. Absolute tolerance for lu solve
method.

permc_spec [str, optional, default=’COLAMD’] ITERATIVE ONLY. Column ordering
used internally by superLU for the ‘direct’ LU decomposition method. Options include
‘COLAMD’ and ‘NATURAL’. If using RCM then this is set to ‘NATURAL’ automati-
cally unless explicitly specified.

use_precond [bool optional, default = False] ITERATIVE ONLY. Use an incomplete
sparse LU decomposition as a preconditioner for the ‘iterative’ GMRES and BICG
solvers. Speeds up convergence time by orders of magnitude in many cases.

M [{sparse matrix, dense matrix, LinearOperator}, optional] ITERATIVE ONLY. Precon-
ditioner for A. The preconditioner should approximate the inverse of A. Effective pre-
conditioning can dramatically improve the rate of convergence for iterative methods. If
no preconditioner is given and use_precond = True, then one is generated auto-
matically.

fill_factor [float, optional, default = 100] ITERATIVE ONLY. Specifies the fill ratio upper
bound (>=1) of the iLU preconditioner. Lower values save memory at the cost of longer
execution times and a possible singular factorization.

drop_tol [float, optional, default = 1e-4] ITERATIVE ONLY. Sets the threshold for the
magnitude of preconditioner elements that should be dropped. Can be reduced for a
courser factorization at the cost of an increased number of iterations, and a possible
singular factorization.

diag_pivot_thresh [float, optional, default = None] ITERATIVE ONLY. Sets the threshold
between [0,1] for which diagonal elements are considered acceptable pivot points when
using a preconditioner. A value of zero forces the pivot to be the diagonal element.

ILU_MILU [str, optional, default = ‘smilu_2’] ITERATIVE ONLY. Selects the incomplete
LU decomposition method algoithm used in creating the preconditoner. Should only be
used by advanced users.

Returns

dm [qobj] Steady state density matrix.

info [dict, optional] Dictionary containing solver-specific information about the solution.
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Notes

The SVD method works only for dense operators (i.e. small systems).

build_preconditioner(A, c_op_list=[], **kwargs)
Constructs a iLU preconditioner necessary for solving for the steady state density matrix using the iterative
linear solvers in the ‘steadystate’ function.

Parameters

A [qobj] A Hamiltonian or Liouvillian operator.

c_op_list [list] A list of collapse operators.

return_info [bool, optional, default = False] Return a dictionary of solver-specific infoma-
tion about the solution and how it was obtained.

use_rcm [bool, optional, default = False] Use reverse Cuthill-Mckee reordering to mini-
mize fill-in in the LU factorization of the Liouvillian.

use_wbm [bool, optional, default = False] Use Weighted Bipartite Matching reordering to
make the Liouvillian diagonally dominant. This is useful for iterative preconditioners
only, and is set to True by default when finding a preconditioner.

weight [float, optional] Sets the size of the elements used for adding the unity trace condi-
tion to the linear solvers. This is set to the average abs value of the Liouvillian elements
if not specified by the user.

method [str, default = ‘iterative’] Tells the preconditioner what type of Liouvillian to build
for iLU factorization. For direct iterative methods use ‘iterative’. For power iterative
methods use ‘power’.

permc_spec [str, optional, default=’COLAMD’] Column ordering used internally by su-
perLU for the ‘direct’ LU decomposition method. Options include ‘COLAMD’ and
‘NATURAL’. If using RCM then this is set to ‘NATURAL’ automatically unless explic-
itly specified.

fill_factor [float, optional, default = 100] Specifies the fill ratio upper bound (>=1) of the
iLU preconditioner. Lower values save memory at the cost of longer execution times
and a possible singular factorization.

drop_tol [float, optional, default = 1e-4] Sets the threshold for the magnitude of precondi-
tioner elements that should be dropped. Can be reduced for a courser factorization at
the cost of an increased number of iterations, and a possible singular factorization.

diag_pivot_thresh [float, optional, default = None] Sets the threshold between [0,1] for
which diagonal elements are considered acceptable pivot points when using a precondi-
tioner. A value of zero forces the pivot to be the diagonal element.

ILU_MILU [str, optional, default = ‘smilu_2’] Selects the incomplete LU decomposition
method algoithm used in creating the preconditoner. Should only be used by advanced
users.

Returns

lu [object] Returns a SuperLU object representing iLU preconditioner.

info [dict, optional] Dictionary containing solver-specific information.
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Propagators

propagator(H, t, c_op_list=[], args={}, options=None, unitary_mode='batch', parallel=False,
progress_bar=None, _safe_mode=True, **kwargs)

Calculate the propagator U(t) for the density matrix or wave function such that 𝜓(𝑡) = 𝑈(𝑡)𝜓(0) or
𝜌v𝑒𝑐(𝑡) = 𝑈(𝑡)𝜌v𝑒𝑐(0) where 𝜌v𝑒𝑐 is the vector representation of the density matrix.

Parameters

H [qobj or list] Hamiltonian as a Qobj instance of a nested list of Qobjs and coefficients in
the list-string or list-function format for time-dependent Hamiltonians (see description
in qutip.mesolve).

t [float or array-like] Time or list of times for which to evaluate the propagator.

c_op_list [list] List of qobj collapse operators.

args [list/array/dictionary] Parameters to callback functions for time-dependent Hamiltoni-
ans and collapse operators.

options [qutip.Options] with options for the ODE solver.

unitary_mode = str (‘batch’, ‘single’) Solve all basis vectors simulaneously (‘batch’) or
individually (‘single’).

parallel [bool {False, True}] Run the propagator in parallel mode. This will override the
unitary_mode settings if set to True.

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation. By default no progress bar is used,
and if set to True a TextProgressBar will be used.

Returns

a [qobj] Instance representing the propagator 𝑈(𝑡).

propagator_steadystate(U)
Find the steady state for successive applications of the propagator 𝑈 .

Parameters

U [qobj] Operator representing the propagator.

Returns

a [qobj] Instance representing the steady-state density matrix.

Time-dependent problems

rhs_generate(H, c_ops, args={}, options=<qutip.solver.Options object at 0xd20dfd390>,
name=None, cleanup=True)

Generates the Cython functions needed for solving the dynamics of a given system using the mesolve
function inside a parfor loop.

Parameters

H [qobj] System Hamiltonian.

c_ops [list] list of collapse operators.

args [dict] Arguments for time-dependent Hamiltonian and collapse operator terms.

options [Options] Instance of ODE solver options.

name: str Name of generated RHS

cleanup: bool Whether the generated cython file should be automatically removed or not.
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Notes

Using this function with any solver other than the mesolve function will result in an error.

rhs_clear()
Resets the string-format time-dependent Hamiltonian parameters.

Returns

Nothing, just clears data from internal config module.

Scattering in Quantum Optical Systems

Photon scattering in quantum optical systems

This module includes a collection of functions for numerically computing photon scattering in driven arbitrary
systems coupled to some configuration of output waveguides. The implementation of these functions closely
follows the mathematical treatment given in K.A. Fischer, et. al., Scattering of Coherent Pulses from Quantum
Optical Systems (2017, arXiv:1710.02875).

temporal_basis_vector(waveguide_emission_indices, n_time_bins)
Generate a temporal basis vector for emissions at specified time bins into specified waveguides.

Parameters

waveguide_emission_indices [list or tuple] List of indices where photon emission occurs
for each waveguide, e.g. [[t1_wg1], [t1_wg2, t2_wg2], [], [t1_wg4, t2_wg4, t3_wg4]].

n_time_bins [int] Number of time bins; the range over which each index can vary.

Returns

temporal_basis_vector [:class: qutip.Qobj] A basis vector representing photon scattering
at the specified indices. If there are W waveguides, T times, and N photon emissions,
then the basis vector has dimensionality (W*T)^N.

temporal_scattered_state(H, psi0, n_emissions, c_ops, tlist, system_zero_state=None, con-
struct_effective_hamiltonian=True)

Compute the scattered n-photon state projected onto the temporal basis.

Parameters

H [:class: qutip.Qobj or list] System-waveguide(s) Hamiltonian or effective Hamiltonian
in Qobj or list-callback format. If construct_effective_hamiltonian is not specified, an
effective Hamiltonian is constructed from H and c_ops.

psi0 [:class: qutip.Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0).

n_emissions [int] Number of photon emissions to calculate.

c_ops [list] List of collapse operators for each waveguide; these are assumed to include
spontaneous decay rates, e.g. 𝜎 =

√
𝛾 · 𝑎

tlist [array_like] List of times for 𝜏𝑖. tlist should contain 0 and exceed the pulse duration /
temporal region of interest.

system_zero_state [:class: qutip.Qobj] State representing zero excitations in the system.
Defaults to 𝜓(𝑡0)

construct_effective_hamiltonian [bool] Whether an effective Hamiltonian should be con-
structed from H and c_ops: 𝐻𝑒𝑓𝑓 = 𝐻 − 𝑖

2

∑︀
𝑛 𝜎

†
𝑛𝜎𝑛 Default: True.

Returns

phi_n [:class: qutip.Qobj] The scattered bath state projected onto the temporal basis given
by tlist. If there are W waveguides, T times, and N photon emissions, then the state is a
tensor product state with dimensionality T^(W*N).
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scattering_probability(H, psi0, n_emissions, c_ops, tlist, system_zero_state=None, con-
struct_effective_hamiltonian=True)

Compute the integrated probability of scattering n photons in an arbitrary system. This function accepts a
nonlinearly spaced array of times.

Parameters

H [:class: qutip.Qobj or list] System-waveguide(s) Hamiltonian or effective Hamiltonian
in Qobj or list-callback format. If construct_effective_hamiltonian is not specified, an
effective Hamiltonian is constructed from H and c_ops.

psi0 [:class: qutip.Qobj] Initial state density matrix 𝜌(𝑡0) or state vector 𝜓(𝑡0).

n_emissions [int] Number of photons emitted by the system (into any combination of
waveguides).

c_ops [list] List of collapse operators for each waveguide; these are assumed to include
spontaneous decay rates, e.g. 𝜎 =

√
𝛾 · 𝑎.

tlist [array_like] List of times for 𝜏𝑖. tlist should contain 0 and exceed the pulse duration /
temporal region of interest; tlist need not be linearly spaced.

system_zero_state [:class: qutip.Qobj] State representing zero excitations in the system.
Defaults to basis(systemDims, 0).

construct_effective_hamiltonian [bool] Whether an effective Hamiltonian should be con-
structed from H and c_ops: 𝐻𝑒𝑓𝑓 = 𝐻 − 𝑖

2

∑︀
𝑛 𝜎

†
𝑛𝜎𝑛 Default: True.

Returns

scattering_prob [float] The probability of scattering n photons from the system over the
time range specified.

Permutational Invariance

Permutational Invariant Quantum Solver (PIQS)

This module calculates the Liouvillian for the dynamics of ensembles of identical two-level systems (TLS) in the
presence of local and collective processes by exploiting permutational symmetry and using the Dicke basis. It also
allows to characterize nonlinear functions of the density matrix.

num_dicke_ladders(N)
Calculate the total number of ladders in the Dicke space.

For a collection of N two-level systems it counts how many different “j” exist or the number of blocks in
the block-diagonal matrix.

Parameters

N: int The number of two-level systems.

Returns

Nj: int The number of Dicke ladders.

num_tls(nds)
Calculate the number of two-level systems.

Parameters

nds: int The number of Dicke states.

Returns

N: int The number of two-level systems.

isdiagonal(mat)
Check if the input matrix is diagonal.

Parameters

304 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

mat: ndarray/Qobj A 2D numpy array

Returns

diag: bool True/False depending on whether the input matrix is diagonal.

dicke_blocks(rho)
Create the list of blocks for block-diagonal density matrix in the Dicke basis.

Parameters

rho [qutip.Qobj] A 2D block-diagonal matrix of ones with dimension (nds,nds), where
nds is the number of Dicke states for N two-level systems.

Returns

square_blocks: list of np.array Give back the blocks list.

dicke_blocks_full(rho)
Give the full (2^N-dimensional) list of blocks for a Dicke-basis matrix.

Parameters

rho [qutip.Qobj] A 2D block-diagonal matrix of ones with dimension (nds,nds), where
nds is the number of Dicke states for N two-level systems.

Returns

full_blocks [list] The list of blocks expanded in the 2^N space for N qubits.

dicke_function_trace(f, rho)
Calculate the trace of a function on a Dicke density matrix. :param f: A Taylor-expandable function of rho.
:type f: function :param rho: A density matrix in the Dicke basis. :type rho: qutip.Qobj

Returns

res [float] Trace of a nonlinear function on rho.

purity_dicke(rho)
Calculate purity of a density matrix in the Dicke basis. It accounts for the degenerate blocks in the density
matrix.

Parameters

rho [qutip.Qobj] Density matrix in the Dicke basis of qutip.piqs.jspin(N), for N spins.

Returns

purity [float] The purity of the quantum state. It’s 1 for pure states, 0<=purity<1 for mixed
states.

entropy_vn_dicke(rho)
Von Neumann Entropy of a Dicke-basis density matrix.

Parameters

rho [qutip.Qobj] A 2D block-diagonal matrix of ones with dimension (nds,nds), where
nds is the number of Dicke states for N two-level systems.

Returns

entropy_dm: float Entropy. Use degeneracy to multiply each block.

state_degeneracy(N, j)
Calculate the degeneracy of the Dicke state.

Each state |𝑗,𝑚⟩ includes D(N,j) irreducible representations |𝑗,𝑚, 𝛼⟩.

Uses Decimals to calculate higher numerator and denominators numbers.

Parameters

N: int The number of two-level systems.
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j: float Total spin eigenvalue (cooperativity).

Returns

degeneracy: int The state degeneracy.

m_degeneracy(N, m)
Calculate the number of Dicke states |𝑗,𝑚⟩ with same energy.

Parameters

N: int The number of two-level systems.

m: float Total spin z-axis projection eigenvalue (proportional to the total energy).

Returns

degeneracy: int The m-degeneracy.

energy_degeneracy(N, m)
Calculate the number of Dicke states with same energy.

The use of the Decimals class allows to explore N > 1000, unlike the built-in function scipy.special.binom

Parameters

N: int The number of two-level systems.

m: float Total spin z-axis projection eigenvalue. This is proportional to the total energy.

Returns

degeneracy: int The energy degeneracy

ap(j, m)
Calculate the coefficient ap by applying J_+ |j, m>.

The action of ap is given by: 𝐽+|𝑗,𝑚⟩ = 𝐴+(𝑗,𝑚)|𝑗,𝑚+ 1⟩

Parameters

j, m: float The value for j and m in the dicke basis |j,m>.

Returns

a_plus: float The value of 𝑎+.

am(j, m)
Calculate the operator am used later.

The action of ap is given by: J_{-}|j, m> = A_{-}(jm)|j, m-1>

Parameters

j: float The value for j.

m: float The value for m.

Returns

a_minus: float The value of 𝑎−.

spin_algebra(N, op=None)
Create the list [sx, sy, sz] with the spin operators.

The operators are constructed for a collection of N two-level systems (TLSs). Each element of the list, i.e.,
sx, is a vector of qutip.Qobj objects (spin matrices), as it cointains the list of the SU(2) Pauli matrices for
the N TLSs. Each TLS operator sx[i], with i = 0, . . . , (N-1), is placed in a 2𝑁 -dimensional Hilbert space.

Parameters

N: int The number of two-level systems.

Returns
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spin_operators: list or :class: qutip.Qobj A list of qutip.Qobj operators - [sx, sy, sz] or
the requested operator.

Notes

sx[i] is 𝜎𝑥

2 in the composite Hilbert space.

jspin(N, op=None, basis='dicke')
Calculate the list of collective operators of the total algebra.

The Dicke basis |𝑗,𝑚⟩⟨𝑗,𝑚′| is used by default. Otherwise with “uncoupled” the operators are in a 2𝑁

space.

Parameters

N: int Number of two-level systems.

op: str The operator to return ‘x’,’y’,’z’,’+’,’-‘. If no operator given, then output is the list
of operators for [‘x’,’y’,’z’].

basis: str The basis of the operators - “dicke” or “uncoupled” default: “dicke”.

Returns

j_alg: list or :class: qutip.Qobj A list of qutip.Qobj representing all the operators in the
“dicke” or “uncoupled” basis or a single operator requested.

collapse_uncoupled(N, emission=0.0, dephasing=0.0, pumping=0.0, collective_emission=0.0, col-
lective_dephasing=0.0, collective_pumping=0.0)

Create the collapse operators (c_ops) of the Lindbladian in the uncoupled basis

These operators are in the uncoupled basis of the two-level system (TLS) SU(2) Pauli matrices.

Parameters

N: int The number of two-level systems.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0

collective_pumping: float Collective pumping coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

Returns

c_ops: list The list of collapse operators as qutip.Qobj for the system.

Notes

The collapse operator list can be given to qutip.mesolve. Notice that the operators are placed in a Hilbert
space of dimension 2𝑁 . Thus the method is suitable only for small N (of the order of 10).

dicke_basis(N, jmm1=None)
Initialize the density matrix of a Dicke state for several (j, m, m1).

This function can be used to build arbitrary states in the Dicke basis |𝑗,𝑚⟩⟨𝑗,𝑚′|. We create coefficients
for each (j, m, m1) value in the dictionary jmm1. The mapping for the (i, k) index of the density matrix to
the |j, m> values is given by the cythonized function jmm1_dictionary. A density matrix is created from the
given dictionary of coefficients for each (j, m, m1).

Parameters

N: int The number of two-level systems.
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jmm1: dict A dictionary of {(j, m, m1): p} that gives a density p for the (j, m, m1) matrix
element.

Returns

rho: :class: qutip.Qobj The density matrix in the Dicke basis.

dicke(N, j, m)
Generate a Dicke state as a pure density matrix in the Dicke basis.

For instance, the superradiant state given by |𝑗,𝑚⟩ = |1, 0⟩ for N = 2, and the state is represented as a
density matrix of size (nds, nds) or (4, 4), with the (1, 1) element set to 1.

Parameters

N: int The number of two-level systems.

j: float The eigenvalue j of the Dicke state (j, m).

m: float The eigenvalue m of the Dicke state (j, m).

Returns

rho: :class: qutip.Qobj The density matrix.

excited(N, basis='dicke')
Generate the density matrix for the excited state.

This state is given by (N/2, N/2) in the default Dicke basis. If the argument basis is “uncoupled” then it
generates the state in a 2**N dim Hilbert space.

Parameters

N: int The number of two-level systems.

basis: str The basis to use. Either “dicke” or “uncoupled”.

Returns

state: :class: qutip.Qobj The excited state density matrix in the requested basis.

superradiant(N, basis='dicke')
Generate the density matrix of the superradiant state.

This state is given by (N/2, 0) or (N/2, 0.5) in the Dicke basis. If the argument basis is “uncoupled” then it
generates the state in a 2**N dim Hilbert space.

Parameters

N: int The number of two-level systems.

basis: str The basis to use. Either “dicke” or “uncoupled”.

Returns

state: :class: qutip.Qobj The superradiant state density matrix in the requested basis.

css(N, x=0.7071067811865475, y=0.7071067811865475, basis='dicke', coordinates='cartesian')
Generate the density matrix of the Coherent Spin State (CSS).

It can be defined as, |𝐶𝑆𝑆⟩ =
∏︀𝑁

𝑖 (𝑎|1⟩𝑖 + 𝑏|0⟩𝑖) with 𝑎 = 𝑠𝑖𝑛( 𝜃
2 ), 𝑏 = 𝑒𝑖𝜑 cos( 𝜃

2 ). The default basis is
that of Dicke space |𝑗,𝑚⟩⟨𝑗,𝑚′|. The default state is the symmetric CSS, |𝐶𝑆𝑆⟩ = |+⟩.

Parameters

N: int The number of two-level systems.

x, y: float The coefficients of the CSS state.

basis: str The basis to use. Either “dicke” or “uncoupled”.

coordinates: str Either “cartesian” or “polar”. If polar then the coefficients are constructed
as sin(x/2), cos(x/2)e^(iy).
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Returns

rho: :class: qutip.Qobj The CSS state density matrix.

ghz(N, basis='dicke')
Generate the density matrix of the GHZ state.

If the argument basis is “uncoupled” then it generates the state in a 2𝑁 -dimensional Hilbert space.

Parameters

N: int The number of two-level systems.

basis: str The basis to use. Either “dicke” or “uncoupled”.

Returns

state: :class: qutip.Qobj The GHZ state density matrix in the requested basis.

ground(N, basis='dicke')
Generate the density matrix of the ground state.

This state is given by (N/2, -N/2) in the Dicke basis. If the argument basis is “uncoupled” then it generates
the state in a 2𝑁 -dimensional Hilbert space.

Parameters

N: int The number of two-level systems.

basis: str The basis to use. Either “dicke” or “uncoupled”

Returns

state: :class: qutip.Qobj The ground state density matrix in the requested basis.

identity_uncoupled(N)
Generate the identity in a 2𝑁 -dimensional Hilbert space.

The identity matrix is formed from the tensor product of N TLSs.

Parameters

N: int The number of two-level systems.

Returns

identity: :class: qutip.Qobj The identity matrix.

block_matrix(N, elements='ones')
Construct the block-diagonal matrix for the Dicke basis.

Parameters

N [int] Number of two-level systems.

elements [str {‘ones’ (default),’degeneracy’}]

Returns

block_matr [ndarray] A 2D block-diagonal matrix with dimension (nds,nds), where nds is
the number of Dicke states for N two-level systems. Filled with ones or the value of
degeneracy at each matrix element.

tau_column(tau, k, j)
Determine the column index for the non-zero elements of the matrix for a particular row k and the value of
j from the Dicke space.

Parameters

tau: str The tau function to check for this k and j.

k: int The row of the matrix M for which the non zero elements have to be calculated.

j: float The value of j for this row.
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5.2.4 Lattice

Lattice Properties

cell_structures(val_s=None, val_t=None, val_u=None)
Returns two matrices H_cell and cell_T to help the user form the inputs for defining an instance of Lattice1d
and Lattice2d classes. The two matrices are the intra and inter cell Hamiltonians with the tensor structure
of the specified site numbers and/or degrees of freedom defined by the user.

Parameters

val_s [list of str/str] The first list of str’s specifying the sites/degrees of freedom in the
unitcell

val_t [list of str/str] The second list of str’s specifying the sites/degrees of freedom in the
unitcell

val_u [list of str/str] The third list of str’s specifying the sites/degrees of freedom in the
unitcell

Returns

H_cell_s [list of list of str] tensor structure of the cell Hamiltonian elements

T_inter_cell_s [list of list of str] tensor structure of the inter cell Hamiltonian elements

H_cell [Qobj] A Qobj initiated with all 0s with proper shape for an input as Hamilto-
nian_of_cell in Lattice1d.__init__()

T_inter_cell [Qobj] A Qobj initiated with all 0s with proper shape for an input as inter_hop
in Lattice1d.__init__()

Topology

berry_curvature(eigfs)
Computes the discretized Berry curvature on the two dimensional grid of parameters. The function works
well for cases with no band mixing.

Parameters

eigfs [numpy ndarray] 4 dimensional numpy ndarray where the first two indices are for the
two discrete values of the two parameters and the third is the index of the occupied
bands. The fourth dimension holds the eigenfunctions.

Returns

b_curv [numpy ndarray] A two dimensional array of the discretized Berry curvature de-
fined for the values of the two parameters defined in the eigfs.

plot_berry_curvature(eigfs)
Plots the discretized Berry curvature on the two dimensional grid of parameters. The function works well
for cases with no band mixing.
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5.2.5 Visualization

Pseudoprobability Functions

qfunc(state, xvec, yvec, g=1.4142135623730951)
Q-function of a given state vector or density matrix at points xvec + i * yvec.

Parameters

state [qobj] A state vector or density matrix.

xvec [array_like] x-coordinates at which to calculate the Wigner function.

yvec [array_like] y-coordinates at which to calculate the Wigner function.

g [float] Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2). The value of g is related
to the value of hbar in the commutation relation [x, y] = 1j * hbar via hbar=2/g^2 giving
the default value hbar=1.

Returns

Q [array] Values representing the Q-function calculated over the specified range
[xvec,yvec].

spin_q_function(rho, theta, phi)
Husimi Q-function for spins.

Parameters

state [qobj] A state vector or density matrix for a spin-j quantum system.

theta [array_like] theta-coordinates at which to calculate the Q function.

phi [array_like] phi-coordinates at which to calculate the Q function.

Returns

Q, THETA, PHI [2d-array] Values representing the spin Q function at the values specified
by THETA and PHI.

spin_wigner(rho, theta, phi)
Wigner function for spins on the Bloch sphere.

Parameters

state [qobj] A state vector or density matrix for a spin-j quantum system.

theta [array_like] theta-coordinates at which to calculate the Q function.

phi [array_like] phi-coordinates at which to calculate the Q function.

Returns

W, THETA, PHI [2d-array] Values representing the spin Wigner function at the values
specified by THETA and PHI.

Notes

Experimental.

wigner(psi, xvec, yvec, method='clenshaw', g=1.4142135623730951, sparse=False, parfor=False)
Wigner function for a state vector or density matrix at points xvec + i * yvec.

Parameters

state [qobj] A state vector or density matrix.

xvec [array_like] x-coordinates at which to calculate the Wigner function.
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yvec [array_like] y-coordinates at which to calculate the Wigner function. Does not apply
to the ‘fft’ method.

g [float] Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2). The value of g is related
to the value of hbar in the commutation relation [x, y] = i * hbar via hbar=2/g^2 giving
the default value hbar=1.

method [string {‘clenshaw’, ‘iterative’, ‘laguerre’, ‘fft’}] Select method ‘clenshaw’ ‘iter-
ative’, ‘laguerre’, or ‘fft’, where ‘clenshaw’ and ‘iterative’ use an iterative method to
evaluate the Wigner functions for density matrices |𝑚 >< 𝑛|, while ‘laguerre’ uses the
Laguerre polynomials in scipy for the same task. The ‘fft’ method evaluates the Fourier
transform of the density matrix. The ‘iterative’ method is default, and in general rec-
ommended, but the ‘laguerre’ method is more efficient for very sparse density matrices
(e.g., superpositions of Fock states in a large Hilbert space). The ‘clenshaw’ method
is the preferred method for dealing with density matrices that have a large number of
excitations (>~50). ‘clenshaw’ is a fast and numerically stable method.

sparse [bool {False, True}] Tells the default solver whether or not to keep the input density
matrix in sparse format. As the dimensions of the density matrix grow, setthing this flag
can result in increased performance.

parfor [bool {False, True}] Flag for calculating the Laguerre polynomial based Wigner
function method=’laguerre’ in parallel using the parfor function.

Returns

W [array] Values representing the Wigner function calculated over the specified range
[xvec,yvec].

yvex [array] FFT ONLY. Returns the y-coordinate values calculated via the Fourier trans-
form.

Notes

The ‘fft’ method accepts only an xvec input for the x-coordinate. The y-coordinates are calculated internally.

References

Ulf Leonhardt, Measuring the Quantum State of Light, (Cambridge University Press, 1997)

Graphs and Visualization

Functions for visualizing results of quantum dynamics simulations, visualizations of quantum states and processes.

hinton(rho, xlabels=None, ylabels=None, title=None, ax=None, cmap=None, label_top=True)
Draws a Hinton diagram for visualizing a density matrix or superoperator.

Parameters

rho [qobj] Input density matrix or superoperator.

xlabels [list of strings or False] list of x labels

ylabels [list of strings or False] list of y labels

title [string] title of the plot (optional)

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

cmap [a matplotlib colormap instance] Color map to use when plotting.

label_top [bool] If True, x-axis labels will be placed on top, otherwise they will appear
below the plot.
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Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises

ValueError Input argument is not a quantum object.

matrix_histogram(M, xlabels=None, ylabels=None, title=None, limits=None, colorbar=True,
fig=None, ax=None)

Draw a histogram for the matrix M, with the given x and y labels and title.

Parameters

M [Matrix of Qobj] The matrix to visualize

xlabels [list of strings] list of x labels

ylabels [list of strings] list of y labels

title [string] title of the plot (optional)

limits [list/array with two float numbers] The z-axis limits [min, max] (optional)

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises

ValueError Input argument is not valid.

matrix_histogram_complex(M, xlabels=None, ylabels=None, title=None, limits=None,
phase_limits=None, colorbar=True, fig=None, ax=None, thresh-
old=None)

Draw a histogram for the amplitudes of matrix M, using the argument of each element for coloring the bars,
with the given x and y labels and title.

Parameters

M [Matrix of Qobj] The matrix to visualize

xlabels [list of strings] list of x labels

ylabels [list of strings] list of y labels

title [string] title of the plot (optional)

limits [list/array with two float numbers] The z-axis limits [min, max] (optional)

phase_limits [list/array with two float numbers] The phase-axis (colorbar) limits [min,
max] (optional)

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

threshold: float (None) Threshold for when bars of smaller height should be transparent.
If not set, all bars are colored according to the color map.

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises

ValueError Input argument is not valid.

plot_energy_levels(H_list, N=0, labels=None, show_ylabels=False, figsize=(8, 12), fig=None,
ax=None)

Plot the energy level diagrams for a list of Hamiltonians. Include up to N energy levels. For each element
in H_list, the energy levels diagram for the cummulative Hamiltonian sum(H_list[0:n]) is plotted, where n
is the index of an element in H_list.
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Parameters

H_list [List of Qobj]

A list of Hamiltonians.

labels [List of string] A list of labels for each Hamiltonian

show_ylabels [Bool (default False)] Show y labels to the left of energy levels of the
initial Hamiltonian.

N [int] The number of energy levels to plot

figsize [tuple (int,int)] The size of the figure (width, height).

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises

ValueError Input argument is not valid.

plot_fock_distribution(rho, offset=0, fig=None, ax=None, figsize=(8, 6), title=None,
unit_y_range=True)

Plot the Fock distribution for a density matrix (or ket) that describes an oscillator mode.

Parameters

rho [qutip.qobj.Qobj] The density matrix (or ket) of the state to visualize.

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

title [string] An optional title for the figure.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_wigner_fock_distribution(rho, fig=None, axes=None, figsize=(8, 4), cmap=None, al-
pha_max=7.5, colorbar=False, method='iterative', projec-
tion='2d')

Plot the Fock distribution and the Wigner function for a density matrix (or ket) that describes an oscillator
mode.

Parameters

rho [qutip.qobj.Qobj] The density matrix (or ket) of the state to visualize.

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

axes [a list of two matplotlib axes instances] The axes context in which the plot will be
drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

cmap [a matplotlib cmap instance] The colormap.

alpha_max [float] The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar [bool] Whether (True) or not (False) a colorbar should be attached to the Wigner
function graph.
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method [string {‘iterative’, ‘laguerre’, ‘fft’}] The method used for calculating the wigner
function. See the documentation for qutip.wigner for details.

projection: string {‘2d’, ‘3d’} Specify whether the Wigner function is to be plotted as a
contour graph (‘2d’) or surface plot (‘3d’).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_wigner(rho, fig=None, ax=None, figsize=(6, 6), cmap=None, alpha_max=7.5, colorbar=False,
method='clenshaw', projection='2d')

Plot the the Wigner function for a density matrix (or ket) that describes an oscillator mode.

Parameters

rho [qutip.qobj.Qobj] The density matrix (or ket) of the state to visualize.

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

cmap [a matplotlib cmap instance] The colormap.

alpha_max [float] The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar [bool] Whether (True) or not (False) a colorbar should be attached to the Wigner
function graph.

method [string {‘clenshaw’, ‘iterative’, ‘laguerre’, ‘fft’}] The method used for calculating
the wigner function. See the documentation for qutip.wigner for details.

projection: string {‘2d’, ‘3d’} Specify whether the Wigner function is to be plotted as a
contour graph (‘2d’) or surface plot (‘3d’).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

sphereplot(theta, phi, values, fig=None, ax=None, save=False)
Plots a matrix of values on a sphere

Parameters

theta [float] Angle with respect to z-axis

phi [float] Angle in x-y plane

values [array] Data set to be plotted

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

save [bool {False , True}] Whether to save the figure or not

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_schmidt(ket, splitting=None, labels_iteration=(3, 2), theme='light', fig=None, ax=None, fig-
size=(6, 6))

Plotting scheme related to Schmidt decomposition. Converts a state into a matrix (A_ij -> A_i^j), where
rows are first particles and columns - last.

See also: plot_qubism with how=’before_after’ for a similar plot.

Parameters

ket [Qobj] Pure state for plotting.
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splitting [int] Plot for a number of first particles versus the rest. If not given, it is (number
of particles + 1) // 2.

theme [‘light’ (default) or ‘dark’] Set coloring theme for mapping complex values into
colors. See: complex_array_to_rgb.

labels_iteration [int or pair of ints (default (3,2))] Number of particles to be shown as tick
labels, for first (vertical) and last (horizontal) particles, respectively.

fig [a matplotlib figure instance] The figure canvas on which the plot will be drawn.

ax [a matplotlib axis instance] The axis context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_qubism(ket, theme='light', how='pairs', grid_iteration=1, legend_iteration=0, fig=None,
ax=None, figsize=(6, 6))

Qubism plot for pure states of many qudits. Works best for spin chains, especially with even number of
particles of the same dimension. Allows to see entanglement between first 2*k particles and the rest.

More information:

J. Rodriguez-Laguna, P. Migdal, M. Ibanez Berganza, M. Lewenstein, G. Sierra, “Qubism:
self-similar visualization of many-body wavefunctions”, New J. Phys. 14 053028 (2012),
arXiv:1112.3560, http://dx.doi.org/10.1088/1367-2630/14/5/053028 (open access)

Parameters

ket [Qobj] Pure state for plotting.

theme [‘light’ (default) or ‘dark’] Set coloring theme for mapping complex values into
colors. See: complex_array_to_rgb.

how [‘pairs’ (default), ‘pairs_skewed’ or ‘before_after’] Type of Qubism plotting. Options:

‘pairs’ - typical coordinates, ‘pairs_skewed’ - for ferromagnetic/antriferromagnetic
plots, ‘before_after’ - related to Schmidt plot (see also: plot_schmidt).

grid_iteration [int (default 1)] Helper lines to be drawn on plot. Show tiles for
2*grid_iteration particles vs all others.

legend_iteration [int (default 0) or ‘grid_iteration’ or ‘all’] Show labels for first 2*leg-
end_iteration particles. Option ‘grid_iteration’ sets the same number of particles

as for grid_iteration.

Option ‘all’ makes label for all particles. Typically it should be 0, 1, 2 or perhaps 3.

fig [a matplotlib figure instance] The figure canvas on which the plot will be drawn.

ax [a matplotlib axis instance] The axis context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_expectation_values(results, ylabels=[], title=None, show_legend=False, fig=None,
axes=None, figsize=(8, 4))

Visualize the results (expectation values) for an evolution solver. results is assumed to be an instance of
Result, or a list of Result instances.

Parameters
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results [(list of) qutip.solver.Result] List of results objects returned by any of the
QuTiP evolution solvers.

ylabels [list of strings] The y-axis labels. List should be of the same length as results.

title [string] The title of the figure.

show_legend [bool] Whether or not to show the legend.

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

axes [a matplotlib axes instance] The axes context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_spin_distribution_2d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 8))
Plot a spin distribution function (given as meshgrid data) with a 2D projection where the surface of the unit
sphere is mapped on the unit disk.

Parameters

P [matrix] Distribution values as a meshgrid matrix.

THETA [matrix] Meshgrid matrix for the theta coordinate.

PHI [matrix] Meshgrid matrix for the phi coordinate.

fig [a matplotlib figure instance] The figure canvas on which the plot will be drawn.

ax [a matplotlib axis instance] The axis context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_spin_distribution_3d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 6))
Plots a matrix of values on a sphere

Parameters

P [matrix] Distribution values as a meshgrid matrix.

THETA [matrix] Meshgrid matrix for the theta coordinate.

PHI [matrix] Meshgrid matrix for the phi coordinate.

fig [a matplotlib figure instance] The figure canvas on which the plot will be drawn.

ax [a matplotlib axis instance] The axis context in which the plot will be drawn.

figsize [(width, height)] The size of the matplotlib figure (in inches) if it is to be created
(that is, if no ‘fig’ and ‘ax’ arguments are passed).

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_wigner_sphere(fig, ax, wigner, reflections)
Plots a coloured Bloch sphere.

Parameters

fig

An instance of matplotlib.pyplot.figure.
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ax An axes instance in fig.

wigner [list of float] the wigner transformation at steps different theta and phi.

reflections [bool] If the reflections of the sphere should be plotted as well.

Notes

Special thanks to Russell P Rundle for writing this function.

sphereplot(theta, phi, values, fig=None, ax=None, save=False)
Plots a matrix of values on a sphere

Parameters

theta [float] Angle with respect to z-axis

phi [float] Angle in x-y plane

values [array] Data set to be plotted

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

save [bool {False , True}] Whether to save the figure or not

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

orbital(theta, phi, *args)
Calculates an angular wave function on a sphere. psi = orbital(theta,phi,ket1,ket2,...)
calculates the angular wave function on a sphere at the mesh of points defined by theta and phi which is∑︀

𝑙𝑚 𝑐𝑙𝑚𝑌𝑙𝑚(𝑡ℎ𝑒𝑡𝑎, 𝑝ℎ𝑖) where 𝐶𝑙𝑚 are the coefficients specified by the list of kets. Each ket has 2l+1
components for some integer l.

Parameters

theta [list/array] Polar angles

phi [list/array] Azimuthal angles

args [list/array] list of ket vectors.

Returns

array for angular wave function

Quantum Process Tomography

qpt(U, op_basis_list)
Calculate the quantum process tomography chi matrix for a given (possibly nonunitary) transformation
matrix U, which transforms a density matrix in vector form according to:

vec(rho) = U * vec(rho0)

or

rho = vec2mat(U * mat2vec(rho0))

U can be calculated for an open quantum system using the QuTiP propagator function.

Parameters

U [Qobj] Transformation operator. Can be calculated using QuTiP propagator function.

op_basis_list [list] A list of Qobj’s representing the basis states.

Returns

318 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

chi [array] QPT chi matrix

qpt_plot(chi, lbls_list, title=None, fig=None, axes=None)
Visualize the quantum process tomography chi matrix. Plot the real and imaginary parts separately.

Parameters

chi [array] Input QPT chi matrix.

lbls_list [list] List of labels for QPT plot axes.

title [string] Plot title.

fig [figure instance] User defined figure instance used for generating QPT plot.

axes [list of figure axis instance] User defined figure axis instance (list of two axes) used
for generating QPT plot.

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

qpt_plot_combined(chi, lbls_list, title=None, fig=None, ax=None, figsize=(8, 6), threshold=None)
Visualize the quantum process tomography chi matrix. Plot bars with height and color corresponding to the
absolute value and phase, respectively.

Parameters

chi [array] Input QPT chi matrix.

lbls_list [list] List of labels for QPT plot axes.

title [string] Plot title.

fig [figure instance] User defined figure instance used for generating QPT plot.

ax [figure axis instance] User defined figure axis instance used for generating QPT plot
(alternative to the fig argument).

threshold: float (None) Threshold for when bars of smaller height should be transparent.
If not set, all bars are colored according to the color map.

Returns

fig, ax [tuple] A tuple of the matplotlib figure and axes instances used to produce the figure.

5.2.6 Quantum Information Processing

Gates

rx(phi, N=None, target=0)
Single-qubit rotation for operator sigmax with angle phi.

Returns

result [qobj] Quantum object for operator describing the rotation.

ry(phi, N=None, target=0)
Single-qubit rotation for operator sigmay with angle phi.

Returns

result [qobj] Quantum object for operator describing the rotation.

rz(phi, N=None, target=0)
Single-qubit rotation for operator sigmaz with angle phi.

Returns

result [qobj] Quantum object for operator describing the rotation.
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sqrtnot(N=None, target=0)
Single-qubit square root NOT gate.

Returns

result [qobj] Quantum object for operator describing the square root NOT gate.

snot(N=None, target=0)
Quantum object representing the SNOT (Hadamard) gate.

Returns

snot_gate [qobj] Quantum object representation of SNOT gate.

Examples

>>> snot()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 0.70710678+0.j 0.70710678+0.j]
[ 0.70710678+0.j -0.70710678+0.j]]

phasegate(theta, N=None, target=0)
Returns quantum object representing the phase shift gate.

Parameters

theta [float] Phase rotation angle.

Returns

phase_gate [qobj] Quantum object representation of phase shift gate.

Examples

>>> phasegate(pi/4)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 1.00000000+0.j 0.00000000+0.j ]
[ 0.00000000+0.j 0.70710678+0.70710678j]]

cphase(theta, N=2, control=0, target=1)
Returns quantum object representing the controlled phase shift gate.

Parameters

theta [float] Phase rotation angle.

N [integer] The number of qubits in the target space.

control [integer] The index of the control qubit.

target [integer] The index of the target qubit.

Returns

U [qobj] Quantum object representation of controlled phase gate.

cnot(N=None, control=0, target=1)
Quantum object representing the CNOT gate.

Returns

cnot_gate [qobj] Quantum object representation of CNOT gate
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Examples

>>> cnot()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =

[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]

csign(N=None, control=0, target=1)
Quantum object representing the CSIGN gate.

Returns

csign_gate [qobj] Quantum object representation of CSIGN gate

Examples

>>> csign()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =

[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j -1.+0.j]]

berkeley(N=None, targets=[0, 1])
Quantum object representing the Berkeley gate.

Returns

berkeley_gate [qobj] Quantum object representation of Berkeley gate

Examples

>>> berkeley()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =

[[ cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j]
[ 0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j]
[ 0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j]
[ 0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]]

swapalpha(alpha, N=None, targets=[0, 1])
Quantum object representing the SWAPalpha gate.

Returns

swapalpha_gate [qobj] Quantum object representation of SWAPalpha gate
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Examples

>>> swapalpha(alpha)
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

swap(N=None, targets=[0, 1])
Quantum object representing the SWAP gate.

Returns

swap_gate [qobj] Quantum object representation of SWAP gate

Examples

>>> swap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

iswap(N=None, targets=[0, 1])
Quantum object representing the iSWAP gate.

Returns

iswap_gate [qobj] Quantum object representation of iSWAP gate

Examples

>>> iswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓False
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+1.j 0.+0.j]
[ 0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

sqrtswap(N=None, targets=[0, 1])
Quantum object representing the square root SWAP gate.

Returns

sqrtswap_gate [qobj] Quantum object representation of square root SWAP gate

sqrtiswap(N=None, targets=[0, 1])
Quantum object representing the square root iSWAP gate.

Returns

sqrtiswap_gate [qobj] Quantum object representation of square root iSWAP gate
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Examples

>>> sqrtiswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm =
→˓False
Qobj data =
[[ 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.
→˓00000000+0.j]
[ 0.00000000+0.j 0.70710678+0.j 0.00000000-0.70710678j 0.
→˓00000000+0.j]
[ 0.00000000+0.j 0.00000000-0.70710678j 0.70710678+0.j 0.
→˓00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.
→˓00000000+0.j]]

fredkin(N=None, control=0, targets=[1, 2])
Quantum object representing the Fredkin gate.

Returns

fredkin_gate [qobj] Quantum object representation of Fredkin gate.

Examples

>>> fredkin()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper,
→˓isHerm = True
Qobj data =

[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

toffoli(N=None, controls=[0, 1], target=2)
Quantum object representing the Toffoli gate.

Returns

toff_gate [qobj] Quantum object representation of Toffoli gate.

Examples

>>> toffoli()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper,
→˓isHerm = True
Qobj data =

[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]

rotation(op, phi, N=None, target=0)
Single-qubit rotation for operator op with angle phi.
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Returns

result [qobj] Quantum object for operator describing the rotation.

controlled_gate(U, N=2, control=0, target=1, control_value=1)
Create an N-qubit controlled gate from a single-qubit gate U with the given control and target qubits.

Parameters

U [Qobj] Arbitrary single-qubit gate.

N [integer] The number of qubits in the target space.

control [integer] The index of the first control qubit.

target [integer] The index of the target qubit.

control_value [integer (1)] The state of the control qubit that activates the gate U.

Returns

result [qobj] Quantum object representing the controlled-U gate.

globalphase(theta, N=1)
Returns quantum object representing the global phase shift gate.

Parameters

theta [float] Phase rotation angle.

Returns

phase_gate [qobj] Quantum object representation of global phase shift gate.

Examples

>>> phasegate(pi/4)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0.70710678+0.70710678j 0.00000000+0.j]
[ 0.00000000+0.j 0.70710678+0.70710678j]]

hadamard_transform(N=1)
Quantum object representing the N-qubit Hadamard gate.

Returns

q [qobj] Quantum object representation of the N-qubit Hadamard gate.

gate_sequence_product(U_list, left_to_right=True)
Calculate the overall unitary matrix for a given list of unitary operations

Parameters

U_list [list] List of gates implementing the quantum circuit.

left_to_right [Boolean] Check if multiplication is to be done from left to right.

Returns

U_overall [qobj] Overall unitary matrix of a given quantum circuit.

gate_expand_1toN(U, N, target)
Create a Qobj representing a one-qubit gate that act on a system with N qubits.

Parameters

U [Qobj] The one-qubit gate

N [integer] The number of qubits in the target space.
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target [integer] The index of the target qubit.

Returns

gate [qobj] Quantum object representation of N-qubit gate.

gate_expand_2toN(U, N, control=None, target=None, targets=None)
Create a Qobj representing a two-qubit gate that act on a system with N qubits.

Parameters

U [Qobj] The two-qubit gate

N [integer] The number of qubits in the target space.

control [integer] The index of the control qubit.

target [integer] The index of the target qubit.

targets [list] List of target qubits.

Returns

gate [qobj] Quantum object representation of N-qubit gate.

gate_expand_3toN(U, N, controls=[0, 1], target=2)
Create a Qobj representing a three-qubit gate that act on a system with N qubits.

Parameters

U [Qobj] The three-qubit gate

N [integer] The number of qubits in the target space.

controls [list] The list of the control qubits.

target [integer] The index of the target qubit.

Returns

gate [qobj] Quantum object representation of N-qubit gate.

expand_operator(oper, N, targets, dims=None, cyclic_permutation=False)
Expand a qubits operator to one that acts on a N-qubit system.

Parameters

oper [qutip.Qobj] An operator acts on qubits, the type of the qutip.Qobj has to be
an operator and the dimension matches the tensored qubit Hilbert space e.g. dims =
[[2, 2, 2], [2, 2, 2]]

N [int] The number of qubits in the system.

targets [int or list of int] The indices of qubits that are acted on.

dims [list, optional] A list of integer for the dimension of each composite system. E.g [2,
2, 2, 2, 2] for 5 qubits system. If None, qubits system will be the default option.

cyclic_permutation [boolean, optional] Expand for all cyclic permutation of the targets.
E.g. if N=3 and oper is a 2-qubit operator, the result will be a list of three operators,
each acting on qubits 0 and 1, 1 and 2, 2 and 0.

Returns

expanded_oper [qutip.Qobj] The expanded qubits operator acting on a system with N
qubits.
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Notes

This is equivalent to gate_expand_1toN, gate_expand_2toN, gate_expand_3toN in qutip.qip.gate.
py, but works for any dimension.

Qubits

qubit_states(N=1, states=[0])
Function to define initial state of the qubits.

Parameters

N [Integer] Number of qubits in the register.

states [List] Initial state of each qubit.

Returns

qstates [Qobj] List of qubits.

Algorithms

This module provides the circuit implementation for Quantum Fourier Transform.

qft(N=1)
Quantum Fourier Transform operator on N qubits.

Parameters

N [int] Number of qubits.

Returns

QFT: qobj Quantum Fourier transform operator.

qft_steps(N=1, swapping=True)
Quantum Fourier Transform operator on N qubits returning the individual steps as unitary matrices operating
from left to right.

Parameters

N: int Number of qubits.

swap: boolean Flag indicating sequence of swap gates to be applied at the end or not.

Returns

U_step_list: list of qobj List of Hadamard and controlled rotation gates implementing
QFT.

qft_gate_sequence(N=1, swapping=True)
Quantum Fourier Transform operator on N qubits returning the gate sequence.

Parameters

N: int Number of qubits.

swap: boolean Flag indicating sequence of swap gates to be applied at the end or not.

Returns

qc: instance of QubitCircuit Gate sequence of Hadamard and controlled rotation gates
implementing QFT.
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Noisy Devices

5.2.7 Non-Markovian Solvers

This module contains an implementation of the non-Markovian transfer tensor method (TTM), introduced in [1].

[1] Javier Cerrillo and Jianshu Cao, Phys. Rev. Lett 112, 110401 (2014)

ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None, **kwargs)
Solve time-evolution using the Transfer Tensor Method, based on a set of precomputed dynamical maps.

Parameters

dynmaps [list of qutip.Qobj] List of precomputed dynamical maps (superoperators),
or a callback function that returns the superoperator at a given time.

rho0 [qutip.Qobj] Initial density matrix or state vector (ket).

times [array_like] list of times 𝑡𝑛 at which to compute 𝜌(𝑡𝑛). Must be uniformily spaced.

e_ops [list of qutip.Qobj / callback function] single operator or list of operators for
which to evaluate expectation values.

learningtimes [array_like] list of times 𝑡𝑘 for which we have knowledge of the dynamical
maps 𝐸(𝑡𝑘).

tensors [array_like] optional list of precomputed tensors 𝑇𝑘

kwargs [dictionary] Optional keyword arguments. See qutip.nonmarkov.ttm.
TTMSolverOptions.

Returns

output: qutip.solver.Result An instance of the class qutip.solver.Result.

5.2.8 Optimal control

Wrapper functions that will manage the creation of the objects, build the configuration, and execute the algorithm
required to optimise a set of ctrl pulses for a given (quantum) system. The fidelity error is some measure of
distance of the system evolution from the given target evolution in the time allowed for the evolution. The functions
minimise this fidelity error wrt the piecewise control amplitudes in the timeslots

There are currently two quantum control pulse optmisations algorithms implemented in this library. There are
accessible through the methods in this module. Both the algorithms use the scipy.optimize methods to minimise
the fidelity error with respect to to variables that define the pulse.

GRAPE

The default algorithm (as it was implemented here first) is GRAPE GRadient Ascent Pulse Engineering [1][2]. It
uses a gradient based method such as BFGS to minimise the fidelity error. This makes convergence very quick
when an exact gradient can be calculated, but this limits the factors that can taken into account in the fidelity.
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CRAB

The CRAB [3][4] algorithm was developed at the University of Ulm. In full it is the Chopped RAndom Basis
algorithm. The main difference is that it reduces the number of optimisation variables by defining the control
pulses by expansions of basis functions, where the variables are the coefficients. Typically a Fourier series is
chosen, i.e. the variables are the Fourier coefficients. Therefore it does not need to compute an explicit gradient.
By default it uses the Nelder-Mead method for fidelity error minimisation.

References

1. N Khaneja et. al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient
ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

2. Shai Machnes et.al DYNAMO - Dynamic Framework for Quantum Optimal Control arXiv.1011.4874

3. Doria, P., Calarco, T. & Montangero, S. Optimal Control Technique for Many-Body Quantum Dynamics.
Phys. Rev. Lett. 106, 1–4 (2011).

4. Caneva, T., Calarco, T. & Montangero, S. Chopped random-basis quantum optimization. Phys. Rev. A -
At. Mol. Opt. Phys. 84, (2011).

optimize_pulse(drift, ctrls, initial, target, num_tslots=None, evo_time=None,
tau=None, amp_lbound=None, amp_ubound=None, fid_err_targ=1e-
10, min_grad=1e-10, max_iter=500, max_wall_time=180, alg='GRAPE',
alg_params=None, optim_params=None, optim_method='DEF',
method_params=None, optim_alg=None, max_metric_corr=None, accu-
racy_factor=None, dyn_type='GEN_MAT', dyn_params=None, prop_type='DEF',
prop_params=None, fid_type='DEF', fid_params=None, phase_option=None,
fid_err_scale_factor=None, tslot_type='DEF', tslot_params=None,
amp_update_mode=None, init_pulse_type='DEF', init_pulse_params=None,
pulse_scaling=1.0, pulse_offset=0.0, ramping_pulse_type=None, ramp-
ing_pulse_params=None, log_level=0, out_file_ext=None, gen_stats=False)

Optimise a control pulse to minimise the fidelity error. The dynamics of the system in any given timeslot
are governed by the combined dynamics generator, i.e. the sum of the drift+ctrl_amp[j]*ctrls[j] The control
pulse is an [n_ts, n_ctrls)] array of piecewise amplitudes Starting from an intital (typically random) pulse,
a multivariable optimisation algorithm attempts to determines the optimal values for the control pulse to
minimise the fidelity error The fidelity error is some measure of distance of the system evolution from the
given target evolution in the time allowed for the evolution.

Parameters

drift [Qobj or list of Qobj] the underlying dynamics generator of the system can provide
list (of length num_tslots) for time dependent drift

ctrls [List of Qobj or array like [num_tslots, evo_time]] a list of control dynamics genera-
tors. These are scaled by the amplitudes to alter the overall dynamics Array like imput
can be provided for time dependent control generators

initial [Qobj] starting point for the evolution. Typically the identity matrix

target [Qobj] target transformation, e.g. gate or state, for the time evolution

num_tslots [integer or None] number of timeslots. None implies that timeslots will be
given in the tau array

evo_time [float or None] total time for the evolution None implies that timeslots will be
given in the tau array

tau [array[num_tslots] of floats or None] durations for the timeslots. if this is given then
num_tslots and evo_time are dervived from it None implies that timeslot durations will
be equal and calculated as evo_time/num_tslots

amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control
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amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

fid_err_targ [float] Fidelity error target. Pulse optimisation will terminate when the fidelity
error falls below this value

mim_grad [float] Minimum gradient. When the sum of the squares of the gradients wrt
to the control amplitudes falls below this value, the optimisation terminates, assuming
local minima

max_iter [integer] Maximum number of iterations of the optimisation algorithm

max_wall_time [float] Maximum allowed elapsed time for the optimisation algorithm

alg [string] Algorithm to use in pulse optimisation. Options are:

‘GRAPE’ (default) - GRadient Ascent Pulse Engineering ‘CRAB’ - Chopped
RAndom Basis

alg_params [Dictionary] options that are specific to the algorithm see above

optim_params [Dictionary] The key value pairs are the attribute name and value used to
set attribute values Note: attributes are created if they do not exist already, and are over-
written if they do. Note: method_params are applied afterwards and so may override
these

optim_method [string] a scipy.optimize.minimize method that will be used to optimise the
pulse for minimum fidelity error Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B
will all result in calling these specific scipy.optimize methods Note the LBFGSB is
equivalent to FMIN_L_BFGS_B for backwards capatibility reasons. Supplying DEF
will given alg dependent result:

GRAPE - Default optim_method is FMIN_L_BFGS_B CRAB - Default op-
tim_method is FMIN

method_params [dict] Parameters for the optim_method. Note that where there is an at-
tribute of the Optimizer object or the termination_conditions matching the key that at-
tribute. Otherwise, and in some case also, they are assumed to be method_options for
the scipy.optimize.minimize method.

optim_alg [string] Deprecated. Use optim_method.

max_metric_corr [integer] Deprecated. Use method_params instead

accuracy_factor [float] Deprecated. Use method_params instead

dyn_type [string] Dynamics type, i.e. the type of matrix used to describe the dynamics.
Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

dyn_params [dict] Parameters for the Dynamics object The key value pairs are assumed to
be attribute name value pairs They applied after the object is created

prop_type [string] Propagator type i.e. the method used to calculate the propagtors and
propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET,
AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer
classes for details)

prop_params [dict] Parameters for the PropagatorComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

fid_type [string] Fidelity error (and fidelity error gradient) computation method Options
are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific
dyn_type (See FidelityComputer classes for details)

fid_params [dict] Parameters for the FidelityComputer object The key value pairs are as-
sumed to be attribute name value pairs They applied after the object is created

phase_option [string] Deprecated. Pass in fid_params instead.
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fid_err_scale_factor [float] Deprecated. Use scale_factor key in fid_params instead.

tslot_type [string] Method for computing the dynamics generators, propagators and evolu-
tion in the timeslots. Options: DEF, UPDATE_ALL, DYNAMIC UPDATE_ALL is the
only one that currently works (See TimeslotComputer classes for details)

tslot_params [dict] Parameters for the TimeslotComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

amp_update_mode [string] Deprecated. Use tslot_type instead.

init_pulse_type [string] type / shape of pulse(s) used to initialise the the control amplitudes.
Options (GRAPE) include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW

DEF is RND (see PulseGen classes for details) For the CRAB the this the
guess_pulse_type.

init_pulse_params [dict] Parameters for the initial / guess pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

pulse_scaling [float] Linear scale factor for generated initial / guess pulses By default initial
pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by
this parameter

pulse_offset [float] Linear offset for the pulse. That is this value will be added to any initial
/ guess pulses generated.

ramping_pulse_type [string] Type of pulse used to modulate the control pulse. It’s in-
tended use for a ramping modulation, which is often required in experimental setups.
This is only currently implemented in CRAB. GAUSSIAN_EDGE was added for this
purpose.

ramping_pulse_params [dict] Parameters for the ramping pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

out_file_ext [string or None] files containing the initial and final control pulse amplitudes
are saved to the current directory. The default name will be postfixed with this extension
Setting this to None will suppress the output of files

gen_stats [boolean] if set to True then statistics for the optimisation run will be generated
- accessible through attributes of the stats object

Returns

opt [OptimResult] Returns instance of OptimResult, which has attributes giving the reason
for termination, final fidelity error, final evolution final amplitudes, statistics etc
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optimize_pulse_unitary(H_d, H_c, U_0, U_targ, num_tslots=None, evo_time=None, tau=None,
amp_lbound=None, amp_ubound=None, fid_err_targ=1e-10,
min_grad=1e-10, max_iter=500, max_wall_time=180, alg='GRAPE',
alg_params=None, optim_params=None, optim_method='DEF',
method_params=None, optim_alg=None, max_metric_corr=None,
accuracy_factor=None, phase_option='PSU', dyn_params=None,
prop_params=None, fid_params=None, tslot_type='DEF',
tslot_params=None, amp_update_mode=None, init_pulse_type='DEF',
init_pulse_params=None, pulse_scaling=1.0, pulse_offset=0.0, ramp-
ing_pulse_type=None, ramping_pulse_params=None, log_level=0,
out_file_ext=None, gen_stats=False)

Optimise a control pulse to minimise the fidelity error, assuming that the dynamics of the system are gen-
erated by unitary operators. This function is simply a wrapper for optimize_pulse, where the appropriate
options for unitary dynamics are chosen and the parameter names are in the format familiar to unitary dy-
namics The dynamics of the system in any given timeslot are governed by the combined Hamiltonian, i.e.
the sum of the H_d + ctrl_amp[j]*H_c[j] The control pulse is an [n_ts, n_ctrls] array of piecewise ampli-
tudes Starting from an intital (typically random) pulse, a multivariable optimisation algorithm attempts to
determines the optimal values for the control pulse to minimise the fidelity error The maximum fidelity for
a unitary system is 1, i.e. when the time evolution resulting from the pulse is equivalent to the target. And
therefore the fidelity error is 1 - fidelity

Parameters

H_d [Qobj or list of Qobj] Drift (aka system) the underlying Hamiltonian of the system can
provide list (of length num_tslots) for time dependent drift

H_c [List of Qobj or array like [num_tslots, evo_time]] a list of control Hamiltonians.
These are scaled by the amplitudes to alter the overall dynamics Array like imput can
be provided for time dependent control generators

U_0 [Qobj] starting point for the evolution. Typically the identity matrix

U_targ [Qobj] target transformation, e.g. gate or state, for the time evolution

num_tslots [integer or None] number of timeslots. None implies that timeslots will be
given in the tau array

evo_time [float or None] total time for the evolution None implies that timeslots will be
given in the tau array

tau [array[num_tslots] of floats or None] durations for the timeslots. if this is given then
num_tslots and evo_time are dervived from it None implies that timeslot durations will
be equal and calculated as evo_time/num_tslots

amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

fid_err_targ [float] Fidelity error target. Pulse optimisation will terminate when the fidelity
error falls below this value

mim_grad [float] Minimum gradient. When the sum of the squares of the gradients wrt
to the control amplitudes falls below this value, the optimisation terminates, assuming
local minima

max_iter [integer] Maximum number of iterations of the optimisation algorithm

max_wall_time [float] Maximum allowed elapsed time for the optimisation algorithm

alg [string] Algorithm to use in pulse optimisation. Options are:

‘GRAPE’ (default) - GRadient Ascent Pulse Engineering ‘CRAB’ - Chopped
RAndom Basis

alg_params [Dictionary] options that are specific to the algorithm see above
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optim_params [Dictionary] The key value pairs are the attribute name and value used to
set attribute values Note: attributes are created if they do not exist already, and are over-
written if they do. Note: method_params are applied afterwards and so may override
these

optim_method [string] a scipy.optimize.minimize method that will be used to optimise the
pulse for minimum fidelity error Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B
will all result in calling these specific scipy.optimize methods Note the LBFGSB is
equivalent to FMIN_L_BFGS_B for backwards capatibility reasons. Supplying DEF
will given alg dependent result:

GRAPE - Default optim_method is FMIN_L_BFGS_B CRAB - Default op-
tim_method is FMIN

method_params [dict] Parameters for the optim_method. Note that where there is an at-
tribute of the Optimizer object or the termination_conditions matching the key that at-
tribute. Otherwise, and in some case also, they are assumed to be method_options for
the scipy.optimize.minimize method.

optim_alg [string] Deprecated. Use optim_method.

max_metric_corr [integer] Deprecated. Use method_params instead

accuracy_factor [float] Deprecated. Use method_params instead

phase_option [string] determines how global phase is treated in fidelity calculations
(fid_type=’UNIT’ only). Options:

PSU - global phase ignored SU - global phase included

dyn_params [dict] Parameters for the Dynamics object The key value pairs are assumed to
be attribute name value pairs They applied after the object is created

prop_params [dict] Parameters for the PropagatorComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

fid_params [dict] Parameters for the FidelityComputer object The key value pairs are as-
sumed to be attribute name value pairs They applied after the object is created

tslot_type [string] Method for computing the dynamics generators, propagators and evolu-
tion in the timeslots. Options: DEF, UPDATE_ALL, DYNAMIC UPDATE_ALL is the
only one that currently works (See TimeslotComputer classes for details)

tslot_params [dict] Parameters for the TimeslotComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

amp_update_mode [string] Deprecated. Use tslot_type instead.

init_pulse_type [string] type / shape of pulse(s) used to initialise the the control amplitudes.
Options (GRAPE) include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW DEF is RND

(see PulseGen classes for details) For the CRAB the this the guess_pulse_type.

init_pulse_params [dict] Parameters for the initial / guess pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

pulse_scaling [float] Linear scale factor for generated initial / guess pulses By default initial
pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by
this parameter

pulse_offset [float] Linear offset for the pulse. That is this value will be added to any initial
/ guess pulses generated.

ramping_pulse_type [string] Type of pulse used to modulate the control pulse. It’s in-
tended use for a ramping modulation, which is often required in experimental setups.
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This is only currently implemented in CRAB. GAUSSIAN_EDGE was added for this
purpose.

ramping_pulse_params [dict] Parameters for the ramping pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

out_file_ext [string or None] files containing the initial and final control pulse amplitudes
are saved to the current directory. The default name will be postfixed with this extension
Setting this to None will suppress the output of files

gen_stats [boolean] if set to True then statistics for the optimisation run will be generated
- accessible through attributes of the stats object

Returns

opt [OptimResult] Returns instance of OptimResult, which has attributes giving the reason
for termination, final fidelity error, final evolution final amplitudes, statistics etc

create_pulse_optimizer(drift, ctrls, initial, target, num_tslots=None, evo_time=None, tau=None,
amp_lbound=None, amp_ubound=None, fid_err_targ=1e-10,
min_grad=1e-10, max_iter=500, max_wall_time=180, alg='GRAPE',
alg_params=None, optim_params=None, optim_method='DEF',
method_params=None, optim_alg=None, max_metric_corr=None, ac-
curacy_factor=None, dyn_type='GEN_MAT', dyn_params=None,
prop_type='DEF', prop_params=None, fid_type='DEF',
fid_params=None, phase_option=None, fid_err_scale_factor=None,
tslot_type='DEF', tslot_params=None, amp_update_mode=None,
init_pulse_type='DEF', init_pulse_params=None, pulse_scaling=1.0,
pulse_offset=0.0, ramping_pulse_type=None, ramp-
ing_pulse_params=None, log_level=0, gen_stats=False)

Generate the objects of the appropriate subclasses required for the pulse optmisation based on the param-
eters given Note this method may be preferable to calling optimize_pulse if more detailed configuration is
required before running the optmisation algorthim, or the algorithm will be run many times, for instances
when trying to finding global the optimum or minimum time optimisation

Parameters

drift [Qobj or list of Qobj] the underlying dynamics generator of the system can provide
list (of length num_tslots) for time dependent drift

ctrls [List of Qobj or array like [num_tslots, evo_time]] a list of control dynamics genera-
tors. These are scaled by the amplitudes to alter the overall dynamics Array like imput
can be provided for time dependent control generators

initial [Qobj] starting point for the evolution. Typically the identity matrix

target [Qobj] target transformation, e.g. gate or state, for the time evolution

num_tslots [integer or None] number of timeslots. None implies that timeslots will be
given in the tau array

evo_time [float or None] total time for the evolution None implies that timeslots will be
given in the tau array

tau [array[num_tslots] of floats or None] durations for the timeslots. if this is given then
num_tslots and evo_time are dervived from it None implies that timeslot durations will
be equal and calculated as evo_time/num_tslots
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amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

fid_err_targ [float] Fidelity error target. Pulse optimisation will terminate when the fidelity
error falls below this value

mim_grad [float] Minimum gradient. When the sum of the squares of the gradients wrt
to the control amplitudes falls below this value, the optimisation terminates, assuming
local minima

max_iter [integer] Maximum number of iterations of the optimisation algorithm

max_wall_time [float] Maximum allowed elapsed time for the optimisation algorithm

alg [string] Algorithm to use in pulse optimisation. Options are:

‘GRAPE’ (default) - GRadient Ascent Pulse Engineering ‘CRAB’ - Chopped
RAndom Basis

alg_params [Dictionary] options that are specific to the algorithm see above

optim_params [Dictionary] The key value pairs are the attribute name and value used to
set attribute values Note: attributes are created if they do not exist already, and are over-
written if they do. Note: method_params are applied afterwards and so may override
these

optim_method [string] a scipy.optimize.minimize method that will be used to optimise the
pulse for minimum fidelity error Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B
will all result in calling these specific scipy.optimize methods Note the LBFGSB is
equivalent to FMIN_L_BFGS_B for backwards capatibility reasons. Supplying DEF
will given alg dependent result:

• GRAPE - Default optim_method is FMIN_L_BFGS_B

• CRAB - Default optim_method is Nelder-Mead

method_params [dict] Parameters for the optim_method. Note that where there is an at-
tribute of the Optimizer object or the termination_conditions matching the key that at-
tribute. Otherwise, and in some case also, they are assumed to be method_options for
the scipy.optimize.minimize method.

optim_alg [string] Deprecated. Use optim_method.

max_metric_corr [integer] Deprecated. Use method_params instead

accuracy_factor [float] Deprecated. Use method_params instead

dyn_type [string] Dynamics type, i.e. the type of matrix used to describe the dynamics.
Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

dyn_params [dict] Parameters for the Dynamics object The key value pairs are assumed to
be attribute name value pairs They applied after the object is created

prop_type [string] Propagator type i.e. the method used to calculate the propagtors and
propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET,
AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer
classes for details)

prop_params [dict] Parameters for the PropagatorComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

fid_type [string] Fidelity error (and fidelity error gradient) computation method Options
are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific
dyn_type (See FidelityComputer classes for details)
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fid_params [dict] Parameters for the FidelityComputer object The key value pairs are as-
sumed to be attribute name value pairs They applied after the object is created

phase_option [string] Deprecated. Pass in fid_params instead.

fid_err_scale_factor [float] Deprecated. Use scale_factor key in fid_params instead.

tslot_type [string] Method for computing the dynamics generators, propagators and evolu-
tion in the timeslots. Options: DEF, UPDATE_ALL, DYNAMIC UPDATE_ALL is the
only one that currently works (See TimeslotComputer classes for details)

tslot_params [dict] Parameters for the TimeslotComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

amp_update_mode [string] Deprecated. Use tslot_type instead.

init_pulse_type [string] type / shape of pulse(s) used to initialise the the control amplitudes.
Options (GRAPE) include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW DEF is RND

(see PulseGen classes for details) For the CRAB the this the guess_pulse_type.

init_pulse_params [dict] Parameters for the initial / guess pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

pulse_scaling [float] Linear scale factor for generated initial / guess pulses By default initial
pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by
this parameter

pulse_offset [float] Linear offset for the pulse. That is this value will be added to any initial
/ guess pulses generated.

ramping_pulse_type [string] Type of pulse used to modulate the control pulse. It’s in-
tended use for a ramping modulation, which is often required in experimental setups.
This is only currently implemented in CRAB. GAUSSIAN_EDGE was added for this
purpose.

ramping_pulse_params [dict] Parameters for the ramping pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

gen_stats [boolean] if set to True then statistics for the optimisation run will be generated
- accessible through attributes of the stats object

Returns

opt [Optimizer] Instance of an Optimizer, through which the Config, Dynamics, PulseGen,
and TerminationConditions objects can be accessed as attributes. The PropagatorCom-
puter, FidelityComputer and TimeslotComputer objects can be accessed as attributes of
the Dynamics object, e.g. optimizer.dynamics.fid_computer The optimisation can be
run through the optimizer.run_optimization
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opt_pulse_crab(drift, ctrls, initial, target, num_tslots=None, evo_time=None,
tau=None, amp_lbound=None, amp_ubound=None, fid_err_targ=1e-05,
max_iter=500, max_wall_time=180, alg_params=None, num_coeffs=None,
init_coeff_scaling=1.0, optim_params=None, optim_method='fmin',
method_params=None, dyn_type='GEN_MAT', dyn_params=None,
prop_type='DEF', prop_params=None, fid_type='DEF', fid_params=None,
tslot_type='DEF', tslot_params=None, guess_pulse_type=None,
guess_pulse_params=None, guess_pulse_scaling=1.0, guess_pulse_offset=0.0,
guess_pulse_action='MODULATE', ramping_pulse_type=None, ramp-
ing_pulse_params=None, log_level=0, out_file_ext=None, gen_stats=False)

Optimise a control pulse to minimise the fidelity error. The dynamics of the system in any given timeslot
are governed by the combined dynamics generator, i.e. the sum of the drift+ctrl_amp[j]*ctrls[j] The control
pulse is an [n_ts, n_ctrls] array of piecewise amplitudes. The CRAB algorithm uses basis function coef-
ficents as the variables to optimise. It does NOT use any gradient function. A multivariable optimisation
algorithm attempts to determines the optimal values for the control pulse to minimise the fidelity error The
fidelity error is some measure of distance of the system evolution from the given target evolution in the time
allowed for the evolution.

Parameters

drift [Qobj or list of Qobj] the underlying dynamics generator of the system can provide
list (of length num_tslots) for time dependent drift

ctrls [List of Qobj or array like [num_tslots, evo_time]] a list of control dynamics genera-
tors. These are scaled by the amplitudes to alter the overall dynamics Array like imput
can be provided for time dependent control generators

initial [Qobj] starting point for the evolution. Typically the identity matrix

target [Qobj] target transformation, e.g. gate or state, for the time evolution

num_tslots [integer or None] number of timeslots. None implies that timeslots will be
given in the tau array

evo_time [float or None] total time for the evolution None implies that timeslots will be
given in the tau array

tau [array[num_tslots] of floats or None] durations for the timeslots. if this is given then
num_tslots and evo_time are dervived from it None implies that timeslot durations will
be equal and calculated as evo_time/num_tslots

amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

fid_err_targ [float] Fidelity error target. Pulse optimisation will terminate when the fidelity
error falls below this value

max_iter [integer] Maximum number of iterations of the optimisation algorithm

max_wall_time [float] Maximum allowed elapsed time for the optimisation algorithm

alg_params [Dictionary] options that are specific to the algorithm see above

optim_params [Dictionary] The key value pairs are the attribute name and value used to
set attribute values Note: attributes are created if they do not exist already, and are over-
written if they do. Note: method_params are applied afterwards and so may override
these

coeff_scaling [float] Linear scale factor for the random basis coefficients By default these
range from -1.0 to 1.0 Note this is overridden by alg_params (if given there)

num_coeffs [integer] Number of coefficients used for each basis function Note this is cal-
culated automatically based on the dimension of the dynamics if not given. It is crucial
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to the performane of the algorithm that it is set as low as possible, while still giving high
enough frequencies. Note this is overridden by alg_params (if given there)

optim_method [string] Multi-variable optimisation method The only tested options
are ‘fmin’ and ‘Nelder-mead’ In theory any non-gradient method implemented in
scipy.optimize.mininize could be used.

method_params [dict] Parameters for the optim_method. Note that where there is an at-
tribute of the Optimizer object or the termination_conditions matching the key that at-
tribute. Otherwise, and in some case also, they are assumed to be method_options for
the scipy.optimize.minimize method. The commonly used parameter are:

xtol - limit on variable change for convergence ftol - limit on fidelity error change
for convergence

dyn_type [string] Dynamics type, i.e. the type of matrix used to describe the dynamics.
Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

dyn_params [dict] Parameters for the Dynamics object The key value pairs are assumed to
be attribute name value pairs They applied after the object is created

prop_type [string] Propagator type i.e. the method used to calculate the propagtors and
propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET,
AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer
classes for details)

prop_params [dict] Parameters for the PropagatorComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

fid_type [string] Fidelity error (and fidelity error gradient) computation method Options
are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific
dyn_type (See FidelityComputer classes for details)

fid_params [dict] Parameters for the FidelityComputer object The key value pairs are as-
sumed to be attribute name value pairs They applied after the object is created

tslot_type [string] Method for computing the dynamics generators, propagators and evolu-
tion in the timeslots. Options: DEF, UPDATE_ALL, DYNAMIC UPDATE_ALL is the
only one that currently works (See TimeslotComputer classes for details)

tslot_params [dict] Parameters for the TimeslotComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

guess_pulse_type [string] type / shape of pulse(s) used modulate the control amplitudes.
Options include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW, GAUSSIAN

Default is None

guess_pulse_params [dict] Parameters for the guess pulse generator object The key value
pairs are assumed to be attribute name value pairs They applied after the object is created

guess_pulse_action [string] Determines how the guess pulse is applied to the pulse gener-
ated by the basis expansion. Options are: MODULATE, ADD Default is MODULATE

pulse_scaling [float] Linear scale factor for generated guess pulses By default initial pulses
are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this
parameter

pulse_offset [float] Linear offset for the pulse. That is this value will be added to any guess
pulses generated.

ramping_pulse_type [string] Type of pulse used to modulate the control pulse. It’s in-
tended use for a ramping modulation, which is often required in experimental setups.
This is only currently implemented in CRAB. GAUSSIAN_EDGE was added for this
purpose.
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ramping_pulse_params [dict] Parameters for the ramping pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

out_file_ext [string or None] files containing the initial and final control pulse amplitudes
are saved to the current directory. The default name will be postfixed with this extension
Setting this to None will suppress the output of files

gen_stats [boolean] if set to True then statistics for the optimisation run will be generated
- accessible through attributes of the stats object

Returns

opt [OptimResult] Returns instance of OptimResult, which has attributes giving the reason
for termination, final fidelity error, final evolution final amplitudes, statistics etc

opt_pulse_crab_unitary(H_d, H_c, U_0, U_targ, num_tslots=None, evo_time=None,
tau=None, amp_lbound=None, amp_ubound=None, fid_err_targ=1e-
05, max_iter=500, max_wall_time=180, alg_params=None,
num_coeffs=None, init_coeff_scaling=1.0, optim_params=None,
optim_method='fmin', method_params=None, phase_option='PSU',
dyn_params=None, prop_params=None, fid_params=None,
tslot_type='DEF', tslot_params=None, guess_pulse_type=None,
guess_pulse_params=None, guess_pulse_scaling=1.0,
guess_pulse_offset=0.0, guess_pulse_action='MODULATE', ramp-
ing_pulse_type=None, ramping_pulse_params=None, log_level=0,
out_file_ext=None, gen_stats=False)

Optimise a control pulse to minimise the fidelity error, assuming that the dynamics of the system are gen-
erated by unitary operators. This function is simply a wrapper for optimize_pulse, where the appropriate
options for unitary dynamics are chosen and the parameter names are in the format familiar to unitary dy-
namics The dynamics of the system in any given timeslot are governed by the combined Hamiltonian, i.e.
the sum of the H_d + ctrl_amp[j]*H_c[j] The control pulse is an [n_ts, n_ctrls] array of piecewise amplitudes

The CRAB algorithm uses basis function coefficents as the variables to optimise. It does NOT use any
gradient function. A multivariable optimisation algorithm attempts to determines the optimal values for the
control pulse to minimise the fidelity error The fidelity error is some measure of distance of the system
evolution from the given target evolution in the time allowed for the evolution.

Parameters

H_d [Qobj or list of Qobj] Drift (aka system) the underlying Hamiltonian of the system can
provide list (of length num_tslots) for time dependent drift

H_c [List of Qobj or array like [num_tslots, evo_time]] a list of control Hamiltonians.
These are scaled by the amplitudes to alter the overall dynamics Array like imput can
be provided for time dependent control generators

U_0 [Qobj] starting point for the evolution. Typically the identity matrix

U_targ [Qobj] target transformation, e.g. gate or state, for the time evolution

num_tslots [integer or None] number of timeslots. None implies that timeslots will be
given in the tau array

evo_time [float or None] total time for the evolution None implies that timeslots will be
given in the tau array
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tau [array[num_tslots] of floats or None] durations for the timeslots. if this is given then
num_tslots and evo_time are dervived from it None implies that timeslot durations will
be equal and calculated as evo_time/num_tslots

amp_lbound [float or list of floats] lower boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

amp_ubound [float or list of floats] upper boundaries for the control amplitudes Can be a
scalar value applied to all controls or a list of bounds for each control

fid_err_targ [float] Fidelity error target. Pulse optimisation will terminate when the fidelity
error falls below this value

max_iter [integer] Maximum number of iterations of the optimisation algorithm

max_wall_time [float] Maximum allowed elapsed time for the optimisation algorithm

alg_params [Dictionary] options that are specific to the algorithm see above

optim_params [Dictionary] The key value pairs are the attribute name and value used to
set attribute values Note: attributes are created if they do not exist already, and are over-
written if they do. Note: method_params are applied afterwards and so may override
these

coeff_scaling [float] Linear scale factor for the random basis coefficients By default these
range from -1.0 to 1.0 Note this is overridden by alg_params (if given there)

num_coeffs [integer] Number of coefficients used for each basis function Note this is cal-
culated automatically based on the dimension of the dynamics if not given. It is crucial
to the performane of the algorithm that it is set as low as possible, while still giving high
enough frequencies. Note this is overridden by alg_params (if given there)

optim_method [string] Multi-variable optimisation method The only tested options
are ‘fmin’ and ‘Nelder-mead’ In theory any non-gradient method implemented in
scipy.optimize.mininize could be used.

method_params [dict] Parameters for the optim_method. Note that where there is an at-
tribute of the Optimizer object or the termination_conditions matching the key that at-
tribute. Otherwise, and in some case also, they are assumed to be method_options for
the scipy.optimize.minimize method. The commonly used parameter are:

xtol - limit on variable change for convergence ftol - limit on fidelity error change
for convergence

phase_option [string] determines how global phase is treated in fidelity calculations
(fid_type=’UNIT’ only). Options:

PSU - global phase ignored SU - global phase included

dyn_params [dict] Parameters for the Dynamics object The key value pairs are assumed to
be attribute name value pairs They applied after the object is created

prop_params [dict] Parameters for the PropagatorComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

fid_params [dict] Parameters for the FidelityComputer object The key value pairs are as-
sumed to be attribute name value pairs They applied after the object is created

tslot_type [string] Method for computing the dynamics generators, propagators and evolu-
tion in the timeslots. Options: DEF, UPDATE_ALL, DYNAMIC UPDATE_ALL is the
only one that currently works (See TimeslotComputer classes for details)

tslot_params [dict] Parameters for the TimeslotComputer object The key value pairs are
assumed to be attribute name value pairs They applied after the object is created

guess_pulse_type [string] type / shape of pulse(s) used modulate the control amplitudes.
Options include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW, GAUSSIAN
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Default is None

guess_pulse_params [dict] Parameters for the guess pulse generator object The key value
pairs are assumed to be attribute name value pairs They applied after the object is created

guess_pulse_action [string] Determines how the guess pulse is applied to the pulse gener-
ated by the basis expansion. Options are: MODULATE, ADD Default is MODULATE

pulse_scaling [float] Linear scale factor for generated guess pulses By default initial pulses
are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this
parameter

pulse_offset [float] Linear offset for the pulse. That is this value will be added to any guess
pulses generated.

ramping_pulse_type [string] Type of pulse used to modulate the control pulse. It’s in-
tended use for a ramping modulation, which is often required in experimental setups.
This is only currently implemented in CRAB. GAUSSIAN_EDGE was added for this
purpose.

ramping_pulse_params [dict] Parameters for the ramping pulse generator object The key
value pairs are assumed to be attribute name value pairs They applied after the object is
created

log_level [integer] level of messaging output from the logger. Options are attributes of
qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DE-
BUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or
above is effectively ‘quiet’ execution, assuming everything runs as expected. The de-
fault NOTSET implies that the level will be taken from the QuTiP settings file, which
by default is WARN

out_file_ext [string or None] files containing the initial and final control pulse amplitudes
are saved to the current directory. The default name will be postfixed with this extension
Setting this to None will suppress the output of files

gen_stats [boolean] if set to True then statistics for the optimisation run will be generated
- accessible through attributes of the stats object

Returns

opt [OptimResult] Returns instance of OptimResult, which has attributes giving the reason
for termination, final fidelity error, final evolution final amplitudes, statistics etc

Pulse generator - Generate pulses for the timeslots Each class defines a gen_pulse function that produces a float
array of size num_tslots. Each class produces a differ type of pulse. See the class and gen_pulse function descrip-
tions for details

create_pulse_gen(pulse_type='RND', dyn=None, pulse_params=None)
Create and return a pulse generator object matching the given type. The pulse generators each produce
a different type of pulse, see the gen_pulse function description for details. These are the random pulse
options:

RND - Independent random value in each timeslot RNDFOURIER - Fourier series with random
coefficients RNDWAVES - Summation of random waves RNDWALK1 - Random change in
amplitude each timeslot RNDWALK2 - Random change in amp gradient each timeslot

These are the other non-periodic options:

LIN - Linear, i.e. contant gradient over the time ZERO - special case of the LIN pulse, where the
gradient is 0

These are the periodic options

SINE - Sine wave SQUARE - Square wave SAW - Saw tooth wave TRIANGLE - Triangular
wave

If a Dynamics object is passed in then this is used in instantiate the PulseGen, meaning that some timeslot
and amplitude properties are copied over.
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5.2.9 Utility Functions

Graph Theory Routines

This module contains a collection of graph theory routines used mainly to reorder matrices for iterative steady
state solvers.

breadth_first_search(A, start)
Breadth-First-Search (BFS) of a graph in CSR or CSC matrix format starting from a given node (row).
Takes Qobjs and CSR or CSC matrices as inputs.

This function requires a matrix with symmetric structure. Use A+trans(A) if original matrix is not symmetric
or not sure.

Parameters

A [csc_matrix, csr_matrix] Input graph in CSC or CSR matrix format

start [int] Staring node for BFS traversal.

Returns

order [array] Order in which nodes are traversed from starting node.

levels [array] Level of the nodes in the order that they are traversed.

graph_degree(A)
Returns the degree for the nodes (rows) of a symmetric graph in sparse CSR or CSC format, or a qobj.

Parameters

A [qobj, csr_matrix, csc_matrix] Input quantum object or csr_matrix.

Returns

degree [array] Array of integers giving the degree for each node (row).

reverse_cuthill_mckee(A, sym=False)
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
Since the input matrix must be symmetric, this routine works on the matrix A+Trans(A) if the sym flag is
set to False (Default).

It is assumed by default (sym=False) that the input matrix is not symmetric. This is because it is faster to
do A+Trans(A) than it is to check for symmetry for a generic matrix. If you are guaranteed that the matrix
is symmetric in structure (values of matrix element do not matter) then set sym=True

Parameters

A [csc_matrix, csr_matrix] Input sparse CSC or CSR sparse matrix format.

sym [bool {False, True}] Flag to set whether input matrix is symmetric.

Returns

perm [array] Array of permuted row and column indices.

Notes

This routine is used primarily for internal reordering of Lindblad superoperators for use in iterative solver
routines.
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maximum_bipartite_matching(A, perm_type='row')
Returns an array of row or column permutations that removes nonzero elements from the diagonal of a
nonsingular square CSC sparse matrix. Such a permutation is always possible provided that the matrix is
nonsingular. This function looks at the structure of the matrix only.

The input matrix will be converted to CSC matrix format if necessary.

Parameters

A [sparse matrix] Input matrix

perm_type [str {‘row’, ‘column’}] Type of permutation to generate.

Returns

perm [array] Array of row or column permutations.

Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search
(BFS) of the underlying graph[1]_.

References

I. S. Duff, K. Kaya, and B. Ucar, “Design, Implementation, and Analysis of Maximum Transversal Algo-
rithms”, ACM Trans. Math. Softw. 38, no. 2, (2011).

weighted_bipartite_matching(A, perm_type='row')
Returns an array of row permutations that attempts to maximize the product of the ABS values of the diag-
onal elements in a nonsingular square CSC sparse matrix. Such a permutation is always possible provided
that the matrix is nonsingular.

This function looks at both the structure and ABS values of the underlying matrix.

Parameters

A [csc_matrix] Input matrix

perm_type [str {‘row’, ‘column’}] Type of permutation to generate.

Returns

perm [array] Array of row or column permutations.

Notes

This function uses a weighted maximum cardinality bipartite matching algorithm based on breadth-first
search (BFS). The columns are weighted according to the element of max ABS value in the associated rows
and are traversed in descending order by weight. When performing the BFS traversal, the row associated
to a given column is the one with maximum weight. Unlike other techniques[1]_, this algorithm does not
guarantee the product of the diagonal is maximized. However, this limitation is offset by the substantially
faster runtime of this method.
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Utility Functions

This module contains utility functions that are commonly needed in other qutip modules.

n_thermal(w, w_th)
Return the number of photons in thermal equilibrium for an harmonic oscillator mode with frequency ‘w’,
at the temperature described by ‘w_th’ where 𝜔th = 𝑘𝐵𝑇/~.

Parameters

w [float or array] Frequency of the oscillator.

w_th [float] The temperature in units of frequency (or the same units as w).

Returns

n_avg [float or array] Return the number of average photons in thermal equilibrium for a
an oscillator with the given frequency and temperature.

linspace_with(start, stop, num=50, elems=[])
Return an array of numbers sampled over specified interval with additional elements added.

Returns num spaced array with elements from elems inserted if not already included in set.

Returned sample array is not evenly spaced if addtional elements are added.

Parameters

start [int] The starting value of the sequence.

stop [int] The stoping values of the sequence.

num [int, optional] Number of samples to generate.

elems [list/ndarray, optional] Requested elements to include in array

Returns

samples [ndadrray] Original equally spaced sample array with additional elements added.

clebsch(j1, j2, j3, m1, m2, m3)
Calculates the Clebsch-Gordon coefficient for coupling (j1,m1) and (j2,m2) to give (j3,m3).

Parameters

j1 [float] Total angular momentum 1.

j2 [float] Total angular momentum 2.

j3 [float] Total angular momentum 3.

m1 [float] z-component of angular momentum 1.

m2 [float] z-component of angular momentum 2.

m3 [float] z-component of angular momentum 3.

Returns

cg_coeff [float] Requested Clebsch-Gordan coefficient.

convert_unit(value, orig='meV', to='GHz')
Convert an energy from unit orig to unit to.

Parameters

value [float / array] The energy in the old unit.
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orig [string] The name of the original unit (“J”, “eV”, “meV”, “GHz”, “mK”)

to [string] The name of the new unit (“J”, “eV”, “meV”, “GHz”, “mK”)

Returns

value_new_unit [float / array] The energy in the new unit.

File I/O Functions

file_data_read(filename, sep=None)
Retrieves an array of data from the requested file.

Parameters

filename [str] Name of file containing reqested data.

sep [str] Seperator used to store data.

Returns

data [array_like] Data from selected file.

file_data_store(filename, data, numtype='complex', numformat='decimal', sep=', ')
Stores a matrix of data to a file to be read by an external program.

Parameters

filename [str] Name of data file to be stored, including extension.

data: array_like Data to be written to file.

numtype [str {‘complex, ‘real’}] Type of numerical data.

numformat [str {‘decimal’,’exp’}] Format for written data.

sep [str] Single-character field seperator. Usually a tab, space, comma, or semicolon.

qload(name)
Loads data file from file named ‘filename.qu’ in current directory.

Parameters

name [str] Name of data file to be loaded.

Returns

qobject [instance / array_like] Object retrieved from requested file.

qsave(data, name='qutip_data')
Saves given data to file named ‘filename.qu’ in current directory.

Parameters

data [instance/array_like] Input Python object to be stored.

filename [str] Name of output data file.

344 Chapter 5. API documentation



QuTiP: Quantum Toolbox in Python, Release 4.5.0

Parallelization

This function provides functions for parallel execution of loops and function mappings, using the builtin Python
module multiprocessing.

parfor(func, *args, **kwargs)
Executes a multi-variable function in parallel on the local machine.

Parallel execution of a for-loop over function func for multiple input arguments and keyword arguments.

Note: From QuTiP 3.1, we recommend to use qutip.parallel_map instead of this function.

Parameters

func [function_type] A function to run in parallel on the local machine. The function ‘func’
accepts a series of arguments that are passed to the function as variables. In general, the
function can have multiple input variables, and these arguments must be passed in the
same order as they are defined in the function definition. In addition, the user can pass
multiple keyword arguments to the function.

The following keyword argument is reserved:

num_cpus [int] Number of CPU’s to use. Default uses maximum number of CPU’s. Per-
formance degrades if num_cpus is larger than the physical CPU count of your machine.

Returns

result [list] A list with length equal to number of input parameters containing the output
from func.

parallel_map(task, values, task_args=(), task_kwargs={}, **kwargs)
Parallel execution of a mapping of values to the function task. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

Parameters

task [a Python function] The function that is to be called for each value in task_vec.

values [array / list] The list or array of values for which the task function is to be evalu-
ated.

task_args [list / dictionary] The optional additional argument to the task function.

task_kwargs [list / dictionary] The optional additional keyword argument to the task
function.

progress_bar [ProgressBar] Progress bar class instance for showing progress.

Returns

result [list] The result list contains the value of task(value, *task_args,

**task_kwargs) for each value in values.

serial_map(task, values, task_args=(), task_kwargs={}, **kwargs)
Serial mapping function with the same call signature as parallel_map, for easy switching between serial and
parallel execution. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

This function work as a drop-in replacement of qutip.parallel_map.

Parameters

task [a Python function] The function that is to be called for each value in task_vec.
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values [array / list] The list or array of values for which the task function is to be evalu-
ated.

task_args [list / dictionary] The optional additional argument to the task function.

task_kwargs [list / dictionary] The optional additional keyword argument to the task
function.

progress_bar [ProgressBar] Progress bar class instance for showing progress.

Returns

result [list] The result list contains the value of task(value, *task_args,

**task_kwargs) for each value in values.

Semidefinite Programming

This module implements internal-use functions for semidefinite programming.

IPython Notebook Tools

This module contains utility functions for using QuTiP with IPython notebooks.

parfor(task, task_vec, args=None, client=None, view=None, show_scheduling=False,
show_progressbar=False)

Call the function tast for each value in task_vec using a cluster of IPython engines. The function
task should have the signature task(value, args) or task(value) if args=None.

The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor
execution. If these are None, new instances will be created.

Parameters

task: a Python function The function that is to be called for each value in task_vec.

task_vec: array / list The list or array of values for which the task function is to be eval-
uated.

args: list / dictionary The optional additional argument to the task function. For exam-
ple a dictionary with parameter values.

client: IPython.parallel.Client The IPython.parallel Client instance that will be used in
the parfor execution.

view: a IPython.parallel.Client view The view that is to be used in scheduling the tasks
on the IPython cluster. Preferably a load-balanced view, which is obtained from the
IPython.parallel.Client instance client by calling, view = client.load_balanced_view().

show_scheduling: bool {False, True}, default False Display a graph showing how the
tasks (the evaluation of task for for the value in task_vec1) was scheduled on the
IPython engine cluster.

show_progressbar: bool {False, True}, default False Display a HTML-based progress
bar duing the execution of the parfor loop.

Returns

result [list] The result list contains the value of task(value, args) for each value
in task_vec, that is, it should be equivalent to [task(v, args) for v in
task_vec].

parallel_map(task, values, task_args=None, task_kwargs=None, client=None, view=None,
progress_bar=None, show_scheduling=False, **kwargs)

Call the function task for each value in values using a cluster of IPython engines. The function task
should have the signature task(value, *args, **kwargs).
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The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor
execution. If these are None, new instances will be created.

Parameters

task: a Python function The function that is to be called for each value in task_vec.

values: array / list The list or array of values for which the task function is to be evalu-
ated.

task_args: list / dictionary The optional additional argument to the task function.

task_kwargs: list / dictionary The optional additional keyword argument to the task
function.

client: IPython.parallel.Client The IPython.parallel Client instance that will be used in
the parfor execution.

view: a IPython.parallel.Client view The view that is to be used in scheduling the tasks
on the IPython cluster. Preferably a load-balanced view, which is obtained from the
IPython.parallel.Client instance client by calling, view = client.load_balanced_view().

show_scheduling: bool {False, True}, default False Display a graph showing how the
tasks (the evaluation of task for for the value in task_vec1) was scheduled on the
IPython engine cluster.

show_progressbar: bool {False, True}, default False Display a HTML-based progress
bar during the execution of the parfor loop.

Returns

result [list] The result list contains the value of task(value, task_args,
task_kwargs) for each value in values.

version_table(verbose=False)
Print an HTML-formatted table with version numbers for QuTiP and its dependencies. Use it in a IPython
notebook to show which versions of different packages that were used to run the notebook. This should
make it possible to reproduce the environment and the calculation later on.

Returns

version_table: string Return an HTML-formatted string containing version information
for QuTiP dependencies.

Miscellaneous

about()
About box for QuTiP. Gives version numbers for QuTiP, NumPy, SciPy, Cython, and MatPlotLib.

simdiag(ops, evals=True)
Simultaneous diagonalization of commuting Hermitian matrices.

Parameters

ops [list/array] list or array of qobjs representing commuting Hermitian operators.

Returns

eigs [tuple] Tuple of arrays representing eigvecs and eigvals of quantum objects corre-
sponding to simultaneous eigenvectors and eigenvalues for each operator.
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Chapter 6

Change Log

6.1 Version 4.5.0 (January 31, 2020)

6.1.1 Improvements

• MAJOR FEATURE: Added qip.noise, a module with pulse level description of quantum circuits allowing
to model various types of noise and devices (by Boxi Li).

• MAJOR FEATURE: Added qip.lattice, a module for the study of lattice dynamics in 1D (by Saumya
Biswas).

• Migrated testing from Nose to PyTest (by Tarun Raheja).

• Optimized testing for PyTest and removed duplicated test runners (by Jake Lishman).

• Deprecated importing qip functions to the qutip namespace (by Boxi Li).

• Added the possibility to define non-square superoperators relevant for quantum circuits (by Arne Grimsmo
and Josh Combes).

• Implicit tensor product for qeye, qzero and basis (by Jake Lishman).

• QObjEvo no longer requires Cython for string coefficient (by Eric Giguère).

• Added marked tests for faster tests in testing.run() and made faster OpenMP benchmarking in CI (by Eric
Giguère).

• Added entropy and purity for Dicke density matrices, refactored into more general dicke_trace (by Nathan
Shammah).

• Added option for specifying resolution in Bloch.save function (by Tarun Raheja).

• Added information related to the value of hbar in wigner and continuous_variables (by Nicolas Quesada).

• Updated requirements for scipy 1.4 (by Eric Giguère).

• Added previous lead developers to the qutip.about() message (by Nathan Shammah).

• Added improvements to Qobj introducing the inv method and making the partial trace, ptrace, faster, keep-
ing both sparse and dense methods (by Eric Giguère).

• Allowed general callable objects to define a time-dependent Hamiltonian (by Eric Giguère).

• Added feature so that QobjEvo no longer requires Cython for string coefficients (by Eric Giguère).

• Updated authors list on Github and added my binder link (by Nathan Shammah).
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6.1.2 Bug Fixes

• Fixed PolyDataMapper construction for Bloch3d (by Sam Griffiths).

• Fixed error checking for null matrix in essolve (by Nathan Shammah).

• Fixed name collision for parallel propagator (by Nathan Shammah).

• Fixed dimensional incongruence in propagator (by Nathan Shammah)

• Fixed bug by rewriting clebsch function based on long integer fraction (by Eric Giguère).

• Fixed bugs in QobjEvo’s args depending on state and added solver tests using them (by Eric Giguère).

• Fixed bug in sesolve calculation of average states when summing the timeslot states (by Alex Pitchford).

• Fixed bug in steadystate solver by removing separate arguments for MKL and Scipy (by Tarun Raheja).

• Fixed Bloch.add_ponts by setting edgecolor = None in plot_points (by Nathan Shammah).

• Fixed error checking for null matrix in essolve solver affecting also ode2es (by Peter Kirton).

• Removed unnecessary shebangs in .pyx and .pxd files (by Samesh Lakhotia).

• Fixed sesolve and import of os in codegen (by Alex Pitchford).

• Updated plot_fock_distribution by removing the offset value 0.4 in the plot (by Rajiv-B).

6.2 Version 4.4.1 (August 29, 2019)

6.2.1 Improvements

• QobjEvo do not need to start from 0 anymore (by Eric Giguère).

• Add a quantum object purity function (by Nathan Shammah and Shahnawaz Ahmed).

• Add step function interpolation for array time-coefficient (by Boxi Li).

• Generalize expand_oper for arbitrary dimensions, and new method for cyclic permutations of given target
cubits (by Boxi Li).

6.2.2 Bug Fixes

• Fixed the pickling but that made solver unable to run in parallel on Windows (Thank lrunze for reporting)

• Removed warning when mesolve fall back on sesolve (by Michael Goerz).

• Fixed dimension check and confusing documentation in random ket (by Yariv Yanay).

• Fixed Qobj isherm not working after using Qobj.permute (Thank llorz1207 for reporting).

• Correlation functions call now properly handle multiple time dependant functions (Thank taw181 for re-
porting).

• Removed mutable default values in mesolve/sesolve (by Michael Goerz).

• Fixed simdiag bug (Thank Croydon-Brixton for reporting).

• Better support of constant QobjEvo (by Boxi Li).

• Fixed potential cyclic import in the control module (by Alexander Pitchford).
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6.3 Version 4.4.0 (July 03, 2019)

6.3.1 Improvements

• MAJOR FEATURE: Added methods and techniques to the stochastic solvers (by Eric Giguère) which
allows to use a much broader set of solvers and much more efficiently.

• MAJOR FEATURE: Optimization of the montecarlo solver (by Eric Giguère). Computation are faster in
many cases. Collapse information available to time dependant information.

• Added the QObjEvo class and methods (by Eric Giguère), which is used behind the scenes by the dynamical
solvers, making the code more efficient and tidier. More built-in function available to string coefficients.

• The coefficients can be made from interpolated array with variable timesteps and can obtain state informa-
tion more easily. Time-dependant collapse operator can have multiple terms.

• New wigner_transform and plot_wigner_sphere function. (by Nithin Ramu).

• ptrace is faster and work on bigger systems, from 15 Qbits to 30 Qbits.

• QIP module: added the possibility for user-defined gates, added the possibility to remove or add gates in
any point of an already built circuit, added the molmer_sorensen gate, and fixed some bugs (by Boxi Li).

• Added the quantum Hellinger distance to qutip.metrics (by Wojciech Rzadkowski).

• Implemented possibility of choosing a random seed (by Marek Marekyggdrasil).

• Added a code of conduct to Github.

6.3.2 Bug Fixes

• Fixed bug that made QuTiP incompatible with SciPy 1.3.

6.4 Version 4.3.0 (July 14, 2018)

6.4.1 Improvements

• MAJOR FEATURE: Added the Permutational Invariant Quantum Solver (PIQS) module (by Nathan
Shammah and Shahnawaz Ahmed) which allows the simluation of large TLSs ensembles including col-
lective and local Lindblad dissipation. Applications range from superradiance to spin squeezing.

• MAJOR FEATURE: Added a photon scattering module (by Ben Bartlett) which can be used to study
scattering in arbitrary driven systems coupled to some configuration of output waveguides.

• Cubic_Spline functions as time-dependent arguments for the collapse operators in mesolve are now allowed.

• Added a faster version of bloch_redfield_tensor, using components from the time-dependent version. About
3x+ faster for secular tensors, and 10x+ faster for non-secular tensors.

• Computing Q.overlap() [inner product] is now ~30x faster.

• Added projector method to Qobj class.

• Added fast projector method, Q.proj().

• Computing matrix elements, Q.matrix_element is now ~10x faster.

• Computing expectation values for ket vectors using expect is now ~10x faster.

• Q.tr() is now faster for small Hilbert space dimensions.

• Unitary operator evolution added to sesolve

• Use OPENMP for tidyup if installed.
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6.4.2 Bug Fixes

• Fixed bug that stopped simdiag working for python 3.

• Fixed semidefinite cvxpy Variable and Parameter.

• Fixed iterative lu solve atol keyword issue.

• Fixed unitary op evolution rhs matrix in ssesolve.

• Fixed interpolating function to return zero outside range.

• Fixed dnorm complex casting bug.

• Fixed control.io path checking issue.

• Fixed ENR fock dimension.

• Fixed hard coded options in propagator ‘batch’ mode

• Fixed bug in trace-norm for non-Hermitian operators.

• Fixed bug related to args not being passed to coherence_function_g2

• Fixed MKL error checking dict key error

6.5 Version 4.2.0 (July 28, 2017)

6.5.1 Improvements

• MAJOR FEATURE: Initial implementation of time-dependent Bloch-Redfield Solver.

• Qobj tidyup is now an order of magnitude faster.

• Time-dependent codegen now generates output NumPy arrays faster.

• Improved calculation for analytic coefficients in coherent states (Sebastian Kramer).

• Input array to correlation FFT method now checked for validity.

• Function-based time-dependent mesolve and sesolve routines now faster.

• Codegen now makes sure that division is done in C, as opposed to Python.

• Can now set different controls for a each timeslot in quantum optimization.

This allows time-varying controls to be used in pulse optimisation.

6.5.2 Bug Fixes

• rcsolve importing old Odeoptions Class rather than Options.

• Non-int issue in spin Q and Wigner functions.

• Qobj’s should tidyup before determining isherm.

• Fixed time-dependent RHS function loading on Win.

• Fixed several issues with compiling with Cython 0.26.

• Liouvillian superoperators were hard setting isherm=True by default.

• Fixed an issue with the solver safety checks when inputing a list

with Python functions as time-dependence.

• Fixed non-int issue in Wigner_cmap.

• MKL solver error handling not working properly.
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6.6 Version 4.1.0 (March 10, 2017)

6.6.1 Improvements

Core libraries

• MAJOR FEATURE: QuTiP now works for Python 3.5+ on Windows using Visual Studio 2015.

• MAJOR FEATURE: Cython and other low level code switched to C++ for MS Windows compatibility.

• MAJOR FEATURE: Can now use interpolating cubic splines as time-dependent coefficients.

• MAJOR FEATURE: Sparse matrix - vector multiplication now parallel using OPENMP.

• Automatic tuning of OPENMP threading threshold.

• Partial trace function is now up to 100x+ faster.

• Hermitian verification now up to 100x+ faster.

• Internal Qobj objects now created up to 60x faster.

• Inplace conversion from COO -> CSR sparse formats (e.g. Memory efficiency improvement.)

• Faster reverse Cuthill-Mckee and sparse one and inf norms.

6.6.2 Bug Fixes

• Cleanup of temp. Cython files now more robust and working under Windows.

6.7 Version 4.0.2 (January 5, 2017)

6.7.1 Bug Fixes

• td files no longer left behind by correlation tests

• Various fast sparse fixes

6.8 Version 4.0.0 (December 22, 2016)

6.8.1 Improvements

Core libraries

• MAJOR FEATURE: Fast sparse: New subclass of csr_matrix added that overrides commonly used meth-
ods to avoid certain checks that incurr execution cost. All Qobj.data now fast_csr_matrix

• HEOM performance enhancements

• spmv now faster

• mcsolve codegen further optimised

Control modules

• Time dependent drift (through list of pwc dynamics generators)

• memory optimisation options provided for control.dynamics
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6.8.2 Bug Fixes

• recompilation of pyx files on first import removed

• tau array in control.pulseoptim funcs now works

6.9 Version 3.2.0 (Never officially released)

6.9.1 New Features

Core libraries

• MAJOR FEATURE: Non-Markovian solvers: Hierarchy (Added by Neill Lambert), Memory-Cascade,
and Transfer-Tensor methods.

• MAJOR FEATURE: Default steady state solver now up to 100x faster using the Intel Pardiso library under
the Anaconda and Intel Python distributions.

• The default Wigner function now uses a Clenshaw summation algorithm to evaluate a polynomial series
that is applicable for any number of exciations (previous limitation was ~50 quanta), and is ~3x faster than
before. (Added by Denis Vasilyev)

• Can now define a given eigen spectrum for random Hermitian and density operators.

• The Qobj expm method now uses the equivilent SciPy routine, and performs a much faster exp operation
if the matrix is diagonal.

• One can now build zero operators using the qzero function.

Control modules

• MAJOR FEATURE: CRAB algorithm added This is an alternative to the GRAPE algorithm, which allows
for analytical control functions, which means that experimental constraints can more easily be added into
optimisation. See tutorial notebook for full information.

6.9.2 Improvements

Core libraries

• Two-time correlation functions can now be calculated for fully time-dependent Hamiltonians and collapse
operators. (Added by Kevin Fischer)

• The code for the inverse-power method for the steady state solver has been simplified.

• Bloch-Redfield tensor creation is now up to an order of magnitude faster. (Added by Johannes Feist)

• Q.transform now works properly for arrays directly from sp_eigs (or eig).

• Q.groundstate now checks for degeneracy.

• Added sinm and cosm methods to the Qobj class.

• Added charge and tunneling operators.

• Time-dependent Cython code is now easier to read and debug.

Control modules

• The internal state / quantum operator data type can now be either Qobj or ndarray Previous only ndarray
was possible. This now opens up possibility of using Qobj methods in fidelity calculations The attributes
and functions that return these operators are now preceded by an underscore, to indicate that the data type
could change depending on the configuration options. In most cases these functions were for internal pro-
cessing only anyway, and should have been ‘private’. Accessors to the properties that could be useful
outside of the library have been added. These always return Qobj. If the internal operator data type is
not Qobj, then there could be signicant overhead in the conversion, and so this should be avoided during
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pulse optimisation. If custom sub-classes are developed that use Qobj properties and methods (e.g. par-
tial trace), then it is very likely that it will be more efficient to set the internal data type to Qobj. The
internal operator data will be chosen automatically based on the size and sparsity of the dynamics genera-
tor. It can be forced by setting dynamics.oper_dtype = <type> Note this can be done by passing
dyn_params={'oper_dtype':<type>} in any of the pulseoptim functions.

Some other properties and methods were renamed at the same time. A full list is given here.

– All modules - function: set_log_level -> property: log_level

– dynamics functions

* _init_lists now _init_evo

* get_num_ctrls now property: num_ctrls

* get_owd_evo_target now property: onto_evo_target

* combine_dyn_gen now _combine_dyn_gen (no longer returns a value)

* get_dyn_gen now _get_phased_dyn_gen

* get_ctrl_den_gen now _get_phased_ctrl_dyn_gen

* ensure_decomp_curr now _ensure_decomp_curr

* spectral_decomp now _spectral_decomp

– dynamics properties

* evo_init2t now _fwd_evo (fwd_evo as Qobj)

* evo_t2end now _onwd_evo (onwd_evo as Qobj)

* evo_t2targ now _onto_evo (onto_evo as Qobj)

– fidcomp properties

* uses_evo_t2end now uses_onwd_evo

* uses_evo_t2targ now uses_onto_evo

* set_phase_option function now property phase_option

– propcomp properties

* grad_exact (now read only)

– propcomp functions

* compute_propagator now _compute_propagator

* compute_diff_prop now _compute_diff_prop

* compute_prop_grad now _compute_prop_grad

– tslotcomp functions

* get_timeslot_for_fidelity_calc now _get_timeslot_for_fidelity_calc

Miscellaneous

• QuTiP Travis CI tests now use the Anaconda distribution.

• The about box and ipynb version_table now display addition system information.

• Updated Cython cleanup to remove depreciation warning in sysconfig.

• Updated ipynb_parallel to look for ipyparallel module in V4 of the notebooks.
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6.9.3 Bug Fixes

• Fixes for countstat and psuedo-inverse functions

• Fixed Qobj division tests on 32-bit systems.

• Removed extra call to Python in time-dependent Cython code.

• Fixed issue with repeated Bloch sphere saving.

• Fixed T_0 triplet state not normalized properly. (Fixed by Eric Hontz)

• Simplified compiler flags (support for ARM systems).

• Fixed a decoding error in qload.

• Fixed issue using complex.h math and np.kind_t variables.

• Corrected output states mismatch for ntraj=1 in the mcf90 solver.

• Qobj data is now copied by default to avoid a bug in multiplication. (Fixed by Richard Brierley)

• Fixed bug overwriting hardware_info in __init__. (Fixed by Johannes Feist)

• Restored ability to explicity set Q.isherm, Q.type, and Q.superrep.

• Fixed integer depreciation warnings from NumPy.

• Qobj * (dense vec) would result in a recursive loop.

• Fixed args=None -> args={} in correlation functions to be compatible with mesolve.

• Fixed depreciation warnings in mcsolve.

• Fixed neagtive only real parts in rand_ket.

• Fixed a complicated list-cast-map-list antipattern in super operator reps. (Fixed by Stefan Krastanov)

• Fixed incorrect isherm for sigmam spin operator.

• Fixed the dims when using final_state_output in mesolve and sesolve.

6.10 Version 3.1.0 (January 1, 2015):

6.10.1 New Features

• MAJOR FEATURE: New module for quantum control (qutip.control).

• NAMESPACE CHANGE: QuTiP no longer exports symbols from NumPy and matplotlib, so those mod-
ules must now be explicitly imported when required.

• New module for counting statistics.

• Stochastic solvers now run trajectories in parallel.

• New superoperator and tensor manipulation functions (super_tensor, composite, tensor_contract).

• New logging module for debugging (qutip.logging).

• New user-available API for parallelization (parallel_map).

• New enhanced (optional) text-based progressbar (qutip.ui.EnhancedTextProgressBar)

• Faster Python based monte carlo solver (mcsolve).

• Support for progress bars in propagator function.

• Time-dependent Cython code now calls complex cmath functions.

• Random numbers seeds can now be reused for successive calls to mcsolve.

• The Bloch-Redfield master equation solver now supports optional Lindblad type collapse operators.
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• Improved handling of ODE integration errors in mesolve.

• Improved correlation function module (for example, improved support for time-dependent problems).

• Improved parallelization of mcsolve (can now be interrupted easily, support for IPython.parallel, etc.)

• Many performance improvements, and much internal code restructuring.

6.10.2 Bug Fixes

• Cython build files for time-dependent string format now removed automatically.

• Fixed incorrect solution time from inverse-power method steady state solver.

• mcsolve now supports Options(store_states=True)

• Fixed bug in hadamard gate function.

• Fixed compatibility issues with NumPy 1.9.0.

• Progressbar in mcsolve can now be suppressed.

• Fixed bug in gate_expand_3toN.

• Fixed bug for time-dependent problem (list string format) with multiple terms in coefficient to an operator.

6.11 Version 3.0.1 (Aug 5, 2014):

6.11.1 Bug Fixes

• Fix bug in create(), which returned a Qobj with CSC data instead of CSR.

• Fix several bugs in mcsolve: Incorrect storing of collapse times and collapse operator records. Incorrect
averaging of expectation values for different trajectories when using only 1 CPU.

• Fix bug in parsing of time-dependent Hamiltonian/collapse operator arguments that occurred when the args
argument is not a dictionary.

• Fix bug in internal _version2int function that cause a failure when parsingthe version number of the Cython
package.

•

6.12 Version 3.0.0 (July 17, 2014):

6.12.1 New Features

• New module qutip.stochastic with stochastic master equation and stochastic Schrödinger equation solvers.

• Expanded steady state solvers. The function steady has been deprecated in favor of steadystate.
The steadystate solver no longer use umfpack by default. New pre-processing methods for reordering and
balancing the linear equation system used in direct solution of the steady state.

• New module qutip.qip with utilities for quantum information processing, including pre-defined quantum
gates along with functions for expanding arbitrary 1, 2, and 3 qubit gates to N qubit registers, circuit repre-
sentations, library of quantum algorithms, and basic physical models for some common QIP architectures.

• New module qutip.distributions with unified API for working with distribution functions.

• New format for defining time-dependent Hamiltonians and collapse operators, using a pre-calculated numpy
array that specifies the values of the Qobj-coefficients for each time step.
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• New functions for working with different superoperator representations, including Kraus and Chi represen-
tation.

• New functions for visualizing quantum states using Qubism and Schimdt plots: plot_qubism and
plot_schmidt.

• Dynamics solver now support taking argument e_ops (expectation value operators) in dictionary form.

• Public plotting functions from the qutip.visualization module are now prefixed with plot_ (e.g.,
plot_fock_distribution). The plot_wigner and plot_wigner_fock_distribution
now supports 3D views in addition to contour views.

• New API and new functions for working with spin operators and states, including for example spin_Jx,
spin_Jy, spin_Jz and spin_state, spin_coherent.

• The expect function now supports a list of operators, in addition to the previously supported list of states.

• Simplified creation of qubit states using ket function.

• The module qutip.cyQ has been renamed to qutip.cy and the sparse matrix-vector functions spmv
and spmv1d has been combined into one function spmv. New functions for operating directly on the
underlaying sparse CSR data have been added (e.g., spmv_csr). Performance improvements. New and
improved Cython functions for calculating expectation values for state vectors, density matrices in matrix
and vector form.

• The concurrence function now supports both pure and mixed states. Added function for calculating the
entangling power of a two-qubit gate.

• Added function for generating (generalized) Lindblad dissipator superoperators.

• New functions for generating Bell states, and singlet and triplet states.

• QuTiP no longer contains the demos GUI. The examples are now available on the QuTiP web site. The
qutip.gui module has been renamed to qutip.ui and does no longer contain graphical UI elements.
New text-based and HTML-based progressbar classes.

• Support for harmonic oscillator operators/states in a Fock state basis that does not start from zero (e.g., in
the range [M,N+1]). Support for eliminating and extracting states from Qobj instances (e.g., removing one
state from a two-qubit system to obtain a three-level system).

• Support for time-dependent Hamiltonian and Liouvillian callback functions that depend on the instanta-
neous state, which for example can be used for solving master equations with mean field terms.

6.12.2 Improvements

• Restructured and optimized implementation of Qobj, which now has significantly lower memory footprint
due to avoiding excessive copying of internal matrix data.

• The classes OdeData, Odeoptions, Odeconfig are now called Result, Options, and Config,
respectively, and are available in the module qutip.solver.

• The squeez function has been renamed to squeeze.

• Better support for sparse matrices when calculating propagators using the propagator function.

• Improved Bloch sphere.

• Restructured and improved the module qutip.sparse, which now only operates directly on sparse ma-
trices (not on Qobj instances).

• Improved and simplified implement of the tensor function.

• Improved performance, major code cleanup (including namespace changes), and numerous bug fixes.

• Benchmark scripts improved and restructured.

• QuTiP is now using continuous integration tests (TravisCI).
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6.13 Version 2.2.0 (March 01, 2013):

6.13.1 New Features

• Added Support for Windows

• New Bloch3d class for plotting 3D Bloch spheres using Mayavi.

• Bloch sphere vectors now look like arrows.

• Partial transpose function.

• Continuos variable functions for calculating correlation and covariance matrices, the Wigner covariance
matrix and the logarithmic negativity for for multimode fields in Fock basis.

• The master-equation solver (mesolve) now accepts pre-constructed Liouvillian terms, which makes it pos-
sible to solve master equations that are not on the standard Lindblad form.

• Optional Fortran Monte Carlo solver (mcsolve_f90) by Arne Grimsmo.

• A module of tools for using QuTiP in IPython notebooks.

• Increased performance of the steady state solver.

• New Wigner colormap for highlighting negative values.

• More graph styles to the visualization module.

6.13.2 Bug Fixes:

• Function based time-dependent Hamiltonians now keep the correct phase.

• mcsolve no longer prints to the command line if ntraj=1.

6.14 Version 2.1.0 (October 05, 2012):

6.14.1 New Features

• New method for generating Wigner functions based on Laguerre polynomials.

• coherent(), coherent_dm(), and thermal_dm() can now be expressed using analytic values.

• Unittests now use nose and can be run after installation.

• Added iswap and sqrt-iswap gates.

• Functions for quantum process tomography.

• Window icons are now set for Ubuntu application launcher.

• The propagator function can now take a list of times as argument, and returns a list of corresponding prop-
agators.
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6.14.2 Bug Fixes:

• mesolver now correctly uses the user defined rhs_filename in Odeoptions().

• rhs_generate() now handles user defined filenames properly.

• Density matrix returned by propagator_steadystate is now Hermitian.

• eseries_value returns real list if all imag parts are zero.

• mcsolver now gives correct results for strong damping rates.

• Odeoptions now prints mc_avg correctly.

• Do not check for PyObj in mcsolve when gui=False.

• Eseries now correctly handles purely complex rates.

• thermal_dm() function now uses truncated operator method.

• Cython based time-dependence now Python 3 compatible.

• Removed call to NSAutoPool on mac systems.

• Progress bar now displays the correct number of CPU’s used.

• Qobj.diag() returns reals if operator is Hermitian.

• Text for progress bar on Linux systems is no longer cutoff.

6.15 Version 2.0.0 (June 01, 2012):

The second version of QuTiP has seen many improvements in the performance of the original code base, as well
as the addition of several new routines supporting a wide range of functionality. Some of the highlights of this
release include:

6.15.1 New Features

• QuTiP now includes solvers for both Floquet and Bloch-Redfield master equations.

• The Lindblad master equation and Monte Carlo solvers allow for time-dependent collapse operators.

• It is possible to automatically compile time-dependent problems into c-code using Cython (if installed).

• Python functions can be used to create arbitrary time-dependent Hamiltonians and collapse operators.

• Solvers now return Odedata objects containing all simulation results and parameters, simplifying the saving
of simulation results.

Important: This breaks compatibility with QuTiP version 1.x.

• mesolve and mcsolve can reuse Hamiltonian data when only the initial state, or time-dependent arguments,
need to be changed.

• QuTiP includes functions for creating random quantum states and operators.

• The generation and manipulation of quantum objects is now more efficient.

• Quantum objects have basis transformation and matrix element calculations as built-in methods.

• The quantum object eigensolver can use sparse solvers.

• The partial-trace (ptrace) function is up to 20x faster.

• The Bloch sphere can now be used with the Matplotlib animation function, and embedded as a subplot in a
figure.
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• QuTiP has built-in functions for saving quantum objects and data arrays.

• The steady-state solver has been further optimized for sparse matrices, and can handle much larger system
Hamiltonians.

• The steady-state solver can use the iterative bi-conjugate gradient method instead of a direct solver.

• There are three new entropy functions for concurrence, mutual information, and conditional entropy.

• Correlation functions have been combined under a single function.

• The operator norm can now be set to trace, Frobius, one, or max norm.

• Global QuTiP settings can now be modified.

• QuTiP includes a collection of unit tests for verifying the installation.

• Demos window now lets you copy and paste code from each example.

6.16 Version 1.1.4 (May 28, 2012):

6.16.1 Bug Fixes:

• Fixed bug pointed out by Brendan Abolins.

• Qobj.tr() returns zero-dim ndarray instead of float or complex.

• Updated factorial import for scipy version 0.10+

6.17 Version 1.1.3 (November 21, 2011):

6.17.1 New Functions:

• Allow custom naming of Bloch sphere.

6.17.2 Bug Fixes:

• Fixed text alignment issues in AboutBox.

• Added fix for SciPy V>0.10 where factorial was moved to scipy.misc module.

• Added tidyup function to tensor function output.

• Removed openmp flags from setup.py as new Mac Xcode compiler does not recognize them.

• Qobj diag method now returns real array if all imaginary parts are zero.

• Examples GUI now links to new documentation.

• Fixed zero-dimensional array output from metrics module.
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6.18 Version 1.1.2 (October 27, 2011)

6.18.1 Bug Fixes

• Fixed issue where Monte Carlo states were not output properly.

6.19 Version 1.1.1 (October 25, 2011)

THIS POINT-RELEASE INCLUDES VASTLY IMPROVED TIME-INDEPENDENT MCSOLVE AND
ODESOLVE PERFORMANCE

6.19.1 New Functions

• Added linear entropy function.

• Number of CPU’s can now be changed.

6.19.2 Bug Fixes

• Metrics no longer use dense matrices.

• Fixed Bloch sphere grid issue with matplotlib 1.1.

• Qobj trace operation uses only sparse matrices.

• Fixed issue where GUI windows do not raise to front.

6.20 Version 1.1.0 (October 04, 2011)

THIS RELEASE NOW REQUIRES THE GCC COMPILER TO BE INSTALLED

6.20.1 New Functions

• tidyup function to remove small elements from a Qobj.

• Added concurrence function.

• Added simdiag for simultaneous diagonalization of operators.

• Added eigenstates method returning eigenstates and eigenvalues to Qobj class.

• Added fileio for saving and loading data sets and/or Qobj’s.

• Added hinton function for visualizing density matrices.

362 Chapter 6. Change Log



QuTiP: Quantum Toolbox in Python, Release 4.5.0

6.20.2 Bug Fixes

• Switched Examples to new Signals method used in PySide 1.0.6+.

• Switched ProgressBar to new Signals method.

• Fixed memory issue in expm functions.

• Fixed memory bug in isherm.

• Made all Qobj data complex by default.

• Reduced ODE tolerance levels in Odeoptions.

• Fixed bug in ptrace where dense matrix was used instead of sparse.

• Fixed issue where PyQt4 version would not be displayed in about box.

• Fixed issue in Wigner where xvec was used twice (in place of yvec).

6.21 Version 1.0.0 (July 29, 2011)

• Initial release.

6.21. Version 1.0.0 (July 29, 2011) 363



QuTiP: Quantum Toolbox in Python, Release 4.5.0

364 Chapter 6. Change Log



Chapter 7

Developers

7.1 Lead Developers

Robert Johansson (RIKEN)

Paul Nation (Korea University)

7.2 Contributors

Note: Anyone is welcome to contribute to QuTiP. If you are interested in helping, please let us know!

alexbrc (github user) - Code contributor

Alexander Pitchford (Aberystwyth University) - Code contributor

Amit Jamadagni - Bug fix

Anders Lund (Technical University of Denmark) - Bug hunting for the Monte-Carlo solver

Andre Carvalho - Bug hunter

André Xuereb (University of Hannover) - Bug hunter

Anubhav Vardhan (IIT, Kanpur) - Bug hunter, Code contributor, Documentation

Arne Grimsmo (University of Auckland) - Bug hunter, Code contributor

Ben Criger (Waterloo IQC) - Code contributor

Ben Bartlett (Stanford) - Code contributor

Bredan Abolins (Berkeley) - Bug hunter

Chris Granade - Code contributor

Claudia Degrandi (Yale University) - Documentation

Dawid Crivelli - Bug hunter

Denis Vasilyev (St. Petersburg State University) - Code contributor

Dong Zhou (Yale University) - Bug hunter

Eric Giguere (Sherbrooke University) - Code contributor

Florian Ong (Institute for Quantum Computation) - Bug hunter

Frank Schima - Macports packaging
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Henri Nielsen (Technical University of Denmark) - Bug hunter

Hwajung Kang (Systems Biology Institute, Tokyo) - Suggestions for improving Bloch class

James Clemens (Miami University - Ohio) - Bug hunter

Johannes Feist - Code contributor

Jonas Hörsch - Code contributor

Jonas Neergaard-Nielsen (Technical University of Denmark) - Code contributor, Windows support

JP Hadden (University of Bristol) - Code contributor, improved Bloch sphere visualization

Kevin Fischer (Stanford) - Code contributor

Laurence Stant - Documentation

Markus Baden (Centre for Quantum Technologies, Singapore) - Code contributor, Documentation

Myung-Joong Hwang (Pohang University of Science and Technology) - Bug hunter

Nathan Shammah (RIKEN) - Code contributor

Neill Lambert (RIKEN) - Code contributor, Windows support

Nikolas Tezak (Stanford) - Code contributor

Nithin Ramu Code contributor

Per Nielsen (Technical University of Denmark) - Bug hunter, Code contributor

Piotr Migdał (ICFO) - Code contributor

Reinier Heeres (Yale University) - Code contributor

Robert Jördens (NIST) - Linux packaging

Simon Whalen - Code contributor

Shahnawaz Ahmed (RIKEN, BITS Pilani) - Code contributor, Bug hunter

W.M. Witzel - Bug hunter
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Indices and tables

• genindex

• modindex

• search
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about() (in module qutip), 347
add_annotation() (Bloch method), 171
add_coherent_noise() (Pulse method), 220
add_control() (CircularSpinChain method), 212
add_control() (LinearSpinChain method), 208
add_control() (ModelProcessor method), 199
add_control() (OptPulseProcessor method), 195
add_control() (Processor method), 191
add_control() (SpinChain method), 203
add_count() (Stats method), 179
add_drift() (CircularSpinChain method), 212
add_drift() (LinearSpinChain method), 208
add_drift() (ModelProcessor method), 200
add_drift() (OptPulseProcessor method), 195
add_drift() (Processor method), 192
add_drift() (SpinChain method), 203
add_evo_comp_summary() (DynamicsDump

method), 242
add_evo_dump() (DynamicsDump method), 242
add_iter_summary() (OptimDump method), 241
add_lindblad_noise() (Pulse method), 220
add_message() (Stats method), 179
add_noise() (CircularSpinChain method), 212
add_noise() (LinearSpinChain method), 208
add_noise() (ModelProcessor method), 200
add_noise() (OptPulseProcessor method), 195
add_noise() (Processor method), 192
add_noise() (SpinChain method), 204
add_points() (Bloch method), 171
add_pulse() (CircularSpinChain method), 212
add_pulse() (LinearSpinChain method), 208
add_pulse() (ModelProcessor method), 200
add_pulse() (OptPulseProcessor method), 195
add_pulse() (Processor method), 192
add_pulse() (SpinChain method), 204
add_section() (Stats method), 179
add_states() (Bloch method), 171
add_timing() (Stats method), 179
add_vectors() (Bloch method), 172
adjacent_gates() (CircularSpinChain method),

212
adjacent_gates() (LinearSpinChain method),

208
adjacent_gates() (SpinChain method), 204
am() (in module qutip.piqs), 306
ap() (in module qutip.piqs), 306
apply_method_params() (Optimizer method),

223

apply_params() (Dynamics method), 229
apply_params() (FidelityComputer method), 232
apply_params() (Optimizer method), 223
apply_params() (PropagatorComputer method),

231
apply_params() (PulseGen method), 236
apply_params() (TimeslotComputer method), 235
average_gate_fidelity() (in module

qutip.metrics), 275

B
basis() (in module qutip.states), 242
basis() (Lattice1d method), 186
bell_state() (in module qutip.states), 243
berkeley() (in module qutip.qip.gates), 321
berry_curvature() (in module qutip.topology),

310
Bloch (class in qutip.bloch), 170
bloch_redfield_solve() (in module

qutip.bloch_redfield), 282
bloch_redfield_tensor() (in module

qutip.bloch_redfield), 282
bloch_wave_functions() (Lattice1d method),

186
block_matrix() (in module qutip.piqs), 309
bra() (in module qutip.states), 243
breadth_first_search() (in module

qutip.graph), 341
brmesolve() (in module qutip.bloch_redfield), 281
build_preconditioner() (in module

qutip.steadystate), 301
bulk_Hamiltonians() (Lattice1d method), 187
bures_angle() (in module qutip.metrics), 274
bures_dist() (in module qutip.metrics), 274

C
c_ops() (Dicke method), 182
calculate() (Stats method), 240
calculate_j_m() (Pim method), 184
calculate_k() (Pim method), 184
cell_periodic_parts() (Lattice1d method),

187
cell_structures() (in module qutip.lattice), 310
charge() (in module qutip.operators), 253
check_herm() (Qobj method), 159
check_isunitary() (Qobj method), 159
check_unitarity() (DynamicsUnitary method),

231
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chi_to_choi() (in module qutip.superop_reps),
266

choi_to_chi() (in module qutip.superop_reps),
266

choi_to_kraus() (in module qutip.superop_reps),
266

choi_to_super() (in module qutip.superop_reps),
266

CircularSpinChain (class in qutip.qip.device),
212

clear() (Bloch method), 172
clear() (FidCompUnitary method), 233
clear() (FidelityComputer method), 233
clear() (Stats method), 179
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