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Chapter 1

Frontmatter

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version
of this text is available at the documentation page.

For more information see the QuTiP project web page.
Author J.R. Johansson
Author P.D. Nation
Author Alexander Pitchford
Author Arne Grimsmo
Author Chris Grenade
Author Nathan Shammah
Author Shahnawaz Ahmed
Author Neill Lambert
Author FEric Giguere
version 4.5
status Released (January 30, 2020)

copyright This documentation is licensed under the Creative Commons Attribution 3.0 Unported
License.

1.2 Citing This Project

If you find this project useful, then please cite:

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum
systems”, Comp. Phys. Comm. 184, 1234 (2013).

or

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
quantum systems”’, Comp. Phys. Comm. 183, 1760 (2012).

which may also be download from http://arxiv.org/abs/1211.6518 or http://arxiv.org/abs/1110.0573, respectively.



http://www.qutip.org/documentation.html
http://www.qutip.org
http://arxiv.org/abs/1211.6518
http://arxiv.org/abs/1110.0573
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1.3 Funding

QuTiP is developed under the auspice of the non-profit organization:

NUMFOCUS

OPEN CODE = BETTER SCIENCE

QuTiP was partially supported by

BHARSHTIRFS

Japan Society for the Promotion of Science

AdoitiZtul

KOREA UNIVERSITY

10 6UANTIOUE

UNIVERSITE DE SHERBROOKE

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is
taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight,
a coupling between the system of interest and the external world. In addition, any measurement performed on
the system necessarily involves coupling to the measuring device, therefore introducing an additional source of
external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account
for the interactions between a system and its environment is an essential step in understanding the dynamics of
practical quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is not pos-
sible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum computer,
these simulations must be carried out using classical computing techniques, where the exponentially increasing
dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently simu-
lated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and most
recently nanomechanical systems, it is possible to design systems using a small number of effective oscillator and
spin components, excited by a limited number of quanta, that are amenable to classical simulation in a truncated
Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is an open-source framework written in the Python programming lan-
guage, designed for simulating the open quantum dynamics of systems such as those listed above. This framework
distinguishes itself from other available software solutions in providing the following advantages:
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* QuTiP relies entirely on open-source software. You are free to modify and use it as you wish with no
licensing fees or limitations.

* QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the
need to compile after modification.

¢ The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy,
Scipy, and Cython libraries, and are based on many of the same algorithms used in propriety software.

* QuTiP allows for solving the dynamics of Hamiltonians with (almost) arbitrary time-dependence, including
collapse operators.

* Time-dependent problems can be automatically compiled into C++-code at run-time for increased perfor-
mance.

» Takes advantage of the multiple processing cores found in essentially all modern computers.

* QuTiP was designed from the start to require a minimal learning curve for those users who have experience
using the popular quantum optics toolbox by Sze M. Tan.

* Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.

1.5 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems.
Anyone who contributes will be duly recognized. Even small contributions are noted. See Contributors for a list of
people who have helped in one way or another. If you are interested, please drop us a line at the QuTiP discussion
group webpage.

1.5. Contributing to QuTiP 5
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Chapter 2

Installation

2.1 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language.
The following packages are currently required:

Package Version Details

Python 2.7+ Version 3.5+ is highly recommended.

NumPy 1.8+ Not tested on lower versions.

SciPy 0.15+ Lower versions have missing features.

Matplotlib 1.2.1+ Some plotting does not work on lower versions.

Cython 0.21+ Needed for compiling some time-dependent Hamiltonians.
C++ Compiler GCC 4.7+, MS VS 2015 | Needed for compiling Cython files.

Python Headers | 2.7+ Linux only. Needed for compiling Cython files.

In addition, there are several optional packages that provide additional functionality:

Package | Version Details
LaTeX TexLive 2009+ | Needed if using LaTeX in matplotlib figures.
pytest 5.3+ For running the test suite.

We would not recommend installation into the system Python on Linux platforms, as it is likely that the required
libraries will be difficult to update to sufficiently recent versions. The system Python on Linux is used for system
things, changing its configuration could lead to highly undesirable results. We are recommending and supporting
Anaconda / Miniconda Python environments for QuTiP on all platformsx [It is also possible to install the Intel
Python Distribution via the conda installer in Anacondal].

2.2 Platform-independent Installation

QuTiP is designed to work best when using the Anaconda or Intel Python distributions that support the conda
package management system.

If you aleady have your conda environment set up, and have the conda-forge channel available, then you can
install QuTiP using:

conda install qutip

Otherwise refer to building-conda-environment

If you are using MS Windows, then you will probably want to refer to installation-on-MS-Windows



https://www.continuum.io/downloads
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2.2.1 Building your Conda environment

Important: There are no working conda-forge packages for Python 2.7 on Windows. On Windows you should
create a Python 3.5+ environment.

The default Anaconda environment has all the Python packages needed for running QuTiP. You may however
wish to install QuTiP in a Conda environment (env) other than the default Anaconda environment. You may wish
to install Miniconda instead if you need to be economical with disk space. However, if you are not familiar with
conda environments and only plan to use if for QuTiP, then you should probably work with a default Anaconda /
Miniconda environment.

To create a Conda env for QuTiP called qutip—-env:

conda create -n gqutip-env python=3

Note the pyt hon=3 can be ommited if you want the default Python version for the Anaconda / Miniconda install.

If you have created a specific conda environment, or you have installed Miniconda, then you will need to install
the required packages for QuTiP.

recommended:

conda install numpy scipy cython matplotlib pytest pytest-cov jupyter notebook
—spyder

minimum (recommended):

’conda install numpy scipy cython pytest pytest-cov matplotlib

absolute mimimum:

’conda install numpy scipy cython

The jupyter and notebook packages are for working with Jupyter notebooks (tka IPython notebooks). Spyder
is an IDE for scientific development with Python.

2.2.2 Adding the conda-forge channel

If you have conda 4.1.0 or later then, add the conda-forge channel with lowest priority using:

’conda config —-—-append channels conda-forge

Otherwise you should consider reinstalling Anaconda / Miniconda. In theory:

’conda update conda

will update your conda to the latest version, but this can lead to breaking your default Ananconda enviroment.

Alternatively, this will add conda—-forge as the highest priority channel.

’conda config —-—add channels conda-forge

It is almost certainly better to have defaults as the highest priority channel. You can edit your .condarc
(user home folder) file manually, so that conda-forge is below defaults in the channels list.

8 Chapter 2. Installation
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2.3 Installing via pip

For other types of installation, it is often easiest to use the Python package manager pip.

’pip install qutip

More detailed platform-dependent installation alternatives are given below.

2.4 Installing from Source

Official releases of QuTiP are available from the download section on the project’s web pages
http://www.qutip.org/download.html

and the latest source code is available in our Github repository
http://github.com/qutip

In general we recommend users to use the latest stable release of QuTiP, but if you are interested in helping us out
with development or wish to submit bug fixes, then use the latest development version from the Github repository.

Installing QuTiP from source requires that all the dependencies are satisfied. To install QuTiP from the source
code run:

’python setup.py install

To install OPENMP support, if available, run:

’python setup.py install --with-openmp

If you are wishing to contribute to the QuTiP project, then you will want to create your own fork of qutip, clone
this to a local folder, and ‘install’ it into your Python env using:

’python setup.py develop —--with-openmp

import qutip in this Python env will then load the code from your local fork, enabling you to test changes
interactively.

The sudo pre-command is typically not needed when installing into Anaconda type environments, as Anaconda
is usually installed in the users home directory. sudo will be needed (on Linux and OSX) for installing into
Python environments where the user does not have write access.

2.5 Installation on MS Windows

Important: Installation on Windows has changed substantially as of QuTiP 4.1. The only supported installation
configuration is using the Conda environment with Python 3.5+ and Visual Studio 2015.

We are recommending and supporting installation of QuTiP into a Conda environment. Other scientific Python
implementations such as Python-xy may also work, but are not supported.

As of QuTiP 4.1, recommended installation on Windows requires Python 3.5+, as well as Visual Studio 2015.
With this configuration, one can install QuTiP using any of the above mentioned receipes. Visual Studio 2015
is not required for the install of the conda-forge package, but it is required at runtime for the string format time-
dependence solvers. When installing Visual Studio 2015 be sure to select options for the C++ compiler.

The ‘Community’ edition of Visual Studio 2015 is free to download use, however it does require approx 10GB of
disk space, much of which does have to be on the system drive. If this is not feasible, then it is possible to run
QuTiP under Python 2.7.

2.3. Installing via pip 9
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2.5.1 Windows and Python 2.7

Important: Running QuTiP under Python 2.7 on Windows is not recommended or supported. However, it is
currently possible. There are no working conda-forge packages for Python 2.7 on Windows. You will have to
install via pip or from source in Python 2.7 on Windows. The ‘MS Visual C for Python 2.7° compiler will not
work with QuTiP. You will have to use the g++ compiler in mingw32.

If you need to create a Python 2.7 conda environment see building-conda-environment, including adding-conda-
forge

Then run:

’conda install mingwpy ‘

To specify the use of the mingw compiler you will need to create the following file:

’<path to my Python env>/Lib/distutils/distutils.cfg ‘

with the following contents:

[build]
compiler=mingw32
[build_ext]
compiler=mingw32

<path to my Python env> will be something like C:\Ananconda2\ or C:\Ananconda2\envs\
qutip-env\ depending on where you installed Anaconda or Miniconda, and whether you created a specific
environment.

You can then install QuTiP using either the install-via_pip or install-get-it method.

2.6 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite of
tests scripts you must have the pytest testing library. After installing QuTiP, leave the installation directory, run
Python (or iPython), and call:

import qutip.testing as gt
gt.run()

If successful, these tests indicate that all of the QuTiP functions are working properly. If any errors occur, please
check that you have installed all of the required modules. See the next section on how to check the installed
versions of the QuTiP dependencies. If these tests still fail, then head on over to the QuTiP Discussion Board and
post a message detailing your particular issue.

2.7 Checking Version Information using the About Function

QuTiP includes an “about” function for viewing information about QuTiP and the important dependencies installed
on your system. To view this information:

In [1]: from qutip import =«

In [2]: about ()

10 Chapter 2. Installation



http://groups.google.com/group/qutip

Chapter 3

Users Guide

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide
is divided up into several sections, each highlighting a specific set of functionalities. In combination with the
examples that can be found on the project web page http://qutip.org/tutorials.html, this guide should provide a
more or less complete overview. In addition, the API documentation for each function is located at the end of this
guide.

3.1.1 Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems composed
of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever growing)
library of functions and classes; from qutip. states.basisto qutip.wigner. The general organization
of QuTiP, highlighting the important API available to the user, is shown in the figure-qutip_org

11
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Tree-diagram of the 361 user accessible functions and classes in QuTiP 4.4. A vector image of the code tree is in

qutip_tree.pdf.
3.2 Basic Operations on Quantum Objects

3.2.1 First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, we must first call the import statement:

In [1]: from qutip import =

that will load all of the user available functions. Often, we also need to import the NumPy and Matplotlib libraries

with:

12 Chapter 3. Users Guide



QuTiP: Quantum Toolbox in Python, Release 4.5.0

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

Note that, in the rest of the documentation, functions are written using qutip.module.function() notation which
links to the corresponding function in the QuTiP API: Functions. However, in calling import *, we have already
loaded all of the QuTiP modules. Therefore, we will only need the function name and not the complete path when
calling the function from the interpreter prompt, Python script, or Jupyter notebook.

3.2.2 The quantum object class

Introduction

The key difference between classical and quantum mechanics lies in the use of operators instead of numbers as
variables. Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics
of quantum systems we need a data structure that is capable of encapsulating the properties of a quantum operator
and ket/bra vectors. The quantum object class, qut ip. Qob j, accomplishes this using matrix representation.

To begin, let us create a blank Qob J:

In [4]: Qobj()

Out [4]:

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[0.1]

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1-
dimensional matrix consisting of a single zero entry.

Hint: By convention, Class objects in Python such as Qobj () differ from functions in the use of a beginning
capital letter.

We can create a Qob j with a user defined data set by passing a list or array of data into the Qob J:

In [5]: Qobj([[1],[2],1[31,(04]1,I[511)

Out [5]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[1.

In [6]: x = np.array([[1l, 2, 3, 4, 511])

In [7]: Qobj(x)

Out[7]:

Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =

[[1. 2. 3. 4. 5.]]1

In [8]: r = np.random.rand (4, 4)

In [9]: Qobj(r)

Oout[9]:

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =

(continues on next page)
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(continued from previous page)

[[0.20357442 0.88873526
[0.58809628 0.32734096
[0.16646896 0.51620007
[0.35544738 0.69216207

0.65825042 0.14998379]
0.38274417 0.26404025]
0.9151869 0.61009921]
0.36788579 0.28856135]]

Notice how both the dims and shape change according to the input data. Although dims and shape appear to have
the same function, the difference will become quite clear in the section on fensor products and partial traces.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond
to commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-
level system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of

states:
States Command (# | Inputs
means optional)
Fock state ket vector basis (N, N = number of levels in Hilbert space, m = level con-

#m)/fock (N, #m)

taining excitation (0 if no m given)

Fock density matrix (outer
product of basis)

fock_dm (N, #p)

same as basis(N,m) / fock(N,m)

Coherent state

coherent (N,

alpha = complex number (eigenvalue) for requested co-

alpha) herent state
Coherent density matrix | coherent_dm (N, | same as coherent(N,alpha)
(outer product) alpha)

Thermal density matrix (for
n particles)

thermal_dm (N,
n)

n = particle number expectation value

and operators:

14
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Operators Command (# | Inputs
means optional)
Charge operator charge (N, M=-N) Diagonal operator with entries from M..0..N.
Commutator commutator (4, Kind = ‘normal’ or ‘anti’.
B, kind)
Diagonals operator gdiags (N) Quantum object created from arrays of diagonals at
given offsets.
Displacement  operator | displace (N, N=number of levels in Hilbert space, alpha = complex
(Single-mode) alpha) displacement amplitude.
Higher spin operators jmat (J, #s) j = integer or half-integer representing spin, s = ‘x’, ‘y’,
‘2’, ‘4, or ‘¢
Identity geye (N) N = number of levels in Hilbert space.
Lowering  (destruction) | destroy (N) same as above
operator
Momentum operator momentum (N) same as above
Number operator num (N) same as above
Phase operator (Single- | phase (N, phi0) Single-mode Pegg-Barnett phase operator with ref phase
mode) phi0.
Position operator position (N) same as above
Raising (creation) opera- | create (N) same as above
tor
Squeezing operator | squeeze (N, sp) N=number of levels in Hilbert space, sp = squeezing pa-
(Single-mode) rameter.
Squeezing operator (Gen- | squeezing(gl, ql,q92 = Quantum operators (Qobj) sp = squeezing pa-
eralized) a2, sp) rameter.
Sigma-X sigmax ()
Sigma-Y sigmay ()
Sigma-Z sigmaz ()
Sigma plus sigmap ()
Sigma minus sigmam ()
Tunneling operator tunneling (N, m) Tunneling operator with elements of the form |[N ><
N +m|+|N+m >< N|.

As an example, we give the output for a few of these functions:

In [10]: basis (5, 3)

Out [10]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[0.]
[1.]
[0.]]

In [11]: coherent (5,0.5-0.57)

Out[11]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

Qobj data =

[[ 0.7788017 +0.73

.38939142-0.389391427
-0.275458957

07898617-0.078986177

04314271+0.7

o O O O

[
[
[-0.
[-0. ]

In [12]: destroy(4)

Out[12]:

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False

(continues on next page)
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(continued from previous page)

Qobj data =

[[0. 1 0. 0. ]
[0 0 1.41421356 0. ]
[0. 0 0. 1.73205081]
[0 0 0. 0 1]

In [13]: sigmaz()

Out[13]:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True

Qobj data =

[[ 1. 0.]
[ 0. -1.]]

In [14]: jmat (5/2.0,"'+")

Out[14]:

Quantum object: dims = [[6], [6]], shape = (6, 6), type = oper, isherm = False

Qobj data =

[[0. 2.23606798 0. 0. 0. 0. ]
[0. 0. 2.82842712 0. 0. 0. ]
[0. 0. 0. 3. 0. 0. ]
[0. 0 0. 0. 2.82842712 0. ]
[0. 0 0. 0. 0. 2.23606798]
[0. 0 0. 0. 0. 0. 11

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be
accessed in the following way:

In [15]: g = destroy (4)

In [16]: g.dims
Out[16]: [[4], [4]]

In [17]: g.shape
Out[17]: (4, 4)

In general, the attributes (properties) of a Qob j object (or any Python class) can be retrieved using the Q.attribute
notation. In addition to the attributes shown with the print function, the Qob j class also has the following:

Property | At- Description
tribute

Data Q. Matrix representing state or operator
data

Dimen- Q. List keeping track of shapes for individual components of a multipartite system (for

sions dims tensor products and partial traces).

Shape Q. Dimensions of underlying data matrix.
shape

is Hermi- | Q. Is the operator Hermitian or not?

tian? isherm

Type Q. Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?
type

16 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 4.5.0

Fig. 1: The Qobj Class viewed as a container for the properties need to characterize a quantum operator or state
vector.

For the destruction operator above:

In [18]: g.type
Out[18]: 'oper'

In [19]: g.isherm
Out[19]: False

In [20]: g.data
Out[20]:
<4x4 sparse matrix of type '<class 'numpy.complexl128'>"
with 3 stored elements in Compressed Sparse Row format>

The data attribute returns a message stating that the data is a sparse matrix. All Qob j instances store their data as a
sparse matrix to save memory. To access the underlying dense matrix one needs to use the qutip.Qobj. full
function as described below.

Qobj Math

The rules for mathematical operations on Qob j instances are similar to standard matrix arithmetic:

In [21]: g = destroy(4)
In [22]: x = sigmax ()

In [23]: g + 5

Out[23]:
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[5. 1. 0. 0. ]
[0. 5. 1.41421356 0. ]
[0. 0. 5 1.73205081]
[0 0. 0 5. 11
In [24]: x * X
Out[24]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 1.]]

(continues on next page)
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(continued from previous page)

In [25]: g ** 3

Out [25] :
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[O. 0 0. 2.44948974]
[0. 0 0. 0 ]
[0. 0 0. 0 ]
[0. 0 0. 0 1]
In [26]: x / np.sqrt(2)
Out[26] :
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[O. 0.70710678]
[0.70710678 0. 1]

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

In [27]: g * x

TypeError Traceback (most recent call last)
<ipython-input-27-57£05cd0899f> in <module>

-——> 1 g * x

/miniconda3/envs/release/lib/python3.6/site-packages/qutip-4.5.0-py3.6-macosx-10.9-
—x86_64.egg/qutip/gobj.py in _ mul__ (self, other)

553
554 else:
-—> 555 raise TypeError ("Incompatible Qob7j shapes")
556
557 elif isinstance (other, np.ndarray):

TypeError: Incompatible Qobj shapes

In addition, the logic operators is equal == and is not equal /= are also supported.

3.2.3 Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qob 7 class instances.
For a general quantum object Q:
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Function Command Description

Check Her- | Q.check_herm() Check if quantum object is Hermitian
micity

Conjugate Q.conj() Conjugate of quantum object.

Cosine Q.cosm() Cosine of quantum object.

Dagger (ad- | Q.dag() Returns adjoint (dagger) of object.
joint)

Diagonal Q.diag() Returns the diagonal elements.
Diamond Q.dnorm() Returns the diamond norm.

Norm

Eigenenergies | Q.eigenenergies () Eigenenergies (values) of operator.
Eigenstates Q.eigenstates|() Returns eigenvalues and eigenvectors.
Eliminate Q. Returns quantum object with states in list inds removed.
States eliminate_states (inds)

Exponential Q.expm () Matrix exponential of operator.
Extract States | Q. Qobj with states listed in inds only.

extract_states (inds)

Full Q.full () Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate () Eigenval & eigket of Qobj groundstate.
Matrix  Ele- | Q. Matrix element <bralQlket>
ment matrix_element (bra,

ket)
Norm Q.norm() Returns L2 norm for states, trace norm for operators.
Overlap Q.overlap (state) Overlap between current Qobj and a given state.

Partial Trace

Q.ptrace(sel)

Partial trace returning components selected using ‘sel” pa-
rameter.

Permute Q.permute (order) Permutes the tensor structure of a composite object in the
given order.

Projector Q.proj() Form projector operator from given ket or bra vector.

Sine Q.sinm() Sine of quantum operator.

Sqrt Q.sgrtm() Matrix sqrt of operator.

Tidyup Q.tidyup () Removes small elements from Qobj.

Trace Q.tr() Returns trace of quantum object.

Transform Q.transform(inpt) A basis transformation defined by matrix or list of kets
‘inpt’ .

Transpose Q.trans () Transpose of quantum object.

Truncate Neg Q.trunc_neg () Truncates negative eigenvalues

Unit Q.unit () Returns normalized (unit) vector Q/Q.norm().

In [28]: basis (5, 3)
Out [28] :
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[10.]
[0.]
[0.]
[1.]
[0.1]
In [29]: basis (5, 3).dag()
Oout [29]:
Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =
[[0. 0. 0. 1. 0.]]
In [30]: coherent_dm(5, 1)

Out [30]:

(continues on next page)
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(continued from previous page)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]
[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]
[0.08826704 0.08822695 0.06263061 0.035077 0.0211765 1]
In [31]: coherent_dm(5, 1).diag()
Out[31]: array([0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 1)
In [32]: coherent_dm (5, 1).full()
Out [32]:
array ([[0.36791117+0.3, 0.36774407+0.7, .26105441+0.3, 0.14620658+0. 7,
0.08826704+0.71,
[0.36774407+0.73, 0.36757705+0. 7, .26093584+0.73, 0.14614018+0.7,
0.08822695+0.71,
[0.26105441+0.3, 0.26093584+0. 7, .18523331+0.3, 0.10374209+0. 7,
0.06263061+0.71,
[0.14620658+0.7j, 0.14614018+0.7, .10374209+0.3, 0.05810197+0. 7,
0.035077 +0.731,
[0.08826704+0.73, 0.08822695+0.3j, 0.06263061+0.73, 0.035077 +0.7,
0.0211765 +0.311)
In [33]: coherent_dm (5, 1).norm()
Out[33]: 1.0000000225514842
In [34]: coherent_dm(5, 1).sqgrtm()
Out[34]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.36791119 0.36774406 0.2610544 0.14620658 0.08826704]
[0.36774406 0.36757705 0.26093584 0.14614018 0.08822695]
[0.2610544 0.26093584 0.18523332 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.03507701]
[0.08826704 0.08822695 0.06263061 0.03507701 0.0211765 1]
In [35]: coherent_dm(5, 1).tr()
Out[35]: 1.0
In [36]: (basis (4, 2) + basis (4, 1)) .unit()
Out [36] :
Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket
Qobj data =
[[0. ]
[0.70710678]
[0.70710678]
[0 1]
20 Chapter 3. Users Guide
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3.3 Manipulating States and Operators

3.3.1 Introduction

In the previous guide section Basic Operations on Quantum Objects, we saw how to create states and operators,
using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations
with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the
examples on the tutorials web page.

3.3.2 State Vectors (kets or bras)

Here we begin by creating a Fock qutip. states.basis vacuum state vector |0) with in a Hilbert space with
5 number states, from O to 4:

In [1]: vac = basis (5, 0)

In [2]: vac

Out[2]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[1.]
[0.]
[0.]
[0.]
[0.]]

and then create a lowering operator (G) corresponding to 5 number states using the qutip.operators.
destroy function:

In [3]: a = destroy(5)

In [4]: a
Out [4]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False
Qobj data =
[[O. 1. 0. 0. 0. ]
[0. 0. 1.41421356 0. 0. ]
[0. 0. 0 1.73205081 0. ]
[0. 0. 0 0. 2. ]
[0. 0. 0 0. 0. 1]

Now lets apply the destruction operator to our vacuum state vac,

In [5]: a *» vac

Out [5]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[0.]
[0.]
[0.]1]

We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes from
using the adjoint of the lowering operator, the raising operator a:

In [6]: a.dag() = vac
Out[6]:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

(continues on next page)
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(continued from previous page)

Qobj data =
[[0.]
[1.]
[0.]
[0.]
[0.]1]

The raising operator has in indeed raised the state vec from the vacuum to the |1) state. Instead of using the dagger
Qobj.dag () method to raise the state, we could have also used the built in qutip.operators.create
function to make a raising operator:

In [7]: c = create(b)

In [8]: c % vac

Oout[8]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[1.]
[0.1]
[0.]
[0.]

]

which does the same thing. We can raise the vacuum state more than once by successively apply the raising
operator:

In [9]: ¢ = c * vac

Out[9]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[O.

0.
.41421356

[
[
[
[ ]

. . .. a1 2
or just taking the square of the raising operator (aT) :

In [10]: ¢ »* 2 % vac

Out [10]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[O. ]
[O. ]
[1.41421356]
[ ]
[ 1]

Applying the raising operator twice gives the expected v/n + 1 dependence. We can use the product of ¢ * a to
also apply the number operator to the state vector vac:

In [11]: c » a = vac

Out[11]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[0.]
[0.]
[0.]]

or on the |1) state:
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In [12]: ¢ » a » (c % vac)

Out[12]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[1.1]
[0.]
[0.]
[0.1]

or the |2) state:

In [13]: c = a = (c*x*2 * vac)

Out [13]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0. ]
[O. ]
[2.82842712]
[ ]
[ 1]

Notice how in this last example, application of the number operator does not give the expected value n = 2, but
rather 2v/2. This is because this last state is not normalized to unity as ¢ |n) = v/n + I |n + 1). Therefore, we
should normalize our vector first:

In [14]: ¢ » a  (cx*2 = vac) .unit ()

Out[14]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[2.]
[0.]
[0.1]

Since we are giving a demonstration of using states and operators, we have done a lot more work than we should
have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state. Instead
we can use the qutip.states.basis (or qutip.states. fock) function to directly obtain the required
state:

In [15]: ket = basis (5, 2)

In [16]: print (ket)

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[1.]
[0.]
[0.1]

Notice how it is automatically normalized. We can also use the built in qut ip. operators. num operator:

In [17]: n = num(5)

In [18]: print (n)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]

(continues on next page)
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[0. O. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 4.1]]

Therefore, insteadof ¢ * a * (¢ *x 2 % vac) .unit () we have:

In [19]: n * ket

Out [19]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[2.]
[0.]
[0.]]

We can also create superpositions of states:

In [20]: ket = (basis (5, 0) + basis (5, 1)) .unit ()

In [21]: print (ket)

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.70710678]
[0.70710678]
[0 ]
[O. ]
[0 1]

where we have used the qutip.Qobj.unit method to again normalize the state. Operating with the number
function again:

In [22]: n *» ket

Oout [22]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.
0.70710678

[
[
[
[

We can also create coherent states and squeezed states by applying the qutip.operators.displace and
qutip.operators.squeeze functions to the vacuum state:

In [23]: vac = basis (5, 0)
In [24]: d = displace (5, 173)
In [25]: s = squeeze (5, 0.25 + 0.257)

In [26]: d
Out [26] :
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[ 0.60655682+0.7

0. +0.606281337
-0.4303874 +0.7

0. -0.241043517
0.14552147+40.7

*

vac

[
[
[
[
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In [27]: d = s = vac
Out[27]:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[ 0.65893786+0.081393817]

.10779462+0.515797357]

.37567217-0.013268537]
.02688063-0.238287757]
.26352814+0.115121787]

O O O O

[

[,
[_
[ ]

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in qutip.
states.coherent function.

3.3.3 Density matrices

One of the main purpose of QuTiP is to explore the dynamics of open quantum systems, where the most general
state of a system is not longer a state vector, but rather a density matrix. Since operations on density matrices
operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product |) (1| of a ket vector:

In [28]: ket = basis (5, 2)

In [29]: ket * ket.dag()

Oout [29]:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
0.

O O O O o
o O O

O O O O o
O O O O o

A similar task can also be accomplished via the qutip.states. fock _dmor qutip.states.ket2dm
functions:

In [30]: fock_dm(5, 2)

Out [30]:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
0.

O O O O O
o O - O

O O O O o
O O O O o

In [31]: ket2dm(ket)

Out[31]:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
0.

O O O O O
O O O o o
O O O o o

o O - O

If we want to create a density matrix with equal classical probability of being found in the |2) or |4) number states
we can do the following:
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In [32]: 0.5 * ket2dm(basis (5, 4)) + 0.5 x ket2dm(basis (5, 2))

Out [32]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. O 0. 1
[0. 0. 0. O 0. ]
[0. 0. 0.50 0. 1
[0. 0. 0. O 0. 1
[0. 0. 0. O 0.5]]

oruse 0.5 * fock_dm(5, 2) + 0.5 x fock_dm (5, 4). There are also several other built-in func-
tions for creating predefined density matrices, for example qutip.states.coherent_dm and qutip.
states.thermal_dm which create coherent state and thermal state density matrices, respectively.

In [33]: coherent_dm(5, 1.25)

Out [33]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.20980701 0.26141096 0.23509686 0.15572585 0.13390765]
[0.26141096 0.32570738 0.29292109 0.19402805 0.16684347]
[0.23509686 0.29292109 0.26343512 0.17449684 0.1500487 ]
[0.15572585 0.19402805 0.17449684 0.11558499 0.09939079]
[0.13390765 0.16684347 0.1500487 0.09939079 0.0854655 1]

In [34]: thermal_dm(5, 1.25)

Out [34]:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.46927974 0. 0. 0. 0. ]
[0. 0.26071096 0. 0. 0. ]
[0. 0. 0.14483942 0. 0. ]
[0. 0. 0. 0.08046635 0. ]
[0. 0. 0. 0. 0.04470353]]

QuTiP also provides a set of distance metrics for determining how close two density matrix distri-
butions are to each other. Included are the trace distance qutip.metrics.tracedist, fidelity
qutip.metrics.fidelity, Hilbert-Schmidt distance qutip.metrics.hilbert_dist, Bures dis-
tance qutip.metrics.bures_dist, Bures angle qutip.metrics.bures_angle, and quantum
Hellinger distance qutip.metrics.hellinger_dist.

In [35]: x = coherent_dm(5, 1.25)

In [36]: vy coherent_dm(5, 1.2573) # <-— note the 'j'
In [37]: z = thermal_dm(5, 0.125)

In [38]: fidelity(x, x)
Out[38]: 1.0000000053282376

In [39]: tracedist(y, V)
Out[39]: 0.0

In [40]: hellinger_dist(y, v)
Out[40]: 0.0

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by T' = +/1 — F'2, while
the quantum Hellinger distance (QHE) between two pure states |1) and |¢) is given by QHE = 1/2 — 2 |(¢|$)|*.

In [41]: tracedist(y, x)
Out[41]: 0.977156579211186
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In [42]: np.sqgrt(l - fidelity(y, x) xx 2)
Out[42]: 0.9771565700334389

For a pure state and a mixed state, 1 — F? < T which can also be verified:

In [43]: 1 - fidelity(x, z) *xx 2
Out[43]: 0.778289048225615

In [44]: tracedist(x, z)
Out[44]: 0.855902832886259

3.3.4 Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to
qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit
system, we use the same qutip.states.basis, or qutip.states. fock, function with only two levels:

’In [45]: spin = basis (2, 0)

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state
truncated to two energy levels?

’In [46]: vac = basis (2, 0)

At this stage, there is no difference. This should not be surprising as we called the exact same function
twice. The difference between the two comes from the action of the spin operators qutip.operators.
sigmax, qutip.operators.sigmay, qutip.operators.sigmaz, qutip.operators.sigmap,
and qutip.operators.sigmam on these two-level states. For example, if vac corresponds to the vacuum
state of a harmonic oscillator, then, as we have already seen, we can use the raising operator to get the |1) state:

In [47]: vac
Out [47] :
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.1]

In [48]: ¢ = create(2)

In [49]: c *» vac
Out [49]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]
[1.1]

For a spin system, the operator analogous to the raising operator is the sigma-plus operator qut ip.operators.
sigmap. Operating on the spin state gives:

In [50]: spin
Out [50] :
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.1]

In [51]: sigmap() * spin
Out [51]:

(continues on next page)
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Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]

[0.1]

Now we see the difference! The qutip.operators. sigmap operator acting on the spin state returns the
zero vector. Why is this? To see what happened, let us use the qutip.operators. sigmaz operator:

In [52]: sigmaz()
Out[52]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[l 1. 0.]
[ 0. =-1.11

In [53]: sigmaz () * spin
Out [53]:
Quantum object: dims = [[2], [1]], shape
Qobj data =
[[1.]
[0.7]

ket

Il
N
~

1), type

In [54]: spin2 = basis (2, 1)

In [55]: spin2
Out [55] :
Quantum object: dims = [[2], [1]], shape
Qobj data =
[[0.]
[1.1]

Il
N
~

1), type ket

In [56]: sigmaz () * spin2
Out [56] :
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.]
[-1.]]

The answer is now apparent. Since the QuTiP qutip.operators. sigmaz function uses the standard z-basis
representation of the sigma-z spin operator, the spin state corresponds to the |1) state of a two-level spin system
while spin2 gives the ||} state. Therefore, in our previous example sigmap () * spin, we raised the qubit
state out of the truncated two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin operators
remain in the conventional form. Second, when the spin system is in the [1) state:

In [57]: sigmaz () * spin
Out [57]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.7]

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing,
and matrices start with the zeroth element). The ||) state therefore has a non-zero entry in the first index position.
This corresponds nicely with the quantum information definitions of qubit states, where the excited |1) state is
label as |0), and the ||) state by |1).

If one wants to create spin operators for higher spin systems, then the qutip.operators. jmat function
comes in handy.
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3.3.5 Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of
operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore,
in this section we demonstrate the use of the qut ip. expect function. To begin:

In [58]: vac = basis (5, 0)

In [59]: one = basis (5, 1)

In [60]: ¢ = create(5)

In [61]: N = num(5)

In [62]: expect (N, vac)
Out[62]: 0.0

In [63]: expect (N, one)
Out[63]: 1.0

In [64]: coh = coherent_dm(5, 1.073)

In [65]: expect (N, coh)
Out[65]: 0.9970555745806596

In [66]: cat = (basis (5, 4) + 1.03 * basis (5, 3)).unit()

In [67]: expect(c, cat)
Out[67]: 0.99999999999999987

The qutip.expect function also accepts lists or arrays of state vectors or density matrices for the second input:

In [68]: states = [(c**k * vac).unit() for k in range (5)] # must normalize

In [69]: expect (N, states)
Out[69]: array([O0., 1., 2., 3., 4.])

In [70]: cat_list = [(basis(5, 4) + x * basis(5, 3)).unit() for x in [0, 1.03, -1.
—0, -1.0311

In [71]: expect(c, cat_list)
Out[71]: array([ 0.+0.3, O.+1.3, -1.40.3, O0.-1.31)

Notice how in this last example, all of the return values are complex numbers. This is because the qutip.
expect function looks to see whether the operator is Hermitian or not. If the operator is Hermitian, than the
output will always be real. In the case of non-Hermitian operators, the return values may be complex. Therefore,
the qut ip.expect function will return an array of complex values for non-Hermitian operators when the input
is a list/array of states or density matrices.

Of course, the qut ip. expect function works for spin states and operators:

In [72]: up = basis (2, 0)
In [73]: down = basis(2, 1)

In [74]: expect (sigmaz (), up)
Out[74]: 1.0

In [75]: expect (sigmaz (), down)
Out[75]: -1.0

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:
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In [76]: spinl = basis (2, 0)

In [77]: spin2 = basis (2, 1)

In [78]: two_spins = tensor(spinl, spin2)
In [79]: szl = tensor(sigmaz (), geye(2))
In [80]: sz2 = tensor(geye(2), sigmaz())

In [81]: expect(szl, two_spins)
Out[81]: 1.0

In [82]: expect(sz2, two_spins)
Out[82]: -1.0

3.3.6 Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density
operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the cor-
respondance between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space,
vec : L(H) — H ® H [Hav03], [Watl3].

This isomorphism is implemented in QuTiP by the operator _to_vector and vector to_operator
functions:

In [83]: psi = basis (2, 0)
In [84]: rho = ket2dm(psi)

In [85]: rho
Out [85] :
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]

In [86]: vec_rho = operator_to_vector (rho)

In [87]: vec_rho

Out[87]:
Quantum object: dims = [[[2], [2]], [1]], shape = (4, 1), type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.1]
In [88]: rho2 = vector_to_operator (vec_rho)

In [89]: (rho - rho2) .norm()
Out[89]: 0.0

The type attribute indicates whether a quantum object is a vector corresponding to an operator
(operator—-ket), or its Hermitian conjugate (operator—-bra).

Note that QuTiP uses the column-stacking convention for the isomorphism between £(#) and H & H:

In [90]: import numpy as np

(continues on next page)
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In [91]: A = Qobj(np.arange(4) .reshape((2, 2)))

In [92]: A
Oout [92]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0. 1.]
[2. 3.1]

In [93]: operator_to_vector (A)

Out[93]:

Quantum object: dims = [[[2], [2]], [1]], shape = (4, 1), type = operator-ket
Qobj data =

[[0.]
[2.]
(1.1
[3.1]

Since H ® H is a vector space, linear maps on this space can be represented as matrices, often called super-
operators. Using the Qob 7, the spre and spost functions, supermatrices corresponding to left- and right-
multiplication respectively can be quickly constructed.

In [94]: X = sigmax()

In [95]: S = spre(X) * spost(X.dag()) # Represents conjugation by X.

Note that this is done automatically by the to_ super function when given type="'oper"' input.

In [96]: S2 = to_super (X)

In [97]: (S - S2).norm()
Out[97]: 0.0

Quantum objects representing superoperators are denoted by t ype="'super"':

In [98]: S

out[98]:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True

Qobj data =

[[0. O.

o O O

O O O

[0. O.
[0. 1.
[1. 0

Information about superoperators, such as whether they represent completely positive maps, is exposed through
the iscp, istp and iscptp attributes:

In [99]: S.iscp, S.istp, S.iscptp
Out[99]: (True, True, True)

In addition, dynamical generators on this extended space, often called Liouvillian superoperators, can be created
using the 71iouvillian function. Each of these takes a Hamilonian along with a list of collapse operators, and
returns a type="super" object that can be exponentiated to find the superoperator for that evolution.

In [100]: H = 10 = sigmaz ()
In [101]: cl = destroy(2)

In [102]: L = liouvillian(H, [cl])

(continues on next page)
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In [103]: L

Out[103]:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = False

Qobj data =

[f 0. +0.3 0. +0.3 0. +0.3 1. +0.7]

[ 0. +0.3 -0.5+20.3 0. +0.3 0. +0.7]

[ 0. +0.3 0. +0.3 -0.5-20.3 0. +0.73]

[ O +0.3 0. +0.3 0. +0.3 -1. +0.731]

In [104]: S = (12 * L) .expm()

For qubits, a particularly useful way to visualize superoperators is to plot them in the Pauli basis, such that
Sy = ((ou]S[ou]). Because the Pauli basis is Hermitian, .S, ,, is a real number for all Hermitian-preserving
superoperators S, allowing us to plot the elements of S as a Hinton diagram. In such diagrams, positive elements
are indicated by white squares, and negative elements by black squares. The size of each element is indicated by
+1 p=02

-1 p=y,z
can quickly see this by noting that the Y and Z elements of the Hinton diagram for S are negative:

the size of the corresponding square. For instance, let S[p] = o, pol. Then S[o,] = o, - We

— 1.00
r0.75

- 0.50

0.25

0.00

-0.25

—0.50

-0.75

—1.00
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3.3.7 Cho, Kraus, Stinespring and y Representations

In addition to the superoperator representation of quantum maps, QuTiP supports several other useful represen-
tations. First, the Choi matrix J(A) of a quantum map A is useful for working with ancilla-assisted process

tomography (AAPT), and for reasoning about properties of a map or channel. [Up'to normalization, the Choi

J(A) = (¥ @ M) (|-
In QuTiP, J(A) can be found by calling the to_cho function ona type="super" Qobj.

In [105]: X

sigmax ()
In [106]: S = sprepost (X, X)

In [107]: J

to_choi (S)

In [108]: print (J)

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.11]

In [109]: print (to_choi (spre(geye(2))))

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True, superrep = choi
Qobj data =
[[1. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 1.711

If a Qobj instance is already in the Choi superrep, then calling to_choi does nothing:

In [110]: print (to_choi (J))

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—~isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.1]

To get back to the superoperator representation, simply use the to_super function. As with to_choi,
to_super is idempotent:

In [111]: print (to_super(J) - S)

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.11

In [112]: print (to_super(S))

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True
Qobj data =

(continues on next page)
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= O O O
O P O O

o O - O
O O O

We can quickly obtain another useful representation from the Choi matrix by taking its eigendecomposition. In
particular, let { A;} be a set of operators such that J(A) = > . |A;)) (A;|. We can write J(A) in this way for any
hermicity-preserving mapj that is, for any map A such that J(A) = JI(A). These operators then form the Kraus
representation of A. In particular, for any input p,

Alp) = AspAl.
i
Notice using the column-stacking identity that (CT @ A)|B)) = |ABC'), we have that

Do @A) © A) ) (K] = Z |A:) (Al = J(A).

3

The Kraus representation of a hermicity-preserving map can be found in QuTiP using the t o_kraus function.

In [113]: I, X, Y, Z = geye(2), sigmax(), sigmay(), sigmaz()

In [114]: S = sum([sprepost (P, P) for P in (I, X, Y, Z)]) / 4
.....: print(S)

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True
Qobj data =
[[0.5 0. 0. 0.5]

[0. 0. 0. 0. ]

[0. 0. 0. 0. ]

[0.5 0. 0. 0.5]]

In [115]: J = to_choi(S)

.....: print (J)

Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,
—~isherm = True, superrep = choi
Qobj data =
[[0.5 0. 0. 0. ]

[0. 0.5 0. 0. ]

[0. 0. 0.5 0. ]

[0 0. 0. 0.5]]

In [116]: print (J.eigenstates() [1])
[Quantum object: dims = [[[2], [2]], [1, 111, shape = (4, 1), type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.1]
Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket
Qobj data =
[[0.]
[1.]
[0.]
[0.1]
Quantum object: dims
Qobj data =
[[0.]
[0.]

Il

—

N
~

N
~

-
~

111, shape

Il
N
~

1), type = operator-ket

(continues on next page)
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(1.1

[0.1]

Quantum object: dims = [[[2], [2]], [1, 1]], shape = (4, 1), type = operator-ket
Qobj data =

[[0.]
[0.1]
[0.]
[1.11]

In [117]: K = to_kraus(S)

.....: print(K)

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 O. ]

[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[O. 0. ]

[0.70710678 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[O. 0.70710678]

[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = True
Qobj data =
[[O. 0. ]

[0. 0.70710678111

As with the other representation conversion functions, t o_kraus checks the superrep attribute of its input,
and chooses an appropriate conversion method. Thus, in the above example, we can also call to_kraus on J.

In [118]: KJ = to_kraus(J)

.....: print (KJ)

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 0. ]

[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[O. 0. ]

[0.70710678 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, 1isherm = False
Qobj data =
[[O. 0.70710678]

[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = True
Qobj data =

[[O. 0. ]

[0. 0.70710678111
In [119]: for A, AJ in zip (K, KJ):

e print (A - AJ)

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[0. 0.]

[0. 0.]]
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

(continues on next page)

3.3. Manipulating States and Operators 35




QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

[[0. 0.]
[0. 0.1]
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.7]
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.]]

The Stinespring representation is closely related to the Kraus representation, and consists of a pair of operators A

where the partial trace is over a new index that corresponds to the index in the Kraus summation. Conversion to
Stinespring is handled by the to_ st inespring function.

In [120]: a = create(2).dag()

In [121]: S_ad = sprepost(a » a.dag(), a *~ a.dag()) + sprepost(a, a.dag())
.....: 8 =20.9 % sprepost(I, I) + 0.1 = S_ad
.....: print(S)
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = False
Qobj data
[[1. O.

[0 0.
[0. O.
[0 0

...... print (A)
...... print (B)
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ 0. 0.31622777]
[ 0.15151842 0. ]
[ 0. -0.93506452]
[ 0. 0. ]
[ 0. -0.160169751]1
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ O. 0.31622777]
[ 0.15151842 0. ]
[ 0. -0.93506452]
[ 0. 0. ]
[ O -0.16016975]]

Notice that a new index has been added, such that A and B have dimensions [ [2, 3], [2]], with the length-3
index representing the fact that the Choi matrix is rank-3 (alternatively, that the map has three Kraus operators).

In [123]: to_kraus(S)

Out[123]:

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

(continues on next page)
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[[0.98845443 0. ]

[O. 0.93506452]117,
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[-0.15151842 O. ]

[ O. 0.1601697511,
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =

[[O. 0.31622777]

[0. 0. 111

In [124]: print (to_choi(S).eigenenergies())
[0. 0.04861218 0.1 1.85138782]

Finally, the last superoperator representation supported by QuTiP is the y-matrix representation,

A(p) = Z Xa,ﬂBapBga
o,

where {B,,} is a basis for the space of matrices acting on . In QuTiP, this basis is taken to be the Pauli basis
B, =0,/ v/2. Conversion to the x formalism is handled by the to_ chi function.

In [125]: chi = to_chi(9)
.....: print(chi)

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—~isherm = True, superrep = chi
Qobj data =
[[3.7+0.3 0. 4+0.3 0. +0.3 0.140.3 1
[0. +0.3 0.1+0.3 0. +0.13 0. +0.73 ]
[0. +0.3 0. -0.137 0.1+0.3 0. +0.7 ]
[0.1+0.3 0. +0.3 0. +0.3 0.140.73 11

One convenient property of the y matrix is that the average gate fidelity with the identity map can be read off
directly from the x (g element:

In [126]: print (average_gate_fidelity(S))
0.9499999999999998

In [127]: print(chi[0, 01 / 4)
(0.925+07)

Here, the factor of 4 comes from the dimension of the underlying Hilbert space H. As with the superoperator
and Choi representations, the y representation is denoted by the superrep, such that to_super, to_choi,
to_kraus, to_stinespringand to_chi all convert from the x representation appropriately.

3.3.8 Properties of Quantum Maps

In addition to converting between the different representations of quantum maps, QuTiP also provides attributes
to make it easy to check if a map is completely positive, trace preserving and/or hermicity preserving. Each of
these attributes uses superrep to automatically perform any needed conversions.

In particular, a quantum map is said to be positive (but not necessarily completely positive) if it maps all positive
operators to positive operators. For instance, the transpose map A(p) = p? is a positive map. We run into
problems, however, if we tensor A with the identity to get a partial transpose map.

In [128]: rho = ket2dm(bell_state())

In [129]: rho_out = partial_transpose(rho, [0, 1])

(continues on next page)
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.....: print (rho_out.eigenenergies())

(-0.5 0.5 0.5 0.5]

Notice that even though we started with a positive map, we got an operator out with negative eigenvalues. Com-
plete positivity addresses this by requiring that a map returns positive operators for all positive operators, and does
so even under tensoring with another map. The Choi matrix is very useful here, as it can be shown that a map is
completely positive if and only if its Choi matrix is positive [Wat13]. QuTiP implements this check with the i scp
attribute. As an example, notice that the snippet above already calculates the Choi matrix of the transpose map
by acting it on half of an entangled pair. We simply need to manually set the dims and superrep attributes to
reflect the structure of the underlying Hilbert space and the chosen representation.

In [130]: J = rho_out

In [131]: J.dims = [[[2], [2]], [[2], [2]]]
.....: J.superrep = 'choi'

In [132]: print(J.iscp)
False

This confirms that the transpose map is not completely positive. On the other hand, the transpose map does satisfy
a weaker condition, namely that it is hermicity preserving. That is, A(p) = (A(p)) for all p such that p = p'. To
see this, we note that (pT)T = p*, the complex conjugate of p. By assumption, p = p' = (p*)7T, though, such that
A(p) = A(p') = p*. We can confirm this by checking the ishp attribute:

In [133]: print (J.ishp)
True

Next, we note that the transpose map does preserve the trace of its inputs, such that Tr(A[p]) = Tr(p) for all p.
This can be confirmed by the i stp attribute:

In [134]: print(J.istp)
False

Finally, a map is called a quantum channel if it always maps valid states to valid states. Formally, a map is a
channel if it is both completely positive and trace preserving. Thus, QuTiP provides a single attribute to quickly
check that this is true.

In [135]: print (J.iscptp)
False

In [136]: print (to_super (geye(2)) .iscptp)
True

3.4 Using Tensor Products and Partial Traces

3.4.1 Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator,
etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system
components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the
coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function qutip. tensor. tensor isused to accomplish this task. This function takes as argument
a collection:
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’>>> tensor (opl, op2, op3)

oralist:

’>>> tensor ([opl, op2, op3])

of state vectors or operators and returns a composite quantum object for the combined Hilbert space. The function
accepts an arbitray number of states or operators as argument. The type returned quantum object is the same as
that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product
of the two single-qubit ground state vectors:

In [1]: tensor(basis (2, 0), basis (2, 0))
Out[1]:
Quantum object: dims = [[2, 2], [1l, 111, shape = (4, 1), type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.7]

or equivalently using the 1ist format:

In [2]: tensor([basis(2, 0), basis (2, 0)])

Out[2]:

Quantum object: dims = [[2, 2], [1, 111, shape = (4, 1), type = ket
Qobj data =

[[1.]
[0.]
[0.]
[0.1]

This is straightforward to generalize to more qubits by adding more component state vectors in the argument list
tothe qutip. tensor. tensor function, as illustrated in the following example:

In [3]: tensor((basis(2, 0) + basis(2, 1)) .unit(),
: (basis (2, 0) + basis(2, 1)) .unit (), basis (2, 0))

Out [3]:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =

[[0.5]

0.
.5

ul

[
[
[
[
[
[0.5
[

]
]
]
]
]
]
]

O O O O O O

This state is slightly more complicated, describing two qubits in a superposition between the up and down states,
while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list of
operators for each component system to the qutip.tensor. tensor function. For example, to form the
operator that represents the simultaneous action of the o, operator on two qubits:

In [4]: tensor(sigmax (), sigmax())

Out [4]:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =

(continues on next page)
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= O O O
O P O O

o O - O
O O O

To create operators in a combined Hilbert space that only act only on a single component, we take the tensor prod-
uct of the operator acting on the subspace of interest, with the identity operators corresponding to the components
that are to be unchanged. For example, the operator that represents o, on the first qubit in a two-qubit system,
while leaving the second qubit unaffected:

In [5]: tensor(sigmaz (), identity(2))

Out [5]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 1. 0. 0. ©0.]
[ 0. 1. 0. 0.]
[ 0. 0. -1. 0.]
[ 0. O 0. -1.1]]

3.4.2 Example: Constructing composite Hamiltonians

The qutip.tensor. tensor function is extensively used when constructing Hamiltonians for composite sys-
tems. Here we’ll look at some simple examples.

Two coupled qubits

First, let’s consider a system of two coupled qubits. Assume that both qubit has equal energy splitting, and that
the qubits are coupled through a 0, ® o, interaction with strength g = 0.05 (in units where the bare qubit energy
splitting is unity). The Hamiltonian describing this system is:

In [6]: H = tensor(sigmaz (), identity(2)) + tensor (identity(2),
: sigmaz()) + 0.05 » tensor(sigmax (), sigmax())

In [7]: H
Oout[7]:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 2. 0. 0 0.05]

[ 0. 0. 0.05 0 ]

[ 0. 0.05 0 0 ]

[ 0.05 0. 0 -2 11

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

In [8]: H = (tensor(sigmaz (), identity(2), identity(2)) +
tensor (identity (2), sigmaz (), identity(2)) +
tensor (identity (2), identity(2), sigmaz()) +
0.5 » tensor(sigmax (), sigmax(), identity(2)) +
0.25 = tensor (identity(2), sigmax(), sigmax()))

In [9]: H
Out[9]:

(continues on next page)
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Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm
—= True

Qobj data =

[[ 3. 0. 0. 0.25 0. 0. 0.5 0. ]
[ 0. 1. 0.25 0 0. 0. 0. 0.5 ]
[ 0. 0.25 1. 0 0.5 0. 0. 0. ]
[ 0.25 O. 0. -1 0. 0.5 0. 0. ]
[ 0. 0. 0.5 0. 1. 0. 0. 0.25]
[ 0. 0. 0. 0.5 0. -1. 0.25 0. ]
[ 0.5 0. 0. 0 0. 0.25 -1. 0. ]
[ 0. 0.5 0. 0 0.25 0. 0. -3. 1]

A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-
Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field
(a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_ c, respectively, and
the atom-cavity interaction strength g, the Jaynes-Cumming Hamiltonian can be constructed as:

In [10]: N = 10

In [11]: omega_a = 1.0

In [12]: omega_c = 1.25

In [13]: g 0.05
In [14]: a = tensor (identity(2), destroy(N))

In [15]: sm = tensor (destroy(2), identity(N))

In [16]: sz = tensor(sigmaz (), identity(N))
In [17]: H = 0.5 x omega_a » sz + omega_c * a.dag() » a + g = (a.dag() * sm + a =*_
—sm.dag())

Here N is the number of Fock states included in the cavity mode.

3.4.3 Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of
freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when
one is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves
tracing over the environment leaving only the system of interest. In QuTiP the class method qutip.Qob 7.
ptrace is used to take partial traces. qutip.Qobj.ptrace acts on the qutip.Qob j instance for which
it is called, and it takes one argument sel, which is a 1ist of integers that mark the component systems that
should be kept. All other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained
via:

In [18]: psi = tensor(basis (2, 0), basis (2, 1))

In [19]: psi.ptrace (0)

Out [19]:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[1. 0.]

(continues on next page)
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[0. 0.1]

In [20]: psi.ptrace (1)
Out [20] :
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 1.7]

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite
system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

In [21]: psi = tensor((basis(2, 0) + basis(2, 1)) .unit(), basis (2, 0))
In [22]: psi
Out[22]:
Quantum object: dims = [[2, 2], [1, 111, shape = (4, 1), type = ket
Qobj data =
[[0.70710678]
[0. ]
[0.70710678]
[O0. 1]
In [23]: psi.ptrace (0)
Out [23]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.5]]
In [24]: rho = tensor (ket2dm( (basis (2, 0) + basis(2, 1)) .unit()), fock_dm(2, 0))
In [25]: rho
Out [25] :
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.5 0. 0.5 0. ]
[0 0. 0. 0. ]
[0.5 0. 0.5 0. ]
[0 0 0. 0. 1]
In [26]: rho.ptrace (0)
Out [26] :
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.57]]

3.4.4 Superoperators and Tensor Manipulations

As described in Superoperators and Vectorized Operators, superoperators are operators that act on Liouville
space, the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec :
L(H) = H ® H [Hav03], [Watl3]. To represent superoperators acting on L(H; ® Hs) thus takes some ten-
sor rearrangement to get the desired ordering Hq ® Ho ® Hi ® Hs.

In particular, this means that qutip.tensor does not act as one might expect on the results of qutip.
to_super:
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In [27]: A = geye([2])

In [28]: B geye ([3])

In [29]: to_super (tensor (A, B)).dims
Out[29]: [[[2, 31, [2, 311, [[2, 31, [2, 3111

In [30]: tensor(to_super(A), to_super(B)).dims
Out[30]: [[[2], [2], [31, [311, [[2]1, [21, [31, [311]

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter
case, however, each of the Hilbert space indices is listed independently and in the wrong order.

The qutip.super_tensor function performs the needed rearrangement, providing the most direct
analog to qutip.tensor on the underlying Hilbert space. In particular, for any two type="oper"
Qobjs A and B, to_super (tensor (A, B)) == super_tensor (to_super (A), to_super (B))
and operator_to_vector (tensor (A, B)) == super_tensor (operator_to_vector (4),
operator_to_vector (B) ). Returning to the previous example:

In [31]: super_tensor (to_super (A), to_super (B)).dims
Out([31]: [[[2, 31, [2, 311, [[2, 3], [2, 3111

The qutip.composite function automatically switches between qutip.tensor and qutip.
super_tensor based on the type of its arguments, such that composite (A, B) returns an appropriate
Qobj to represent the composition of two systems.

In [32]: composite (A, B) .dims
out[32]: [[2, 3], [2, 3]]

In [33]: composite(to_super(A), to_super (B)).dims
Out[33]: [[[2, 3], [2, 311, [[2, 3], [2, 31]]

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator repre-
sentations [WBC11]. In particular, the tensor_contract function allows for contracting one or more pairs
of indices. As detailed in the channel contraction tutorial, this can be used to find superoperators that represent
partial trace maps. Using this functionality, we can construct some quite exotic maps, such as a map from 3 x 3
operators to 2 X 2 operators:

In [34]: tensor_contract (composite (to_super (A), to_super(B)), (1, 3), (4, 6)).dims
Out[34]: [[[2], [2]1], [[31, [31]]

3.5 Time Evolution and Quantum System Dynamics

3.5.1 Dynamics Simulation Results

Important: In QuTiP 2, the results from all of the dynamics solvers are returned as Odedata objects. This unified
and significantly simplified postprocessing of simulation results from different solvers, compared to QuTiP 1.
However, this change also results in the loss of backward compatibility with QuTiP version 1.x. In QuTiP 3, the
Odedata class has been renamed to Result, but for backwards compatibility an alias between Result and Odedata
is provided.
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The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used
for returning the simulation results to the user. This object is a qutip.solver.Result class that stores all
the crucial data needed for analyzing and plotting the results of a simulation. Like the qutip. Qob 7 class, the
Result class has a collection of properties for storing information. However, in contrast to the Qob j class, this
structure contains no methods, and is therefore nothing but a container object. A generic Result object result
contains the following properties for storing simulation data:

Property Description

result.solver String indicating which solver was used to generate the data.
result.times List/array of times at which simulation data is calculated.

result.expect List/array of expectation values, if requested.

result.states List/array of state vectors/density matrices calculated at t imes, if requested.
result. The number of expectation value operators in the simulation.

num_expect

result. The number of collapse operators in the simulation.

num_collapse

result.ntraj Number of Monte Carlo trajectories run.

result. Times at which state collapse occurred. Only for Monte Carlo solver.
col_times

result. Which collapse operator was responsible for each collapse in in col_times. Only
col_which used by Monte Carlo solver.

result.seeds Seeds used in generating random numbers for Monte Carlo solver.

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not
worry about the simulation details at this stage. Like all solvers, the Monte Carlo solver used in this example
returns an Result object, here called simply result. To see what is contained inside result we can use the
print function:

>>> print (result)
Result object with mcsolve data.
expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

The first line tells us that this data object was generated from the Monte Carlo solver mcsolve (discussed in
Monte Carlo Solver). The next line (not the ——— line of course) indicates that this object contains expectation value
data. Finally, the last line gives the number of expectation value and collapse operators used in the simulation,
along with the number of Monte Carlo trajectories run. Note that the number of trajectories ntraj is only
displayed when using the Monte Carlo solver.

Now we have all the information needed to analyze the simulation results. To access the data for the two expecta-
tion values one can do:

>>> expt0 = result.expect[0]
>>> exptl = result.expect[1l]

Recall that Python uses C-style indexing that begins with zero (i.e., [0] => 1st collapse operator data). Together
with the array of times at which these expectation values are calculated:

>>> times = result.times

we can plot the resulting expectation values:
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>>> plot (times, expt0, times, exptl)
>>> show ()

State vectors, or density matrices, as well as col_times and col_which, are accessed in a similar manner,
although typically one does not need an index (i.e [0]) since there is only one list for each of these components.
The one exception to this rule is if you choose to output state vectors from the Monte Carlo solver, in which case
there are nt ra j number of state vector arrays.

Saving and Loading Result Objects

The main advantage in using the Result class as a data storage object comes from the simplicity in which sim-
ulation data can be stored and later retrieved. The qutip.fileio.gsave and qutip.fileio.qgload
functions are designed for this task. To begin, let us save the data object from the previous section into a file
called “cavity+qubit-data” in the current working directory by calling:

>>> gsave (result, 'cavity+qubit-data')

All of the data results are then stored in a single file of the same name with a “.qu” extension. Therefore, everything
needed to later this data is stored in a single file. Loading the file is just as easy as saving:

>>> stored_result = gload('cavity+qubit-data')
Loaded Result obiject:
Result object with mcsolve data.
expect = True
num_expect = 2, num_collapse = 2, ntraj = 500

where stored_result is the new name of the Result object. We can then extract the data and plot in the same
manner as before:

expt0 = stored_result.expect[0]
exptl = stored_result.expect[1]
times = stored_result.times
plot (times, expt0, times, exptl)
show ()

Also see Saving QuTiP Objects and Data Sets for more information on saving quantum objects, as well as arrays
for use in other programs.

3.5.2 Lindblad Master Equation Solver

Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrédinger equation

P .
T 3.1
Zh@tq] HY, 3.1

where W is the wave function, H the Hamiltonian, and 7 is Planck’s constant. In general, the Schrodinger equation
is a partial differential equation (PDE) where both ¥ and H are functions of space and time. For computational
purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian,
and to write the equation in matrix and vector form

. d
i ) = H 1)

where |¢) is the state vector and H is the matrix representation of the Hamiltonian. This matrix equation can, in
principle, be solved by diagonalizing the Hamiltonian matrix . In practice, however, it is difficult to perform
this diagonalization unless the size of the Hilbert space (dimension of the matrix ) is small. Analytically, it is
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a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider
dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows
even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance
of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.

The Schrodinger equation, which governs the time-evolution of closed quantum systems, is defined by its Hamil-
tonian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how
Hamiltonians and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-
dissipative) time-evolution of an arbitrary state vector [¢)g) (psi0) using the QuTiP function qutip.mesolve.
It evolves the state vector and evaluates the expectation values for a set of operators expt_ops at the points
in time in the list t imes, using an ordinary differential equation solver. Alternatively, we can use the function
qutip.essolve, which uses the exponential-series technique to calculate the time evolution of a system. The
qutip.mesolve and qutip.essolve functions take the same arguments and it is therefore easy switch
between the two solvers.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up
state is calculated, and the expectation values of the o, operator evaluated, with the following code

In [1]: H= 2 » np.pi x 0.1 * sigmax()
In [2]: psi0 = basis (2, 0)
In [3]: times = np.linspace(0.0, 10.0, 20)

In [4]: result = sesolve(H, psiO, times, [sigmaz()])

The brackets in the fourth argument is an empty list of collapse operators, since we consider unitary evolution
in this example. See the next section for examples on how dissipation is included by defining a list of collapse
operators.

The function returns an instance of qutip.solver.Result, as described in the previous section Dynamics
Simulation Results. The attribute expect in result is a list of expectation values for the operators that are
included in the list in the fifth argument. Adding operators to this list results in a larger output list returned by the
function (one array of numbers, corresponding to the times in times, for each operator)

In [5]: result = sesolve(H, psiO, times, [sigmaz (), sigmay()])

In [6]: result.expect
Oout[6]:
[array ([ 1. , 0.78914057, 0.24548559, -0.40169513, -0.8794735 ,
-0.98636142, -0.67728219, -0.08258023, 0.54694721, 0.94581685,
0.94581769, 0.54694945, -0.08257765, -0.67728015, -0.98636097,
-0.87947476, -0.40169736, 0.24548326, 0.78913896, 1. 1),
array ([ 0.00000000e+00, -6.14212640e-01, -9.69400240e-01, -9.15773457e-01,
-4.75947849e-01, 1.64593874e-01, 7.35723339%9e-01, 9.96584419%9e-01,
8.37167094e-01, 3.24700624e-01, -3.24698160e-01, -8.37165632e-01,
-9.96584633e-01, -7.35725221e-01, -1.64596567e-01, 4.75945525e-01,
9.15772479e-01, 9.69400830e-01, 6.14214701e-01, 2.77159958e-06])]

The resulting list of expectation values can easily be visualized using matplotlib’s plotting functions:

In [7]: H= 2 %« np.pi » 0.1 » sigmax{()

In [8]: psi0 = basis (2, 0)

In [9]: times = np.linspace (0.0, 10.0, 100)

In [10]: result = sesolve(H, psiO, times, [sigmaz (), sigmay()])

In [11]: fig, ax = subplots()

(continues on next page)
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In [12]: ax.plot(result.times, result.expect[0]);
In [13]: ax.plot(result.times, result.expect[l]);
In [14]: ax.set_xlabel ('Time");

In [15]: ax.set_ylabel ('Expectation values');

In [16]: ax.legend(("Sigma-2z", "Sigma-Y"));

In [17]: show/()
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If an empty list of operators is passed as fifth parameter, the qut ip.mesolve function returns a qutip.
solver.Result instance that contains a list of state vectors for the times specified in t imes

In [18]: times = [0.0, 1.0]

In [19]: result = mesolve(H, psiO, times, []1, [])

In [20]: result.states

Out[20]:
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.]], Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.80901699+0.7 ]
[O. -0.5877852673111
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Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are
stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions
between energy levels, and to introduce uncertainty in the phase difference between states of the system. The
state of an open quantum system is therefore described in terms of ensemble averaged states using the density
matrix formalism. A density matrix p describes a probability distribution of quantum states |1/,,), in a matrix
representation p = > pp |¥n) (¢n|, where p, is the classical probability that the system is in the quantum state
|1y, ). The time evolution of a density matrix p is the topic of the remaining portions of this section.

The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to
expand the scope of the system to include the environment. The combined quantum system is then closed, and its
evolution is governed by the von Neumann equation

1

h[HtOta Ptot (t)]; (32)

Prot(t) =
the equivalent of the Schrodinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian
Htot = Hsys + Henv + Hinta

includes the original system Hamiltonian Hyy, the Hamiltonian for the environment He,,, and a term representing
the interaction between the system and its environment H;,,;. Since we are only interested in the dynamics of the
system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and
thereby obtain a master equation for the motion of the original system density matrix. The most general trace-
preserving and completely positive form of this evolution is the Lindblad master equation for the reduced density
matrix p = Treny [ptot]

7

§(0) =~ THD, p0] + 3 5 [2Cuplt)CF — pIC Co — CF Crplt)] 3

where the C,, = /¥, A, are collapse operators, and A,, are the operators through which the environment couples
to the system in H,,, and +y,, are the corresponding rates. The derivation of Eq. (3.13) may be found in several
sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at
the master equation in the form of Eq. (3.13) from physical arguments, and hence perform a calculation in QuTiP:

* Separability: Att = 0 there are no correlations between the system and its environment such that the total
density matrix can be written as a tensor product pf . (0) = p’(0) ® p,,(0).

* Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable throughout
the evolution. These assumptions are justified if the interaction is weak, and if the environment is much
larger than the system. In summary, piot(t) & p(t) ® penv-

* Markov approximation The time-scale of decay for the environment 7, is much shorter than the smallest
time-scale of the system dynamics Tgys > Teny. This approximation is often deemed a “short-memory
environment” as it requires that environmental correlation functions decay on a time-scale fast compared to
those of the system.

* Secular approximation Stipulates that elements in the master equation corresponding to transition frequen-
cies satisfy |wap — wea| < 1/ Tsys» 1.€., all fast rotating terms in the interaction picture can be neglected. It
also ignores terms that lead to a small renormalization of the system energy levels. This approximation is
not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is
required for arriving at the Lindblad form (3.13) which is used in qut ip.mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.13)
governs the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In
order to ensure that these approximations are not violated, it is important that the decay rates -,, be smaller than the
minimum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include,
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for example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate
energy levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as relax-
ation and dephasing, it is common to use master equations. In QuTiP, the same function (qutip.mesolve) is
used for evolution both according to the Schrodinger equation and to the master equation, even though these two
equations of motion are very different. The qutip.mesolve function automatically determines if it is suffi-
cient to use the Schrodinger equation (if no collapse operators were given) or if it has to use the master equation
(if collapse operators were given). Note that to calculate the time evolution according to the Schrodinger equation
is easier and much faster (for large systems) than using the master equation, so if possible the solver will fall back
on using the Schrodinger equation.

What is new in the master equation compared to the Schrédinger equation are processes that describe dissipation
in the quantum system due to its interaction with an environment. These environmental interactions are defined
by the operators through which the system couples to the environment, and rates that describe the strength of the
processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process is called a
collapse operator. A list of collapse operators (c_ops) is passed as the fourth argument to the qutip.mesolve
function in order to define the dissipation processes in the master equation. When the c_ops isn’t empty, the
qutip.mesolve function will use the master equation instead of the unitary Schrédinger equation.

Using the example with the spin dynamics from the previous section, we can easily add a relaxation process (de-
scribing the dissipation of energy from the spin to its environment), by adding np. sqrt (0.05) * sigmax ()
to the previously empty list in the fourth parameter to the qut i p. mesolve function:

In [21]: times = np.linspace (0.0, 10.0, 100)

In [22]: result = mesolve(H, psiO, times, [np.sqgrt(0.05) % sigmax ()], [sigmaz(),
—sigmay () 1)

In [23]: fig, ax = subplots()

In [24]: ax.plot (times, result.expect[0]);

In [25]: ax.plot (times, result.expect[l]);

In [26]: ax.set_xlabel('Time'");

In [27]: ax.set_ylabel ('Expectation values');
In [28]: ax.legend(("Sigma-2z", "Sigma-Y"));

In [29]: show /()
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Here, 0.05 is the rate and the operator 0, (qutip.operators.sigmax) describes the dissipation process.

Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity through
a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the atom
initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines
following code

In [30]: times = np.linspace (0.0, 10.0, 200)
In [31]: psi0 = tensor(fock(2,0), fock (10, 5))

In [32]: a

tensor (geye (2), destroy(10))
In [33]: sm = tensor (destroy(2), geye(10))

In [34]: H =2 % np.pli » a.dag() = a + 2 * np.pi % sm.dag() * sm + \
... 2 x np.pi x 0.25 % (sm % a.dag() + sm.dag() * a)

In [35]: result = mesolve(H, psiO, times, [np.sqrt(0.1)=a]l, [a.dag()=xa, sm.
—~dag () *sm])

In [36]: figure()
Out [36]: <Figure size 640x480 with 0 Axes>

In [37]: plot(times, result.expect([0])
Out[37]: [<matplotlib.lines.Line2D at 0x1a25f2b710>]

In [38]: plot(times, result.expect([1l])
Out[38]: [<matplotlib.lines.Line2D at 0xla259%aab70>]

In [39]: xlabel('Time'")
Out[39]: Text (0.5,0, 'Time")

In [40]: ylabel ('Expectation values')
Out[40]: Text (0,0.5, "'Expectation values')

(continues on next page)
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In [41]: legend(("cavity photon number", "atom excitation probability"))
Out[41]: <matplotlib.legend.Legend at 0x1a26094860>

In [42]: show ()
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3.5.3 Monte Carlo Solver
Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quan-
tum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating
an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a
series of quantum jumps in the system wave function, conditioned on the increase in information gained about the
state of the system via the environmental measurements. In general, this evolution is governed by the Schrédinger
equation with a non-Hermitian effective Hamiltonian

ih

Hor = Hegs = 5 > Cf Cu, (34

3

where again, the (), are collapse operators, each corresponding to a separate irreversible process with rate v;,.
Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave
function, that to first-order in a small time dt, is given by ((t + 6t)|¢(t + 0t)) = 1 — dp where

5p =06ty _ (Y(1)|CF Culip(t)), (3.5)

and dt is such that 0p < 1. With a probability of remaining in the state |1)(¢ + dt)) given by 1 — 0p, the
corresponding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum
jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave
function undergoes a jump into a state defined by projecting |¢(¢)) using the collapse operator C), corresponding
to the measurement

[ (t + 68)) = Cr [(8)) / (b (D)|CFCnltb(£)) 2. (3.6)
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If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the ith-operator
C; is given by

Pi(t) = (v()|C Cilv(t)) /op. 3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to
simulate a single realization of a quantum system. Starting from a pure state |¢/(0)):

* I: Choose a random number r between zero and one, representing the probability that a quantum jump
occurs.

o II: Integrate the Schrodinger equation, using the effective Hamiltonian (3.4) until a time 7 such that the
norm of the wave function satisfies (¢)(7) |1(7)) = r, at which point a jump occurs.

* III: The resultant jump projects the system at time 7 into one of the renormalized states given by Eq. (3.6).
The corresponding collapse operator C,, is chosen such that n is the smallest integer satisfying:

S Pur) > (3.8)

where the individual P, are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition,
normalized to unity.

* IV: Using the renormalized state from step III as the new initial condition at time 7, draw a new random
number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the qut ip.mcsolve function. It takes nearly the same
arguments as the qutip.mesolve function for master-equation evolution, except that the initial state must
be a ket vector, as oppose to a density matrix, and there is an optional keyword parameter nt ra j that defines
the number of stochastic trajectories to be simulated. By default, nt raj=500 indicating that 500 Monte Carlo
trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let’s again consider the case of a
two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this case
we invoke the qut ip.mcsolve function instead of qutip.mesolve

In [1]: times = np.linspace(0.0, 10.0, 200)

In [2]: psi0 = tensor(fock(2, 0), fock (10, 5))

In [3]: a = tensor(geye(2), destroy(10))
In [4]: sm = tensor (destroy(2), geye(10))

In [5]: H= 2 % np.pi = a.dag() » a + 2 = np.pi » sm.dag() » sm + 2 * np.pi = 0.25_
—*% (sm * a.dag() + sm.dag() =* a)

In [6]: data = mcsolve(H, psiO, times, [np.sqgrt(0.1) = al], [a.dag() * a, sm.dag(),
<% sm])

10.0%. Run time:
20.0%. Run time:
30.0%. Run time:
40.0%. Run time:
50.0%. Run time:
60.0%. Run time:
70.0%. Run time:

.06s. Est. time left: 00:00:00:09
.10s. Est. time left: 00:00:00:08
.1l4s. Est. time left: 00:00:00:07
.21ls. Est. time left: 00:00:00:06
.29s. Est. time left: 00:00:00:05
.45s. Est. time left: 00:00:00:04
.62s. Est. time left: 00:00:00:03
80.0%. Run time: .80s. Est. time left: 00:00:00:02
90.0%. Run time: .91s. Est. time left: 00:00:00:01
100.0%. Run time: 11.04s. Est. time left: 00:00:00:00
Total run time: 11.14s

O 00 J oy U i W N -
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In [7]: figure()
Out[7]: <Figure size 640x480 with 0 Axes>

In [8]: plot(times, data.expect[0], times, data.expect[1l])

Oout[8]:

[<matplotlib.lines.Line2D at 0x1a26510b00>,
<matplotlib.lines.Line2D at 0x1a26510048>]

In [9]: title('Monte Carlo time evolution')
Out[9]: Text (0.5,1, 'Monte Carlo time evolution')

In [10]: xlabel('Time'")
Out[10]: Text (0.5,0, 'Time")

In [11]: ylabel ('Expectation values')
Out[1l1l]: Text (0,0.5, 'Expectation values')

In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0x1a2601£208>

In [13]: show /()
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The advantage of the Monte Carlo method over the master equation approach is that only the state vector is
required to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system
this becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such
systems. For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and
initial states takes almost 7 times longer using the master equation rather than Monte Carlo approach with the
default number of trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory
as well. However, for small systems, the added overhead of averaging a large number of stochastic trajectories
to obtain the open system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit
of the minor (in this case) memory saving. Master equation methods are therefore generally more efficient when
Hilbert space sizes are on the order of a couple of hundred states or smaller.

Like the master equation solver qut i p.mesolve, the Monte Carlo solver returns a qutip.solver.Result
object consisting of expectation values, if the user has defined expectation value operators in the 5th argument to
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mcsolve, or state vectors if no expectation value operators are given. If state vectors are returned, then the
qutip.solver.Result returned by qutip.mcsolve will be an array of length nt ra j, with each element
containing an array of ket-type qobjs with the same number of elements as t imes. Furthermore, the output
qutip.solver.Result object will also contain a list of times at which collapse occurred, and which collapse
operators did the collapse, in the col_times and col_which properties, respectively.

Changing the Number of Trajectories

As mentioned earlier, by default, the mcsolve function runs 500 trajectories. This value was chosen because it
gives good accuracy, Monte Carlo errors scale as 1/n where n is the number of trajectories, and simultaneously
does not take an excessive amount of time to run. However, like many other options in QuTiP you are free to
change the number of trajectories to fit your needs. If we want to run 1000 trajectories in the above example, we
can simply modify the call to mcsolve like:

In [14]: data = mcsolve(H, psiO, times, [np.sqrt(0.1) = al], [a.dag() =* a, sm.dag(),
—% sm], ntraj=1000)

10.0%. Run time: 2.18s. Est. time left: 00:00:00:19
20.0%. Run time: 4.34s. Est. time left: 00:00:00:17
30.0%. Run time: 6.60s. Est. time left: 00:00:00:15
40.0%. Run time: 8.84s. Est. time left: 00:00:00:13

50.0%. Run time: 11.07s. Est. time left: 00:00:00:11

60.0%. Run time: 13.39s. Est. time left: 00:00:00:08

70.0%. Run time: 16.12s. Est. time left: 00:00:00:06

80.0%. Run time: 18.32s. Est. time left: 00:00:00:04

90.0%. Run time: 20.55s. Est. time left: 00:00:00:02

100.0%. Run time: 22.86s. Est. time left: 00:00:00:00
Total run time: 22.90s

where we have added the keyword argument nt ra j=1000 at the end of the inputs. Now, the Monte Carlo solver
will calculate expectation values for both operators, a.dag () * a, sm.dag() = sm averaging over 1000
trajectories. Sometimes one is also interested in seeing how the Monte Carlo trajectories converge to the master
equation solution by calculating expectation values over a range of trajectory numbers. If, for example, we want
to average over 1, 10, 100, and 1000 trajectories, then we can input this into the solver using:

In [15]: ntraj = [1, 10, 100, 1000]

Keep in mind that the input list must be in ascending order since the total number of trajectories run by mcsolve
will be calculated using the last element of ntraj. In this case, we need to use an extra index when getting
the expectation values from the qut ip. solver.Result object returned by mcsolve. In the above example
using:

In [16]: data = mcsolve(H, psiO, times, [np.sgrt(0.1) = al], [a.dag() * a, sm.dag(),
% sm], ntraj=[1, 10, 100, 1000])

10.0%. Run time: 2.39s. Est. time left: 00:00:00:21
20.0%. Run time: 5.09s. Est. time left: 00:00:00:20
30.0%. Run time: 7.60s. Est. time left: 00:00:00:17
40.0%. Run time: 9.92s. Est. time left: 00:00:00:14

50.0%. Run time: 12.48s. Est. time left: 00:00:00:12

60.0%. Run time: 14.84s. Est. time left: 00:00:00:09

70.0%. Run time: 17.22s. Est. time left: 00:00:00:07

80.0%. Run time: 19.68s. Est. time left: 00:00:00:04

90.0%. Run time: 21.98s. Est. time left: 00:00:00:02

100.0%. Run time: 24.40s. Est. time left: 00:00:00:00
Total run time: 24.50s

we can extract the relevant expectation values using:

In [17]: exptl = data.expect[0]

In [18]: exptl0 = data.expect[1l]

(continues on next page)

54 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

In [19]: exptl00 = data.expect[2]

In [20]: exptl000 = data.expect[3]

The Monte Carlo solver also has many available options that can be set using the qutip.solver.Options
class as discussed in Setting Options for the Dynamics Solvers.

Reusing Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In order to solve a given simulation as fast as possible, the solvers in QuTiP take the given input operators and
break them down into simpler components before passing them on to the ODE solvers. Although these operations
are reasonably fast, the time spent organizing data can become appreciable when repeatedly solving a system over,
for example, many different initial conditions. In cases such as this, the Hamiltonian and other operators may be
reused after the initial configuration, thus speeding up calculations. Note that, unless you are planning to reuse the
data many times, this functionality will not be very useful.

To turn on the “reuse” functionality we must setthe rhs_reuse=True flaginthe qutip.solver.Options:

In [21]: options = Options(rhs_reuse=True)

A full account of this feature is given in Setting Options for the Dynamics Solvers. Using the previous example, we
will calculate the dynamics for two different initial states, with the Hamiltonian data being reused on the second
call

In [22]: times = np.linspace(0.0, 10.0, 200)

In [23]: psiO = tensor(fock(2, 0), fock (10, 5))

In [24]:

Q
|

= tensor (geye (2), destroy(10))
In [25]: sm = tensor(destroy(2), geye(10))
In [26]: H = 2 % np.pl * a.dag() = a + 2 * np.pi *» sm.dag() * sm + \

c... 2 x np.pil x 0.25 % (sm x a.dag() + sm.dag() * a)

In [27]: datal = mcsolve(H, psiO, times, [np.sqgrt(0.1) = al], [a.dag() * a, sm.
—dag () * sm])

10.0%. Run time: 1.27s. Est. time left: 00:00:00:11
20.0%. Run time: 2.39s. Est. time left: 00:00:00:09
30.0%. Run time: 3.58s. Est. time left: 00:00:00:08
40.0%. Run time: 5.01ls. Est. time left: 00:00:00:07
50.0%. Run time: 6.26s. Est. time left: 00:00:00:06
60.0%. Run time: 7.40s. Est. time left: 00:00:00:04
70.0%. Run time: 8.52s. Est. time left: 00:00:00:03
80.0%. Run time: 9.60s. Est. time left: 00:00:00:02
90.0%. Run time: 10.71s. Est. time left: 00:00:00:01

100.0%. Run time: 11.83s. Est. time left: 00:00:00:00
Total run time: 11.85s

In [28]: psil = tensor(fock(2, 0), coherent (10, 2 - 17))

In [29]: opts = Options(rhs_reuse=True) # Run a second time, reusing RHS

(continues on next page)
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(continued from previous page)

In [30]: data2 = mcsolve(H, psil, times, [np.sqgrt(0.1) = al, [a.dag() * a, sm.

—~dag () * sm], options=opts)

10.0%. Run time: 2.08s. Est. time left: 00:00:00:18
20.0%. Run time: 4.09s. Est. time left: 00:00:00:16
30.0%. Run time: 6.09s. Est. time left: 00:00:00:14
40.0%. Run time: 8.05s. Est. time left: 00:00:00:12

50.0%. Run time: 10.10s. Est. time left: 00:00:00:10

60.0%. Run time: 12.15s. Est. time left: 00:00:00:08

70.0%. Run time: 14.20s. Est. time left: 00:00:00:06

80.0%. Run time: 16.21s. Est. time left: 00:00:00:04

90.0%. Run time: 18.26s. Est. time left: 00:00:00:02

100.0%. Run time: 20.32s. Est. time left: 00:00:00:00
Total run time: 20.35s

In [31]: figure()
Out[31]: <Figure size 640x480 with 0 Axes>

In [32]: plot(times, datal.expect([0], times, datal.expect[l], lw=2)

Out [32]:

[<matplotlib.lines.Line2D at 0x1a25f56048>,
<matplotlib.lines.Line2D at 0x1a25f563c8>]

In [33]: plot(times, data2.expect([0], '--', times, data2.expect[l], '--', lw=2)
Out [33]:

[<matplotlib.lines.Line2D at 0x1a2672e828>,

<matplotlib.lines.Line2D at Oxla2672eeb8>]

In [34]: title('Monte Carlo time evolution')
Out[34]: Text (0.5,1, 'Monte Carlo time evolution')

In [35]: xlabel('Time', fontsize=14)
Out[35]: Text (0.5,0, 'Time")

In [36]: ylabel ('Expectation values', fontsize=14)
Out[36]: Text (0,0.5, "Expectation values')

In [37]: legend(("cavity photon number", "atom excitation probability"))
Out[37]: <matplotlib.legend.Legend at 0xla25e76dd8>

In [38]: show()
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In addition to the initial state, one may reuse the Hamiltonian data when changing the number of trajectories

ntraj or simulation times t imes. The reusing of Hamiltonian data is also supported for time-dependent Hamil-
tonians. See Solving Problems with Time-dependent Hamiltonians for further details.

3.5.4 Stochastic Solver - Photocurrent

Photocurrent method, like monte-carlo method, allows for simulating an individual realization of the system evo-
lution under continuous measurement.

Closed system

Photocurrent evolution have the state evolve deterministically between quantum jumps. During the deterministic
part, the system evolve by schrodinger equation with a non-hermitian, norm conserving effective Hamiltonian.

ih
Hogt = Hags + 5 (- zn: cre, + |cn¢|2> : (3.9)

With C,, the collapse operators. This effective Hamiltonian is equivalent to the monte-carlo effective Hamiltonian
with an extra term to keep the state normalized. At each time step of §t, the wave function has a probability

3pn = (V(1)|Cy Culy(t)) ot (3.10)

of making a quantum jump. dt must be chosen small enough to keep that probability small dp << 1. If multiple
jumps happen at the same time step, the state become unphysical. Each jump result in a sharp variation of the

state by,
S Cw
M)(Ianl w) G-1h

The basic photocurrent method directly integrates these equations to the first-order. Starting from a state [1(0)),
it evolves the state according to

2
p(t) = —iHyystp (1)t + Y <_C”J;C”q/)(t)5t + ‘C";/" 5t + 6N, (é”% - zp)) , (3.12)
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for each time-step. Here d N = 1 with a probability of éw and d V,, = 0 with a probability of 1 — dw.

Trajectories obtained with this algorithm are equivalent to those obtained with monte-carlo evolution (up to
O(5t?)). In most cases, qut ip.mcsolve is more efficient than qut ip.photocurrent_sesolve.

Open system

Photocurrent approach allows to obtain trajectories for a system with both measured and dissipative interaction
with the bath. The system evolves according to the master equation between jumps with a modified liouvillian

Lerr(p(t)) = Leys(p(1)) + D (tr (CFCupC Cy) — CFCupCLC,) (3.13)

with the probability of jumps in a time step d¢ given by

op = tr (CpC+) ot. (3.14)
After a jump, the density matrix become
y__CoCt
tr (CpCT)
The evolution of the system at each time step if thus given by
p(t+6t) = p(t) + Lem(p)ot + 6N (u%f&) - p) . (3.15)

3.5.5 Stochastic Solver

Homodyne detection

Homodyne detection is an extension of the photocurrent method where the output is mixed with a strong external
source allowing to get information about the phase of the system. With this method, the resulting detection rate
depends is

: label : jump.ate
T=tr ((v* +7(C+Ch) +C1C)p)

With v, the strength of the external beam and C the collapse operator. When the beam is very strong (7 >> CTC),
the rate becomes a constant term plus a term proportional to the quadrature of the system.

Closed system

In closed systems, the resulting stochastic differential equation is

+ 2
S(t) = —iH(t)ot — 3 (C"QC” - 2Co+ e;) Yot + 3 (Co— 5) v (3.16)

with
: label : jump,.ate
en = (Y()|Cr + C [ (1))
Here dw is a Wiener increment.

In QuTiP, this is available with the function ssesolve.
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In [1]: times = np.linspace(0.0, 10.0, 201)
In [2]: psi0 = tensor(fock(2, 0), fock (10, 5))
In [3]: a = tensor(geye(2), destroy(10))
In [4]: sm = tensor(destroy(2), geye(l1l0))
In [5]: H= 2 % np.pli » a.dag() » a + 2 = np.pi » sm.dag() » sm + 2 * np.pi = 0.25_
< (sm % a.dag() + sm.dag() * a)
In [6]: data = ssesolve(H, psi0O, times, sc_ops=[np.sqgrt(0.1) % al, e_ops=[la.dag(),
—*% a, sm.dag() * sm], method="homodyne™)
Total run time: 0.01s
In [7]: figure()
Out[7]: <Figure size 640x480 with 0 Axes>
In [8]: plot(times, data.expect[0], times, data.expect[l])
Out[8]:
[<matplotlib.lines.Line2D at 0x1a2602d748>,
<matplotlib.lines.Line2D at 0x1a2602d860>]

In [9]: title('Homodyne time evolution')
Out[9]: Text (0.5,1, '"Homodyne time evolution')
In [10]: xlabel('Time'")
Out[10]: Text (0.5,0, 'Time")
In [11]: ylabel ('Expectation values')
Out[1l1]: Text (0,0.5, "'Expectation values')
In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0xla22d20£d0>
In [13]: show()
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Open system

In open systems, 2 types of collapse operators are considered, .S; represent the dissipation in the environment, C;
are monitored operators. The deterministic part of the evolution is the liouvillian with both types of collapses

L{p(®)) = —ilH (), p(t)] + > _ D(Sn, p) + 3 D(Cis p), (3.17)
with
D(C,p) = % [2Cp(t)CT — p(t)CTC = CHCp(t)] . (3.18)

The stochastic part is given by
dy = (Cp(t) + p(t)CT —tx (C x p+p x CT) p(t)), (3.19)
resulting in the stochastic differential equation
dp(t) = L(p(t))dot + dadw (3.20)

The function smesolve covert these cases in QuTiP.

Heterodyne detection

With heterodyne detection, two measurements are made in order to obtain information about 2 orthogonal quadra-
tures at once.

3.5.6 Solving Problems with Time-dependent Hamiltonians
Methods for Writing Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described
by time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamilto-
nian, or the collapse operators describing coupling to the environment, and sometimes both components might de-
pend on time. The time-evolutions solvers qut ip.mesolve, qutip.mcsolve, qutip.sesolve,qutip.
brmesolve qutip.ssesolve, qutip.photocurrent_sesolve, qutip.smesolve, and qutip.
photocurrent_mesolve are all capable of handling time-dependent Hamiltonians and collapse terms. There
are, in general, three different ways to implement time-dependent problems in QuTiP:

1. Function based: Hamiltonian / collapse operators expressed using [qobj, func] pairs, where the time-
dependent coefficients of the Hamiltonian (or collapse operators) are expressed using Python functions.

2. String (Cython) based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, string]
pairs, where the time-dependent coefficients are represented as strings. The resulting Hamiltonian is then
compiled into C code using Cython and executed.

3. Array Based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, np.array] pairs.
The arrays are 1 dimensional and dtype are complex or float. They must contain one value for each time in
the tlist given to the solver. Cubic spline interpolation will be used between the given times.

4. Hamiltonian function (outdated): The Hamiltonian is itself a Python function with time-dependence.
Collapse operators must be time independent using this input format.

Give the multiple choices of input style, the first question that arrises is which option to choose? In short, the
function based method (option #1) is the most general, allowing for essentially arbitrary coefficients expressed
via user defined functions. However, by automatically compiling your system into C++ code, the second option
(string based) tends to be more efficient and will run faster [This is also the only format that is supported in
the qutip.brmesolve solver]. Of course, for small system sizes and evolution times, the difference will
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be minor. Although this method does not support all time-dependent coefficients that one can think of, it does
support essentially all problems that one would typically encounter. Time-dependent coefficients using any of the
following functions, or combinations thereof (including constants) can be compiled directly into C++-code:

'abs', 'acos', 'acosh', 'arg', 'asin', 'asinh', 'atan', 'atanh', 'conj',
'cos', 'cosh','exp', 'erf', 'zerf', 'imag', 'log', 'loglO', 'norm', 'pi',
'proj', 'real', 'sin', 'sinh', 'sgrt', 'tan', 'tanh'

In addition, QuTiP supports cubic spline based interpolation functions [Modeling Non-Analytic and/or Experi-
mental Time-Dependent Parameters using Interpolating Functions).

If you require mathematical functions other than those listed above, it is possible to call any of the functions in
the NumPy library using the prefix np. before the function name in the string, i.e 'np.sin (t) ' and scipy.
special imported as spe. This includes a wide range of functionality, but comes with a small overhead created
by going from C++->Python->C++.

Finally option #4, expressing the Hamiltonian as a Python function, is the original method for time dependence in
QuTiP 1.x. However, this method is somewhat less efficient then the previously mentioned methods. However, in
contrast to the other options this method can be used in implementing time-dependent Hamiltonians that cannot
be expressed as a function of constant operators with time-dependent coefficients.

A collection of examples demonstrating the simulation of time-dependent problems can be found on the tutorials
web page.

Function Based Time Dependence

A very general way to write a time-dependent Hamiltonian or collapse operator is by using Python functions as
the time-dependent coefficients. To accomplish this, we need to write a Python function that returns the time-
dependent coefficient. Additionally, we need to tell QuTiP that a given Hamiltonian or collapse operator should
be associated with a given Python function. To do this, one needs to specify operator-function pairs in list format:
[Op, py_coeff], where Op is a given Hamiltonian or collapse operator and py_coeff is the name of the
Python function representing the coefficient. With this format, the form of the Hamiltonian for both mesolve
and mcsolve is:

>>> H = [HO, [Hl, py_coeffl], [H2, py_coeff2], ...]

where HO is a time-independent Hamiltonian, while H1," " H2"", are time dependent. The same format can be used
for collapse operators:

’>>> c_ops = [[CO, py_coeff0O], Cl, [C2, py_coeff2], ...]

Here we have demonstrated that the ordering of time-dependent and time-independent terms does not matter. In
addition, any or all of the collapse operators may be time dependent.

Note: While, in general, you can arrange time-dependent and time-independent terms in any order you like, it is
best to place all time-independent terms first.

As an example, we will look at an example that has a time-dependent Hamiltonian of the form H = Hy — f(t)H;
where f(t) is the time-dependent driving strength given as f(t) = Aexp [— (t/ 0)2} . The follow code sets up the
problem

In [1]: ustate = basis (3, 0)
In [2]: excited = basis (3, 1)
In [3]: ground = basis (3, 2)

In [4]: N = 2 # Set where to truncate Fock state for cavity

(continues on next page)
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(continued from previous page)

In [5]: sigma_ge = tensor(geye(N), ground » excited.dag()) # |g><e]
In [6]: sigma_ue = tensor(geye (N), ustate x excited.dag()) # |u><e]
In [7]: a = tensor (destroy(N), geye(3))

In [8]: ada = tensor (num(N), geye(3))

In [9]: c_ops = [] # Build collapse operators

In [10]: kappa = 1.5 # Cavity decay rate

In [11]: c_ops.append(np.sqgrt (kappa) * a)

In [12]: gamma = 6 # Atomic decay rate

In [13]: c_ops.append(np.sqgrt (5xgamma/9) = sigma_ue) # Use Rb branching ratio of 5/
-9 e—>u

In [14]: c_ops.append(np.sqgrt (4 gamma/9) * sigma_ge) # 4/9 e->g
In [15]: t = np.linspace(-15, 15, 100) # Define time vector
In [16]: psi0 = tensor(basis (N, 0), ustate) # Define initial state

In [17]: state_GG = tensor(basis (N, 1), ground) # Define states onto which to_,
—project

In [18]: sigma_GG = state_GG * state_GG.dag()
In [19]: state_UU = tensor(basis (N, 0), ustate)
In [20]: sigma_UU = state_UU * state_UU.dag()

In [21]: g = 5 # coupling strength

In [22]: HO = —g % (sigma_ge.dag() = a + a.dag() * sigma_ge) # time-independent,,
—term
In [23]: Hl1 = (sigma_ue.dag() + sigma_ue) # time-dependent term

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify a
single Python function for the coefficient f(¢). In this case, one can simply do

In [24]: def H1_coeff(t, args):
e return 9 x np.exp(—(t / 5.) *x 2)

In this case, the return value dependents only on time. However, when specifying Python functions for coefficients,
the function must have (t,args) as the input variables, in that order. Having specified our coefficient function,
we can now specify the Hamiltonian in list format and call the solver (in this case qut ip.mesolve)

In [25]: H = [HO, [H1,H1 _coeff]]

In [26]: output = mesolve(H, psiO, t, c_ops, [ada, sigma_UU, sigma_GG])

We can call the Monte Carlo solver in the exact same way (if using the default nt ra 3=500):

In [27]: output = mcsolve(H, psiO, t, c_ops, [ada, sigma_UU, sigma_GG])
10.0%. Run time: 0.32s. Est. time left: 00:00:00:02
20.0%. Run time: 0.61ls. Est. time left: 00:00:00:02

(continues on next page)
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(continued from previous page)

30.0%. Run time: 0.91s. Est. time left: 00:00:00:02

40.0%. Run time: 1.19s. Est. time left: 00:00:00:01

50.0%. Run time: 1.49s. Est. time left: 00:00:00:01

60.0%. Run time: 1.78s. Est. time left: 00:00:00:01

70.0%. Run time: 2.07s. Est. time left: 00:00:00:00

80.0%. Run time: 2.35s. Est. time left: 00:00:00:00

90.0%. Run time: 2.64s. Est. time left: 00:00:00:00

100.0%. Run time: 2.93s. Est. time left: 00:00:00:00
Total run time: 3.04s

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however
will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we
can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

In [28]: kappa = 0.5
In [29]: def col_coeff(t, args): # coefficient function

et return np.sqrt (kappa * np.exp(-t))

In [30]: N = 10 # number of basis states

In [31]: a = destroy(N)

In [32]: H a.dag() = a # simple HO
In [33]: psiO = basis (N, 9) # initial state
In [34]: c_ops = [[a, col_coeff]] # time—-dependent collapse term

In [35]: times = np.linspace(0, 10, 100)

In [36]: output = mesolve(H, psiO, times, c_ops, [a.dag() * al)

Using the args variable

In the previous example we hardcoded all of the variables, driving amplitude A and width o, with their numerical
values. This is fine for problems that are specialized, or that we only want to run once. However, in many cases,
we would like to change the parameters of the problem in only one location (usually at the top of the script), and
not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this using
the keyword args as an input to the solvers. For instance, instead of explicitly writing 9 for the amplitude and 5
for the width of the gaussian driving term, we can make us of the args variable

In [37]: def Hl_coeff(t, args):
e return args['A'] * np.exp(-(t/args['sigma'])«*2)

or equivalently,

In [38]: def Hl1l_coeff(t, args):
et A = args['A']
el sig = args|['sigma']
et return A * np.exp(—(t / sig) x=* 2)

where args is a Python dictionary of key: valuepairsargs = {'A': a, 'sigma': Db} wherea and
b are the two parameters for the amplitude and width, respectively. Of course, we can always hardcode the values
in the dictionary as well args = {'A': 9, 'sigma': 5}, but there is much more flexibility by using
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variables in args. To let the solvers know that we have a set of args to pass we append the args to the end of
the solver input:

In [39]: output = mesolve(H, psiO, times, c_ops, [a.dag() * al, args={'A': 9,
—'sigma': 5})

or to keep things looking pretty

In [40]: args = {'A': 9, 'sigma': 5}

In [41]: output = mesolve(H, psiO, times, c_ops, [a.dag() * al, args=args)

Once again, the Monte Carlo solver qutip.mcsolve works in an identical manner.

String Format Method

Note: You must have Cython installed on your computer to use this format. See Installation for instructions on
installing Cython.

The string-based time-dependent format works in a similar manner as the previously discussed Python function
method. That being said, the underlying code does something completely different. When using this format,
the strings used to represent the time-dependent coefficients, as well as Hamiltonian and collapse operators, are
rewritten as Cython code using a code generator class and then compiled into C code. The details of this meta-
programming will be published in due course. however, in short, this can lead to a substantial reduction in time
for complex time-dependent problems, or when simulating over long intervals.

Like the previous method, the string-based format uses a list pair format [Op, str] where str is now a string
representing the time-dependent coefficient. For our first example, this string wouldbe '9 * exp (- (t / 5.)
x% 2) '. The Hamiltonian in this format would take the form:

’In [42]: H = [HO, [H1, '9 # exp(—(t / 5) %% 2)']]

Notice that this is a valid Hamiltonian for the string-based format as exp is included in the above list of suitable
functions. Calling the solvers is the same as before:

’In [43]: output = mesolve(H, psiO, t, c_ops, [a.dag() * al)

We can also use the args variable in the same manner as before, however we must rewrite our string term to read:
'A x exp(—(t / sig) ** 2)'

In [44]: H = [HO, [H1, 'A x exp(—(t / sig) =*x 2)']]

In [45]: args = {'A': 9, 'sig': 5}

In [46]: output = mesolve(H, psiO, times, c_ops, [a.dag()=*al, args=args)

Important: Naming your args variables exp, sin, pi etc. will cause errors when using the string-based
format.

Collapse operators are handled in the exact same way.
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Modeling Non-Analytic and/or Experimental Time-Dependent Parameters using Interpolating
Functions

Note: New in QuTiP 4.1

Sometimes it is necessary to model a system where the time-dependent parameters are non-analytic functions, or
are derived from experimental data (i.e. a collection of data points). In these situations, one can use interpolating
functions as an approximate functional form for input into a time-dependent solver. QuTiP includes it own custom
cubic spline interpolation class qutip. interpolate.Cubic_Spline to provide this functionality. To see
how this works, lets first generate some noisy data:

In [47]: t = np.linspace(-15, 15, 100)

In [48]: func = lambda t: 9xnp.exp(—(t / 5)+*% 2)

In [49]: noisy_func = lambda t: func(t)+(0.05xfunc(t))*np.random.randn (t.shapel0])
In [50]: noisy_data = noisy_func(t)

In [51]: plt.figure()
Out [51]: <Figure size 640x480 with 0 Axes>

In [52]: plt.plot(t, func(t))
Out[52]: [<matplotlib.lines.Line2D at 0x1a27962208>]

In [53]: plt.plot(t, noisy_data, 'o'")
Out[53]: [<matplotlib.lines.Line2D at 0x1a27962780>]

In [54]: plt.show()
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To turn these data points into a function we call the QuTiP qutip.interpolate.Cubic_Spline class
using the first and last domain time points, t [0] and t [-1], respectively, as well as the entire array of data
points:
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In [55]: S = Cubic_Spline(t[0], t[-1], noisy_data)

In [56]: plt.figure()
Out [56]: <Figure size 640x480 with 0 Axes>

In [57]: plt.plot(t, func(t))
Out[57]: [<matplotlib.lines.Line2D at 0x1a280b51d0>]

In [58]: plt.plot(t, noisy_data, 'o'")
Out[58]: [<matplotlib.lines.Line2D at 0x1a280b5828>]

In [59]: plt.plot(t, S(t), lw=2)
Out[59]: [<matplotlib.lines.Line2D at 0xla280ad4a8>]

In [60]: plt.show()
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Note that, at present, only equally spaced real or complex data sets can be accommodated. This cubic spline class
S can now be pasted to any of the mesolve, mcsolve, or sesolve functions where one would normally input
a time-dependent function or string-representation. Taking the problem from the previous section as an example.
We would make the replacement:

’H = [HO, [H1, '9 % exp(—(t / 5) x» 2)']]
to
’H - [HO, [H1, S]]

When combining interpolating functions with other Python functions or strings, the interpolating class will au-
tomatically pick the appropriate method for calling the class. That is to say that, if for example, you have other
time-dependent terms that are given in the string-format, then the cubic spline representation will also be passed
in a string-compatible format. In the string-format, the interpolation function is compiled into c-code, and thus is
quite fast. This is the default method if no other time-dependent terms are present.
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Accesing the state from solver

New in QuTiP 4.4

The state of the system, the ket vector or the density matrix, is available to time-dependent Hamiltonian and
collapse operators in args. Some keys of the argument dictionary are understood by the solver to be values to be
updated with the evolution of the system. The state can be obtained in 3 forms: Qobj, vector (1d np.array),
matrix (2d np . array), expectation values and collapse can also be obtained.

Here psi0 is the initial value used for tests before the evolution begins. qutip.brmesolve does not support
these arguments.

Reusing Time-Dependent Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

When repeatedly simulating a system where only the time-dependent variables, or initial state change, it is possible
to reuse the Hamiltonian data stored in QuTiP and there by avoid spending time needlessly preparing the Hamil-
tonian and collapse terms for simulation. To turn on the the reuse features, we must pass a qutip.Options
object with the rhs_reuse flag turned on. Instructions on setting flags are found in Setting Options for the
Dynamics Solvers. For example, we can do

In [61]: H = [HO, [H1l, 'A % exp(-(t / sig) ** 2)']]

In [62]: args = {'A': 9, 'sig': 5}

In [63]: output = mcsolve(H, psiO, times, c_ops, [a.dag()=*al]l, args=args)
10.0%. Run time: 0.23s. Est. time left: 00:00:00:02
20.0%. Run time: 0.40s. Est. time left: 00:00:00:01
30.0%. Run time: 0.62s. Est. time left: 00:00:00:01
40.0%. Run time: 0.81ls. Est. time left: 00:00:00:01
50.0%. Run time: 0.99s. Est. time left: 00:00:00:00
60.0%. Run time: 1.18s. Est. time left: 00:00:00:00
70.0%. Run time: 1.40s. Est. time left: 00:00:00:00
80.0%. Run time: 2.05s. Est. time left: 00:00:00:00
90.0%. Run time: 2.36s. Est. time left: 00:00:00:00
100.0%. Run time: 2.56s. Est. time left: 00:00:00:00
Total run time: 2.63s

In [64]: opts = Options(rhs_reuse=True)

In [65]: args = {'A': 10, 'sig': 3}

In [66]: output = mcsolve(H, psiO, times, c_ops, [a.dag()=*al], args=args, .
—options=opts)

10.0%. Run time: 0.22s. Est. time left: 00:00:00:01
20.0%. Run time: 0.41s. Est. time left: 00:00:00:01
30.0%. Run time: 0.59s. Est. time left: 00:00:00:01
40.0%. Run time: 0.79s. Est. time left: 00:00:00:01
50.0%. Run time: 0.99s. Est. time left: 00:00:00:00
60.0%. Run time: 1.21s. Est. time left: 00:00:00:00
70.0%. Run time: 1.50s. Est. time left: 00:00:00:00
80.0%. Run time: 2.10s. Est. time left: 00:00:00:00
90.0%. Run time: 2.62s. Est. time left: 00:00:00:00
100.0%. Run time: 2.91s. Est. time left: 00:00:00:00
Total run time: 3.02s

The second call to gut ip.mcsolve does not reorganize the data, and in the case of the string format, does not
recompile the Cython code. For the small system here, the savings in computation time is quite small, however, if
you need to call the solvers many times for different parameters, this savings will obviously start to add up.
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Running String-Based Time-Dependent Problems using Parfor

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In this section we discuss running string-based time-dependent problems using the qut ip . parfor function. As
the qutip.mcsolve function is already parallelized, running string-based time dependent problems inside of
parfor loops should be restricted to the qut ip.mesolve function only. When using the string-based format, the
system Hamiltonian and collapse operators are converted into C code with a specific file name that is automatically
genrated, or supplied by the user via the rhs_ filename property of the qutip.Options class. Because the
gqutip.parfor function uses the built-in Python multiprocessing functionality, in calling the solver inside a
parfor loop, each thread will try to generate compiled code with the same file name, leading to a crash. To get
around this problem you can call the qut ip. rhs_generate function to compile simulation into C code before
calling parfor. You must then set the qut ip.Odedata object rhs_reuse=True for all solver calls inside
the parfor loop that indicates that a valid C code file already exists and a new one should not be generated. As an
example, we will look at the Landau-Zener-Stuckelberg interferometry example that can be found in the notebook
“Time-dependent master equation: Landau-Zener-Stuckelberg inteferometry” in the tutorials section of the QuTiP
web site.

To set up the problem, we run the following code:

In [67]: delta = 0.1 % 2 x np.pi # qubit sigma_x coefficient

In [68]: w = 2.0 * 2 % np.pi # driving frequency
In [69]: T = 2 % np.pi / w # driving period
In [70]: gammal = 0.00001 # relaxation rate

|
o

In [71]: gamma2 = 0.005 # dephasing rate

In [72]: eps_list = np.linspace(-10.0, 10.0, 51) % 2 % np.pi # epsilon

In [73]: A_list = np.linspace(0.0, 20.0, 51) %= 2 * np.pi # Amplitude

In [74]: sx = sigmax(); sz = sigmaz(); sm = destroy(2); sn = num(2)

In [75]: c_ops = [np.sgrt(gammal) % sm, np.sqrt(gamma2) x sz] # relaxation and,_
—dephasing

In [76]: HO = —-delta / 2.0 x sx

In [77]: H1 = [sz, '-eps / 2.0 + A / 2.0 % sin(w » t)"']

In [78]: H_td = [HO, H1]

In [79]: Hargs = {'w': w, 'eps': eps_list[0], 'A': A_list[O0]}

where the last code block sets up the problem using a string-based Hamiltonian, and Hargs is a dictionary of
arguments to be passed into the Hamiltonian. In this example, we are going to use the qutip.propagator
and qutip.propagator.propagator_steadystate to find expectation values for different values of e
and A in the Hamiltonian H = —1 Ao, — eo, — 1 Asin(wt).

We must now tell the qutip.mesolve function, that is called by qutip.propagator to reuse a pre-
generated Hamiltonian constructed using the qutip. rhs_generate command:

In [80]: opts = Options(rhs_reuse=True)

In [81]: rhs_generate(H_td, c_ops, Hargs, name='lz_func')

Here, we have given the generated file a custom name 1z_ func, however this is not necessary as a generic name
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will automatically be given. Now we define the function task that is called by qutip.parallel.parfor
with the m-index parallelized in loop over the elements of p_mat [m, n]:

In [82]: def task(args):
e m, eps = args
e _mat_m = np.zeros(len(A_list))
e for n, A in enumerate (A_list):
cells # change args sent to solver, w is really a constant though.
e Hargs = {'w': w, 'eps': eps, 'A': A}
et U = propagator (H_td, T, c_ops, Hargs, opts) #<- IMPORTANT LINE
e rho_ss = propagator_steadystate (U)
e p_mat_m[n] = expect(sn, rho_ss)
e return [m, p_mat_m]

Notice the Options opts in the call to the qutip. propagator function. This is tells the qut ip.mesolve
function used in the propagator to call the pre-generated file 1z_ func. If this were missing then the routine
would fail.

3.5.7 Bloch-Redfield master equation

Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the
density matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlaying
microscopic physical model. The Lindblad operators (collapse operators) describe phenomenological processes,
such as for example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model.
In many situations the collapse operators and their corresponding rates have clear physical interpretation, such as
dephasing and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple to
an environment in some well-defined manner (through a physically motivated system-environment interaction
operator), it is often desirable to derive the master equation from more fundamental physical principles, and relate
it to for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It
starts from a combined system-environment perspective, and derives a perturbative master equation for the system
alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the
dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it
does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties
of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be
used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in
a sense more robust — it always results in a physical density matrix — although some collapse operators might not
be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02].
Here we present only a brief version of the derivation, with the intention of introducing the notation and how it
relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment
(bath): H = Hg + Hp + Hj, where H is the total system+bath Hamiltonian, Hg and Hp are the system and bath
Hamiltonians, respectively, and H is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from

the von-Neumann equation of motion for the combined system (p = —ih~L[H, p]). In the interaction picture the
result is
d t
Gips0) = =17 [ dr TealHi(0), [Hi (), ps() @ pa, G321
0

3.5. Time Evolution and Quantum System Dynamics 69




QuTiP: Quantum Toolbox in Python, Release 4.5.0

where the additional assumption that the total system-bath density matrix can be factorized as p(t) =~ ps(t) ® pp.
This assumption is known as the Born approximation, and it implies that there never is any entanglement between
the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak
system-bath interaction.

The master equation (3.21) is non-Markovian, i.e., the change in the density matrix at a time ¢ depends on states
at all times 7 < ¢, making it intractable to solve both theoretically and numerically. To make progress towards a
manageable master equation, we now introduce the Markovian approximation, in which p(s) is replaced by p(t)
in Eq. (3.21). The result is the Redfield equation

d B t

ZPs(t) =—h ? / dr Trp[H (1), [Hi(7), ps(t) ® ps]], (3.22)
0

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit depen-

dence on the initial state. By extending the integration to infinity and substituting 7 — ¢ — 7, a fully Markovian

master equation is obtained:

d

aps(t) =_—h? /OOO dr TI‘B[H](t), [Hj(t — T),ps(t) ®PBH (3.23)

The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics
changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a “short-
memory” bath, which results in Markovian system dynamics).

The master equation (3.23) is still on a too general form to be suitable for numerical implementation. We therefore
assume that the system-bath interaction takes the form H; = Za A, ® Bg and where A,, are system operators and
B, are bath operators. This allows us to write master equation in terms of system operators and bath correlation
functions:

d

Sos() = =13 [ dr {gas(r) Aa(DA(t — 7)ps(t) = Aalt = 7)ps(0) As(0)
af 0

9ap(=7) [ps () Aa(t = T)Ap(t) — Aa(t)ps(t) Ap(t — 1)},
where go3(7) = Trp [Ba(t)Bsg(t — 7)ps] = (Ba(7)Bg(0)), since the bath state pp is a steady state.

In the eigenbasis of the system Hamiltonian, where A,,,(t) = Apne®mnt o = w.,, — w, and w,, are the
eigenfrequencies corresponding the eigenstate |m), we obtain in matrix form in the Schrédinger picture

sec

d
%pab(t) 7'(*‘}u,bloab 222/ dr {gaﬁ

a,B c,d

S A A |

} pcd(t)a

where the “sec” above the summation symbol indicate summation of the secular terms which satisfy |wap —weq| <
Tdecay- This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-
Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function g(7) in
terms of the noise-power spectrum of the environment S(w) = [%_dre™7g(7):

+ gaB |f5ac ZA A’B iWnaT AgcAgbeiwde

/ dr gap(T)e™” = iSa,g(w) +idas(w), (3.24)
0
where A\, (w) is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is
Dt = —iwanpan(t) + Z Ruveapealt)
dt Pab = abPab ” abedPed\l), (3.25)

where

B2 a
Raped = T Zﬁ {5bd Z Aan ne Oéﬁ wcn) AacAngaﬁ (wca)

+ dac Z AgnAibSaB (Wan) — AgcAngaﬁ (wdb)} )
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is the Bloch-Redfield tensor.

The Bloch-Redfield master equation in the form Eq. (3.25) is suitable for numerical implementation. The input
parameters are the system Hamiltonian /1, the system operators through which the environment couples to the
system A, and the noise-power spectrum S, 5(w) associated with each system-environment interaction term.

To simplify the numerical implementation we assume that A, are Hermitian and that cross-correlations between
different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is imple-
mented in QuTiP is

-2
Raped = 5 Z {§bd Z Agn AncSa(wen) — AgeAgySa(Wea)

+ 8ac Y Afn Ay Salwan) — A7 A3 Sa (wdb)} :

Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.26) can be calculated using the function qutip.
bloch _redfield.bloch_redfield tensor. It takes two mandatory arguments: The system Hamilto-
nian H, a nested list of operator A, spectral density functions S,, (w) pairs that characterize the coupling between
system and bath. The spectral density functions are Python callback functions that takes the (angular) frequency
as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let’s consider a two-level atom

1 1
H= —ion — 5600'2 (3.26)
that couples to an Ohmic bath through the o, operator. The corresponding Bloch-Redfield tensor can be calculated

in QuTiP using the following code

In [1]: delta = 0.2 % 2+np.pi; epsO = 1.0 x 2xnp.pi; gammal = 0.5
In [2]: H = - delta/2.0 % sigmax() — eps0/2.0 x sigmaz()

In [3]: def ohmic_spectrum(w) :
if w == 0.0: # dephasing inducing noise
return gammal
else: # relaxation inducing noise

return gammal / 2 * (w / (2 % np.pi)) * (w > 0.0)
In [4]: R, ekets = bloch_redfield_tensor(H, [[sigmax(), ohmic_spectrum]])
In [5]: R
Out [5]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = False
Qobj data =
[[ O. +0.7 0. +0.7 0. +0.7
0.24514517+0.7 ]
[0 +0.73 -0.16103412-6.40761693 0. +0.7
0. +0.7 ]
[ 0. +0.7 0 +0. 7 -0.16103412+6.40761697
0 +0.73 ]
[ 0. +0.7 0. +0.7 0. +0.7
-0.24514517+0. 7 1]

Note that it is also possible to add Lindblad dissipation superoperators in the Bloch-Refield tensor by passing
the operators via the c_ops keyword argument like you would in the qutip.mesolve or qutip.mcsolve
functions. For convenience, the function qutip.bloch _redfield.bloch_redfield tensor also re-
turns a list of eigenkets ekets, since they are calculated in the process of calculating the Bloch-Redfield tensor R,
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and the ekets are usually needed again later when transforming operators between the computational basis and the
eigenbasis.

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.25), can be
calculated using the QuTiP function qutip.bloch_redfield.bloch_redfield_solve. It takes five
mandatory arguments: the Bloch-Redfield tensor R, the list of eigenkets eket s, the initial state psi0 (as a ket
or density matrix), a list of times t1ist for which to evaluate the expectation values, and a list of operators
e_ops for which to evaluate the expectation values at each time step defined by tlisz. For example, to evaluate
the expectation values of the o,,, 0,, and o, operators for the example above, we can use the following code:

In [6]: import matplotlib.pyplot as plt

In [7]: tlist = np.linspace(0, 15.0, 1000)

In [8]: psi0 = rand_ket (2)

In [9]: e_ops = [sigmax (), sigmay (), sigmaz ()]

In [10]: expt_list = bloch_redfield_solve (R, ekets, psiO, tlist, e_ops)
In [11]: sphere = Bloch{()

In [12]: sphere.add_points([expt_list[0], expt_list[l], expt_list[2]])

In [13]: sphere.vector_color = ['r']

In [14]: sphere.add_vectors (np.array([delta, 0, eps0]) / np.sqgrt(delta *+ 2 + epsO_
—xx 2))

In [15]: sphere.make_sphere()

In [16]: plt.show()

The two steps of calculating the Bloch-Redfield tensor and evolving according to the corresponding master equa-
tion can be combined into one by using the function qutip.bloch_redfield.brmesolve, which takes
same arguments as qutip.mesolve and qutip.mcsolve, save for the additional nested list of operator-
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spectrum pairs that is called a_ops.

In [17]: output = brmesolve(H, psi0O, tlist, a_ops=[I[sigmax(),ohmic_spectrum]], e
—Oops=e_ops)

where the resulting output is an instance of the class qutip.solver.Result.

Time-dependent Bloch-Redfield Dynamics

Note: New in QuTiP 4.2.

Warning: It takes ~3-5 seconds (~30 if using Visual Studio) to compile a time-dependent Bloch-Redfield
problem. Therefore, if you are doing repeated simulations by varying parameters, then it is best to pass
options = Options (rhs_reuse=True) to the solver.

If you have not done so already, please read the section: Solving Problems with Time-dependent Hamiltonians.

As we have already discussed, the Bloch-Redfield master equation requires transforming into the eigenbasis of the
system Hamiltonian. For time-independent systems, this transformation need only be done once. However, for
time-dependent systems, one must move to the instantaneous eigenbasis at each time-step in the evolution, thus
greatly increasing the computational complexity of the dynamics. In addition, the requirement for computing all
the eigenvalues severely limits the scalability of the method. Fortunately, this eigen decomposition occurs at the
Hamiltonian level, as opposed to the super-operator level, and thus, with efficient programming, one can tackle
many systems that are commonly encountered.

The time-dependent Bloch-Redfield solver in QuTiP relies on the efficient numerical computations afforded by the
string-based time-dependent format, and Cython compilation. As such, all the time-dependent terms, and noise
power spectra must be expressed in the string format. To begin, lets consider the previous example, but formatted
to call the time-dependent solver:

In [18]: ohmic = " / 2.0 « (w / (2 % pi)) » (w > 0.0)".
—format (gammal=gammal)

In [19]: output = brmesolve(H, psiO, tlist, a_ops=[[sigmax(),ohmic]], e_ops=e_ops)

Although the problem itself is time-independent, the use of a string as the noise power spectrum tells the solver to
go into time-dependent mode. The string is nearly identical to the Python function format, except that we replaced
np.pi with pi to avoid calling Python in our Cython code, and we have hard coded the gammal argument into
the string as limitations prevent passing arguments into the time-dependent Bloch-Redfield solver.

For actual time-dependent Hamiltonians, the Hamiltonian itself can be passed into the solver like any other
string-based Hamiltonian, as thus we will not discuss this topic further. Instead, here the focus is on time-
dependent bath coupling terms. To this end, suppose that we have a dissipative harmonic oscillator, where
the white-noise dissipation rate decreases exponentially with time x(¢) = (0)exp(—t). In the Lindblad or
monte-carlo solvers, this could be implemented as a time-dependent collapse operator list c_ops = [[a,
'sgrt (kappaxexp (-t)) '1]. In the Bloch-Redfield solver, the bath coupling terms must be Hermitian.
As such, in this example, our coupling operator is the position operator a+a .dag () . In addition, we do not need
the sgrt operation that occurs in the c_ops definition. The complete example, and comparison to the analytic
expression is:

In [20]: N = 10 # number of basis states to consider

In [21]: a destroy (N)

In [22]: H = a.dag() * a

(continues on next page)
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(continued from previous page)

In [23]: psi0 = basis (N, 9) # initial state

In [24]: kappa = 0.2 # coupling to oscillator

In [25]: a_ops = [[ata.dag(), ' xexp (—t)x (w>=0) '.format (kappa=kappa) ] ]
In [26]: tlist = np.linspace (0, 10, 100)

In [27]: out = brmesolve (H, psi0O, tlist, a_ops, e_ops=[a.dag() * al)

In [28]: actual_answer = 9.0 % np.exp(-kappa * (1.0 — np.exp(-tlist)))

In [29]: plt.figure()
Out [29]: <Figure size 640x480 with 0 Axes>

In [30]: plt.plot(tlist, out.expect[0])
Out[30]: [<matplotlib.lines.Line2D at 0xla273ac2e8>]

In [31]: plt.plot(tlist, actual_answer)
Out[31]: [<matplotlib.lines.Line2D at 0x1a273dd128>]

In [32]: plt.show()

9.0

8.8 1

8.6

8.4 4

8.2

8.0

7.8 1

7.6 1

7.4

In many cases, the bath-coupling operators can take the form A = f(t)a+ f(¢)*a™. In this case, the above format
for inputting the a_ops is not sufficient. Instead, one must construct a nested-list of tuples to specify this time-
dependence. For example consider a white-noise bath that is coupled to an operator of the form exp (1jxt) ~a
+ exp(-1jxt)* a.dag /(). In this example, the a_ops list would be:

In [33]: a_ops = [ [ (a, a.dag()), (' * (w >= 0)'.format (kappa), 'exp(ljxt)"',
—'exp(=1jxt) ") 1 ]

where the first tuple element (a, a.dag()) tells the solver which operators make up the full Hermi-
tian coupling operator. The second tuple ('{0} x (w >= 0)'.format (kappa), 'exp(ljxt)',
'exp (-1j*t) '), gives the noise power spectrum, and time-dependence of each operator. Note that the noise
spectrum must always come first in this second tuple. A full example is:
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In [34]: N = 10

In [35]: wO = 1.0 » 2 » np.pi

In [36]: g = 0.05 » w0

In [37]: kappa = 0.15

In [38]: times = np.linspace (0, 25, 1000)

In [39]: a

destroy (N)

In [40]: H = w0 * a.dag() » a + g = (a + a.dag())

In [41]: psi0 = ket2dm((basis (N, 4) + basis (N, 2) + basis(N, 0)).unit())

In [42]: a_ops = [[ (a, a.dag()), ('{0} » (w >= 0)'.format (kappa),
—'exp(=1Jxt) ") 1]

In [43]: e_ops = [a.dag() = a, a + a.dag()]
In [44]: res_brme = brmesolve(H, psi0O, times, a_ops, e_ops)

In [45]: plt.figure()
Out [45]: <Figure size 640x480 with 0 Axes>

In [46]: plt.plot(times, res_brme.expect[0], label=r'sa”{+}as’')
Out[46]: [<matplotlib.lines.Line2D at 0x1a26409320>]

In [47]: plt.plot (times,res_brme.expect[1l], label=r'Sa+ta”{+}s$")
Out[47]: [<matplotlib.lines.Line2D at 0x1a26417048>]

In [48]: plt.legend()
Out [48]: <matplotlib.legend.LlLegend at 0x1la27374358>

In [49]: plt.show()
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Further examples on time-dependent Bloch-Redfield simulations can be found in the online tutorials.

3.5.8 Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly
by numerical integration of the Schrédinger or Master equation, using the time-dependent Hamiltonian. But they
can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems
can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing the
system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms of these
master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians. However,
in many relevant cases, in particular for weak driving, the standard master equations still turns out to be useful for
many time-dependent problems. But a more rigorous approach would be to rederive the master equation taking
the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master equation
is one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).

Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving time-
dependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give
a brief summary of quantum Floquet theory.

Floquet theory for unitary evolution

The Schrédinger equation with a time-dependent Hamiltonian H () is
0
H(t)¥(t) = zh&\D(t), (3.27)

where WU (t) is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e.,
the Hamiltonian satisfies H (¢t) = H(t + T') where T is the period. According to the Floquet theorem, there exist
solutions to (3.27) on the form

U, (t) = exp(—ient/h) Py (1), (3.28)

where ¥, (t) are the Floquet states (i.e., the set of wave function solutions to the Schrédinger equation), @, (t) =
®,,(t+T) are the periodic Floquet modes, and ¢, are the quasienergy levels. The quasienergy levels are constants
in time, but only uniquely defined up to multiples of 27 /T (i.e., unique value in the interval [0, 27 /T).

If we know the Floquet modes (for t € [0, T']) and the quasienergies for a particular H (¢), we can easily decompose
any initial wavefunction (¢ = 0) in the Floquet states and immediately obtain the solution for arbitrary ¢

U(t) = Z caPu(t) = Z Co €xp(—ient/h) P, (1), (3.29)

where the coefficients ¢, are determined by the initial wavefunction ¥(0) = > _ ¢, ¥4(0).

This formalism is useful for finding W(¢) for a given H (t) only if we can obtain the Floquet modes ®,(t) and
quasienergies €, more easily than directly solving (3.27). By substituting (3.28) into the Schrodinger equation
(3.27) we obtain an eigenvalue equation for the Floquet modes and quasienergies

H(1)Bo (1) = ea®altl), (3.30)

where H(t) = H(t) — ih0;. This eigenvalue problem could be solved analytically or numerically, but in QuTiP
we use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield
et al., Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrodinger equation
(3.27), which by definition satisfies

U(T +t,0)0(t) = U(T + ).
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Inserting the Floquet states from (3.28) into this expression results in
U(T +t,t) exp(—ieat/h) Py (t) = exp(—iea (T + 1) /h) P (T + 1),
or, since D, (T + t) = D, (2),
U(T +t,t)P,(t) = exp(—ie, T/R) Do (t) = 1o Pa(t),

which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the
Floquet modes and quasienergies ¢, = —harg(n,)/T by numerically calculating U (T + ¢, ) and diagonalizing
it. In particular this method is useful to find ®,(0) by calculating and diagonalize U (T, 0).

The Floquet modes at arbitrary time ¢ can then be found by propagating ®,(0) to ®,,(¢) using the wave function
propagator U (¢,0)¥,,(0) = ¥ (¢), which for the Floquet modes yields

U(t,0)®4(0) = exp(—icat/h)a(t),

so that @, (t) = exp(ieat/h)U(t,0)P,(0). Since @, (t) is periodic we only need to evaluate it for ¢t € [0, T, and
from ®,,(t € [0,T]) we can directly evaluate @, (t), ¥, (¢) and ¥(¢) for arbitrary large .

Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state decomposi-
tion, etc., given a time-dependent Hamiltonian on the callback format, list-string format and list-callback format
(see, e.g., qut ip.mesolve for details).

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

1 1 1
H(t) = —ion — 500 + §A sin(wt)o . (3.31)

In QuTiP we can define this Hamiltonian as follows:

In [1]: delta = 0.2 % 2+np.pi; epsO = 1.0 x 2xnp.pi; A = 2.5 % 2+np.pi; omega = 1.
—0 * 2xnp.pi

In [2]: HO = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
In [3]: Hl = A/2.0 * sigmaz()
In [4]: args = {'w': omega}

In [5]: H = [HO, [H1l, 'sin(w * t)']]

The ¢ = 0 Floquet modes corresponding to the Hamiltonian (3.31) can then be calculated using the qutip.
floguet . floguet_modes function, which returns lists containing the Floquet modes and the quasienergies

In [6]: T = 2xpi / omega
In [7]: f_modes_0, f_energies = floquet_modes(H, T, args)

In [8]: f_energies
Out[8]: array([-2.83131212, 2.83131212])

In [9]: f_modes_0

Oout[9]:
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.72964231+0.7 ]
[-0.39993746+0.5546827311,
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[0.39993746+0.5546827]
[0.72964231+40.73 111
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For some problems interesting observations can be draw from the quasienergy levels alone. Consider for example
the quasienergies for the driven two-level system introduced above as a function of the driving amplitude, calcu-
lated and plotted in the following example. For certain driving amplitudes the quasienergy levels cross. Since the
the quasienergies can be associated with the time-scale of the long-term dynamics due that the driving, degenerate
quasienergies indicates a “freezing” of the dynamics (sometimes known as coherent destruction of tunneling).

In [10]: delta = 0.2 % 2+np.pi; epsO0 = 0.0 % 2+np.pi

In [11]: omega = 1.0 * 2#np.pi; A_vec = np.linspace(0, 10, 100) = omega;

In [12]: T = (2xpi)/omega

In [13]: tlist = np.linspace(0.0, 10 = T, 101)

In [14]: psiO = basis (2,0)

In [15]: g_energies = np.zeros((len(A_vec), 2))

In [16]: HO = delta/2.0 x sigmaz() - eps0/2.0 » sigmax()

In [17]: args = {'w': omega}

In [18]: for idx, A in enumerate (A_vec):
R Hl = A/2.0 » sigmax ()
et H = [HO, [H1, lambda t, args: sin(args['w']=*t)]]
e f_modes, f_energies = floquet_modes(H, T, args, True)
e g_energies[idx, :] = f_energies

In [19]: figure()
Out[19]: <Figure size 640x480 with 0 Axes>

In [20]: plot (A_vec/omega, g _energies[:,0] / delta, 'b', A_vec/omega, g_energies]|:,
1] / delta, 'r")
Out [20] :
[<matplotlib.lines.Line2D at 0x1a2656b0f0>,
<matplotlib.lines.Line2D at 0xla2656bdd8>]

In [21]: xlabel (r'SA/\omega$')
Out[21]: Text (0.5,0,'SA/\\omegas")

In [22]: ylabel (r'Quasienergy / $\Delta$')
Out[22]: Text (0,0.5, 'Quasienergy / $\\Delta$")

In [23]: title(r'Floquet quasienergies')
Out[23]: Text (0.5,1, 'Floquet quasienergies')

In [24]: show()
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Given the Floquet modes at ¢ = 0, we obtain the Floquet mode at some later time ¢ using the function qutip.
floquet.floquet_mode_t:

In [25]: f_modes_t = floquet_modes_t (f_modes_0, f_energies, 2.5, H, T, args)

In [26]: f_modes_t

Out [26] :

[Quantum object: dims = [[2], [1]1], shape = (2, 1), type = ket
Qobj data =
[[-0.89630512-0.231919467]

[ 0.37793106-0.004313367311,

Quantum object: dims = [[2],
Qobj data =
[[-0.37793106-0.004313367]

[-0.89630512+0.231919467311]

[1]], shape = (2, 1), type = ket

The purpose of calculating the Floquet modes is to find the wavefunction solution to the original problem (3.31)
given some initial state |¢)g). To do that, we first need to decompose the initial state in the Floquet states, using
the function qutip. floquet. floquet_state decomposition

In [27]: psi0 = rand_ket (2)

In [28]: f_coeff = floquet_state_decomposition (f_modes_0, f_energies, psiO)

In [29]: f_coeff

Oout [29]:

[(-0.04212222693457046+0.161113526131825647),
(-0.7148489229323456+0.6791606342227947) ]

and given this decomposition of the initial state in the Floquet states we can easily evaluate the wave-

function that is the solution to (3.31) at an arbitrary time t using the function qutip.floquet.
floquet_wavefunction_t

In [30]: t = 10 » np.random.rand ()

In [31]: psi_t = floquet_wavefunction_t (f_modes_0, f_energies, f_coeff, t, H, T,
—args)

[

(continues on next page)
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In [32]: psi_t
Out [32]:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.11713293+0.848596467]
[0.46372377+0.226106577]]

The following example illustrates how to use the functions introduced above to calculate and plot the time-
evolution of (3.31).

from qutip import =«
from scipy import =

delta = 0.2 * 2+pi; epsO = 1.0 * 2xpi

A = 0.5 % 2xpi; omega = 1.0 % 2xpi

T = (2+pil)/omega

tlist = linspace(0.0, 10 = T, 101)

psi0 = basis(2,0)

HO = - delta/2.0 % sigmax() — eps0/2.0 x sigmaz ()
Hl = A/2.0 » sigmaz()

args = {'w': omega}

H = [HO, [H1l, lambda t,args: sin(args['w'] = t)]]

# find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes (H, T, args)

# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition (f_modes_0, f_energies, psi0)

# calculate the wavefunctions using the from the floquet modes

p_ex = zeros(len(tlist))

for n, t in enumerate(tlist):
psi_t = floquet_wavefunction_t (f_modes_0, f_energies, f_coeff, t, H, T, args)
p_ex[n] = expect (num(2), psi_t)

# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psiO, tlist, [], [num(2)], args).expect|[0]

# plot the results

from pylab import =«

plot (tlist, real (p_ex), 'ro', tlist, l-real (p_ex), 'bo')

plot (tlist, real(p_ex_ref), 'r', tlist, l-real(p_ex_ref), 'b'")

xlabel ('Time'")

ylabel ('Occupation probability")

legend (("Floquet $P_1S$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0S$"))
show ()
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Pre-computing the Floquet modes for one period

When evaluating the Floquet states or the wavefunction at many points in time it is useful to pre-compute the
Floquet modes for the first period of the driving with the required resolution. In QuTiP the function qutip.
floquet. floquet_modes_table calculates a table of Floquet modes which later can be used together
with the function qutip. floquet.floquet_modes_t_lookup to efficiently lookup the Floquet mode at
an arbitrary time. The following example illustrates how the example from the previous section can be solved
more efficiently using these functions for pre-computing the Floquet modes.

from qutip import =
from scipy import =

delta = 0.0 * 2+pi; epsO = 1.0 * 2+pi

A = 0.25 % 2+pi; omega = 1.0 x 2xpi

T = (2+pi)/omega

tlist = linspace(0.0, 10 = T, 101)

psi0 = basis (2,0)

HO = - delta/2.0 % sigmax() — eps0/2.0 % sigmaz ()
H1 = A/2.0 » sigmax()

args {'w': omega}

H = [HO, [H1l, lambda t,args: sin(args['w'] =% t)]]

# find the flogquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes (H, T, args)

# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition (f_modes_0, f_energies, psi0)

# calculate the wavefunctions using the from the floquet modes
f_modes_table_t = floquet_modes_table (f_modes_0, f_energies, tlist, H, T, args)
p_ex zeros (len(tlist))
for n, t in enumerate(tlist):
f_modes_t = floquet_modes_t_lookup (f_modes_table_t, t, T)
psi_t = floquet_wavefunction (f_modes_t, f_energies, f_coeff, t)
p_ex[n] = expect (num(2), psi_t)

# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psiO, tlist, [], [num(2)], args).expect[0]

(continues on next page)
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# plot the results

from pylab import =«

plot (tlist, real (p_ex), 'ro', tlist, l-real (p_ex), 'bo')

plot (tlist, real(p_ex_ref), 'r', tlist, l-real(p_ex_ref), 'b'")

xlabel ('Time'")

ylabel ('Occupation probability")

legend (("Floquet $P_1$", "Floquet $P_0S$", "Lindblad $P_1$", "Lindblad $P_0S$"))
show ()
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Note that the parameters and the Hamiltonian used in this example is not the same as in the previous section, and
hence the different appearance of the resulting figure.

For convenience, all the steps described above for calculating the evolution of a quantum system using the Floquet
formalisms are encapsulated in the function qutip. floquet . fsesolve. Using this function, we could have
achieved the same results as in the examples above using:

output = fsesolve(H, psiO, times, [num(2)], args)
p_ex = output.expect[0]

Floquet theory for dissipative evolution

A driven system that is interacting with its environment is not necessarily well described by the standard Lindblad
master equation, since its dissipation process could be time-dependent due to the driving. In such cases a rigorious
approach would be to take the driving into account when deriving the master equation. This can be done in many
different ways, but one way common approach is to derive the master equation in the Floquet basis. That approach
results in the so-called Floquet-Markov master equation, see Grifoni et al., Physics Reports 304, 299 (1998) for
details.
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The Floquet-Markov master equation in QuTiP

The QuTiP function qutip. floguet . fmmesolve implements the Floquet-Markov master equation. It cal-
culates the dynamics of a system given its initial state, a time-dependent hamiltonian, a list of operators through
which the system couples to its environment and a list of corresponding spectral-density functions that describes
the environment. In contrast to the qutip.mesolve and qutip.mcsolve, and the qutip. floquet.
fmmesolve does characterize the environment with dissipation rates, but extract the strength of the coupling to
the environment from the noise spectral-density functions and the instantaneous Hamiltonian parameters (similar
to the Bloch-Redfield master equation solver qutip.bloch_redfield.brmesolve).

Note: Currently the qutip. floquet.fmmesolve can only accept a single environment coupling operator
and spectral-density function.

The noise spectral-density function of the environment is implemented as a Python callback function that is passed
to the solver. For example:

>>> gammal = 0.1
>>> def noise_spectrum(omega) :
>>> return 0.5 » gammal * omega/ (2+pi)

The other parameters are similar to the qutip.mesolve and qutip.mcsolve, and the same format for the
return value is used qutip. solver.Result. The following example extends the example studied above, and
uses qutip.floquet. fmmesolve to introduce dissipation into the calculation

from qutip import =
from scipy import =

delta = 0.0 »* 2%pi; epsO = 1.0 » 2*pi

A = 0.25 % 2xpi; omega = 1.0 * 2xpi

T = (2+pil)/omega

tlist = linspace(0.0, 20 %= T, 101)

psiO = basis (2,0)

HO = - delta/2.0 % sigmax() - eps0/2.0 % sigmaz()
Hl = A/2.0 » sigmax()

args = {'w': omega}

H = [HO, [Hl1, lambda t,args: sin(args['w'] =% t)]]

# noise power spectrum
gammal = 0.1
def noise_spectrum(omega) :
return 0.5 » gammal » omega/ (2+pi)

# find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes(H, T, args)

# precalculate mode table
f_modes_table_t = floquet_modes_table (f_modes_0, f_energies,
linspace (0, T, 500 + 1), H, T, args)

# solve the floquet-markov master equation
output = fmmesolve (H, psiO, tlist, [sigmax()], [], [noise_spectrum], T, args)

# calculate expectation values in the computational basis
p_ex = zeros (shape(tlist), dtype=complex)
for idx, t in enumerate(tlist):
f_modes_t = floquet_modes_t_lookup (f_modes_table_t, t, T)
p_ex[idx] = expect (num(2), output.states[idx].transform(f_modes_t, True))

# For reference: calculate the same thing with mesolve

(continues on next page)
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output = mesolve(H, psi0O, tlist, [sgrt(gammal) * sigmax ()], [num(2)], args)
p_ex_ref = output.expect[0]

# plot the results

from pylab import =«

plot (tlist, real(p_ex), 'r—--', tlist, l-real(p_ex), 'b——")

plot (tlist, real(p_ex_ref), 'r', tlist, l-real(p_ex_ref), 'b'")

xlabel ('Time")

ylabel ('Occupation probability")

legend (("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0S$"))
show ()
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Alternatively, we can let the qutip. floquet . fmmesolve function transform the density matrix at each time
step back to the computational basis, and calculating the expectation values for us, but using:

output = fmmesolve (H, psiO, tlist, [sigmax ()], [num(2)], [noise_spectrum], T, args)
p_ex = output.expect[0]

3.5.9 Permutational Invariance

Permutational Invariant Quantum Solver (PIQS)

The Permutational Invariant Quantum Solver (PIQS) is a QuTiP module that allows to study the dynamics of an
open quantum system consisting of an ensemble of identical qubits that can dissipate through local and collective
baths according to a Lindblad master equation.

The Liouvillian of an ensemble of N qubits, or two-level systems (TLSs), Drrs(p), can be built using only
polynomial — instead of exponential — resources. This has many applications for the study of realistic quantum
optics models of many TLSs and in general as a tool in cavity QED.

Consider a system evolving according to the equation

p=Drslp) =~ [H. 0+ 2L o)+ 2L (5] + 2L

2( Lo o+ BLs I+ T L., 16l)

h
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where J,,, = %Ja’n are SU(2) Pauli spin operators, with « = z,y, 2z and J1 ,, = o4+ ,. The collective spin
operators are J, = Y. Jo., . The Lindblad super-operators are £4 = 24pAt — ATAp — pATA.

The inclusion of local processes in the dynamics lead to using a Liouvillian space of dimension 4V, By exploiting
the permutational invariance of identical particles [2-8], the Liouvillian Dy s(p) can be built as a block-diagonal
matrix in the basis of Dicke states |j, m).

The system under study is defined by creating an object of the Dicke class, e.g. simply named system, whose
first attribute is

* system.N, the number of TLSs of the system N.
The rates for collective and local processes are simply defined as
* collective_emission defines g, collective (superradiant) emission
* collective_dephasing defines vycp, collective dephasing
* collective_pumping defines ycp, collective pumping.
* emission defines g, incoherent emission (losses)
* dephasing defines ~p, local dephasing
* pumping defines ~yp, incoherent pumping.

Then the system.lindbladian () creates the total TLS Lindbladian superoperator matrix. Similarly,
system.hamiltonian defines the TLS hamiltonian of the system Hrys.

The system’s Liouvillian can be built using system.liouvillian (). The properties of a Pigs object can be
visualized by simply calling system. We give two basic examples on the use of PIQS. In the first example the
incoherent emission of N driven TLSs is considered.

from pigs import Dicke
from qutip import steadystate

N = 10
system = Dicke (N, emission = 1, pumping = 2)
L = system.liouvillian()

steady = steadystate (L)

For more example of use, see the “Permutational Invariant Lindblad Dynamics” section in the tutorials section of
the website, http://qutip.org/tutorials.html.
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Table 1: Useful PIQS functions.

Operators Command Description

Collective spin algebra | jspin (N) The collective spin algebra J,., Jy, J, for N TLSs

Jzy Jy, J2

Collective spin J, jspin (N, "x") The collective spin operator Jz. Requires N number
of TLSs

Collective spin J,, jspin (N, "y") The collective spin operator J,. Requires N number
of TLSs

Collective spin J, jspin (N, "z") The collective spin operator J,. Requires N number
of TLSs

Collective spin J; jspin (N, "+") The collective spin operator .J .

Collective spin J_ jspin (N, "-") The collective spin operator J_.

Collective spin J, inun- | jspin (N, "z", The collective spin operator .J, in the uncoupled basis

coupled basis basis="uncoupled')| of dimension 2%.

Dicke state |j, m) density | dicke (N, j, m) The density matrix for the Dicke state given by |7, m)

matrix

Excited-state density ma- | excited (N) The excited state in the Dicke basis

trix in Dicke basis

Excited-state density ma- | excited (N, The excited state in the uncoupled basis

trix in uncoupled basis basis="uncoupled")

Ground-state density ma- | ground (N) The ground state in the Dicke basis

trix in Dicke basis

GHZ-state density ma- | ghz (N) The GHZ-state density matrix in the Dicke (default)

trix in the Dicke basis basis for N number of TLS

Collapse operators of the | Dicke.c_ops () The collapse operators for the ensemble can be called

ensemble by the c_ops method of the Dicke class.

Note that the mathematical object representing the density matrix of the full system that is manipulated (or ob-
tained from steadystate) in the Dicke-basis formalism used here is a representative of the density matrix. This
representative object is of linear size N2, whereas the full density matrix is defined over a 2N Hilbert space. In
order to calculate nonlinear functions of such density matrix, such as the Von Neumann entropy or the purity, it is
necessary to take into account the degeneracy of each block of such block-diagonal density matrix. Note that as
long as one calculates expected values of operators, being Tr[A*rho] a linear function of rho, the representative
density matrix give straightforwardly the correct result. When a nonlinear function of the density matrix needs to
be calculated, one needs to weigh each degenerate block correctly; this is taken care by the dicke_function_trace
in qutip.pigs, and the user can use it to define general nonlinear functions that can be described as the trace of a
Taylor expandable function. Two nonlinear functions that use dicke_function_trace and are already implemented
are purity_dicke, to calculate the purity of a density matrix in the Dicke basis, and entropy_vn_dicke, which can
be used to calculate the Von Neumann entropy.

More functions relative to the qutip.pigs module can be found at APl documentation. Attributes to the qutip.
pigs.Dickeand qutip.pigs.Pimclass can also be found there.

3.5.10 Setting Options for the Dynamics Solvers

Occasionally it is necessary to change the built in parameters of the dynamics solvers used by for example the
qutip.mesolve and qutip.mcsolve functions. The options for all dynamics solvers may be changed by
using the Options class qutip.solver.Options.

In [1]: options = Options ()

the properties and default values of this class can be view via the print function:

In [2]: print (options)
Options:

(continues on next page)
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atol:

rtol:
method:
order:
nsteps:
first_step:
min_step:
max_step:
tidy:
num_cpus :
norm_tol:
norm_steps:
rhs_filename:
rhs_reuse:
seeds:

rhs_with_state:
average_expect:
average_states:

ntraj:
store_states:

store_final state:

le-08
le-06
adams
12
1000
0

0

0
True
2
0.001
5
None
False
0
False
True
False
500
False
False

These properties are detailed in the following table. Assuming options

Options():

As an example, let us consider changing the number of processors used, turn the GUI off, and strengthen the
absolute tolerance. There are two equivalent ways to do this using the Options class. First way,

In [3]: options

Options ()

In [4]: options.num_cpus = 3

In [5]: options.atol = 1e-10

or one can use an inline method,

In [6]: options

Options (num_cpus=4, atol=1le-10)

Note that the order in which you input the options does not matter. Using either method, the resulting options

variable is now:

In [7]: print (options)

Options:

rtol:
method:
order:
nsteps:
first_step:
min_step:
max_step:
tidy:
num_cpus:
norm_tol:
norm_steps:
rhs_filename:
rhs_reuse:
seeds:

rhs_with_state:
average_expect:
average_states:

le-10
le-06
adams
12
1000

True

0.001

None
False

False
True
False

(continues on next page)
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ntraj: 500
store_states: False
store_final_state: False

To use these new settings we can use the keyword argument options in either the func:qutip.mesolve and
qutip.mcsolve function. We can modify the last example as:

>>> mesolve (HO, psiO, tlist, c_op_list, [sigmaz ()], options=options)
>>> mesolve (hamiltonian_t, psiO, tlist, c_op_list, [sigmaz ()], H_args,,,
—options=options)

or:
>>> mcsolve (HO, psiO, tlist, ntraj,c_op_list, [sigmaz ()], options=options)
>>> mcsolve (hamiltonian_t, psiO, tlist, ntraj, c_op_list, [sigmaz ()], H_args,

—options=options)

3.6 Solving for Steady-State Solutions

Important: Updated in QuTiP 3.2.

3.6.1 Introduction

For time-independent open quantum systems with decay rates larger than the corresponding excitation rates, the
system will tend toward a steady state as ¢t — oo that satisfies the equation

dpss

dt

Although the requirement for time-independence seems quite resitrictive, one can often employ a transformation
to the interaction picture that yields a time-independent Hamiltonian. For many these systems, solving for the
asymptotic density matrix pss can be achieved using direct or iterative solution methods faster than using master
equation or Monte Carlo simulations. Although the steady state equation has a simple mathematical form, the

properties of the Liouvillian operator are such that the solutions to this equation are anything but straightforward
to find.

= Lpss = 0.

3.6.2 Steady State solvers in QuTiP

In QuTiP, the steady-state solution for a system Hamiltonian or Liouvillian is given by qutip. steadystate.
steadystate. This function implements a number of different methods for finding the steady state, each with
their own pros and cons, where the method used can be chosen using the method keyword argument.

Method Keyword Description

Direct (default) ‘direct’ Direct solution solving Az = b via sparse LU decomposi-
tion.

Eigenvalue ‘eigen’ Iteratively find the zero eigenvalue of L.

Inverse-Power ‘power’ Solve using the inverse-power method.

GMRES ‘iterative-gmres’ Solve using the GMRES method and optional precondi-

tioner.

LGMRES ‘iterative-lgmres’ Solve using the LGMRES method and optional precondi-
tioner.
BICGSTAB ‘iterative-bicgstab’ Solve using the BICGSTAB method and optional precon-
ditioner.
SVD ‘svd’ Steady-state solution via the dense SVD of the Liouvillian.
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The function qutip. steadystate.steadystate can take either a Hamiltonian and a list of collapse oper-
ators as input, generating internally the corresponding Liouvillian super operator in Lindblad form, or alternatively,
a Liouvillian passed by the user. When possible, we recommend passing the Hamiltonian and collapse operators to
qutip.steadystate.steadystate, and letting the function automatically build the Liouvillian (in Lind-
blad form) for the system.

As of QuTiP 3.2, the direct and power methods can take advantage of the Intel Pardiso LU solver in the Intel
Math Kernel library that comes with the Anacoda (2.5+) and Intel Python distributions. This gives a substantial
increase in performance compared with the standard SuperLU method used by SciPy. To verify that QuTiP can
find the necessary libraries, one can check for INTEL MKL Ext: True in the QuTiP about box (qutip.
about).

3.6.3 Using the Steadystate Solver

Solving for the steady state solution to the Lindblad master equation for a general system with qutip.
steadystate.steadystate can be accomplished using:

>>> rho_ss = steadystate(H, c_ops)

where H is a quantum object representing the system Hamiltonian, and c_ops is a list of quantum objects for
the system collapse operators. The output, labeled as rho_ss, is the steady-state solution for the systems. If no
other keywords are passed to the solver, the default ‘direct’ method is used, generating a solution that is exact to
machine precision at the expense of a large memory requirement. The large amount of memory need for the direct
LU decomposition method stems from the large bandwidth of the system Liouvillian and the correspondingly
large fill-in (extra nonzero elements) generated in the LU factors. This fill-in can be reduced by using bandwidth
minimization algorithms such as those discussed in Additional Solver Arguments. However, in most cases, the
default fill-in reducing algorithm is nearly optimal. Additional parameters may be used by calling the steady-state
solver as:

rho_ss = steadystate(H, c_ops, method='power', use_rcm=True)

where method="power' indicates that we are using the inverse-power solution method, and use_rcm=True
turns on a bandwidth minimization routine.

Although it is not obvious, the 'direct', eigen, and 'power' methods all use an LU decomposi-
tion internally and thus suffer from a large memory overhead. In contrast, iterative methods such as the
'iterative—-gmres', 'iterative-lgmres', and 'iterative-bicgstab' methods do not factor
the matrix and thus take less memory than these previous methods and allowing, in principle, for extremely large
system sizes. The downside is that these methods can take much longer than the direct method as the condition
number of the Liouvillian matrix is large, indicating that these iterative methods require a large number of itera-
tions for convergence. To overcome this, one can use a preconditioner M that solves for an approximate inverse
for the (modified) Liouvillian, thus better conditioning the problem, leading to faster convergence. The use of a
preconditioner can actually make these iterative methods faster than the other solution methods. The problem with
precondioning is that it is only well defined for Hermitian matrices. Since the Liouvillian is non-Hermitian, the
ability to find a good preconditioner is not guaranteed. And moreover, if a preconditioner is found, it is not guar-
anteed to have a good condition number. QuTiP can make use of an incomplete LU preconditioner when using the
iterative 'gmres"', 'lgmres’', and 'bicgstab' solvers by setting use_precond=True. The precondi-
tioner optionally makes use of a combination of symmetric and anti-symmetric matrix permutations that attempt
to improve the preconditioning process. These features are discussed in the Additional Solver Arguments section.
Even with these state-of-the-art permutations, the generation of a successful preconditoner for non-symmetric
matrices is currently a trial-and-error process due to the lack of mathematical work done in this area. It is always
recommended to begin with the direct solver with no additional arguments before selecting a different method.

Finding the steady-state solution is not limited to the Lindblad form of the master equation. Any time-independent
Liouvillian constructed from a Hamiltonian and collapse operators can be used as an input:

>>> rho_ss = steadystate (L)

where L is the Louvillian. All of the additional arguments can also be used in this case.
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3.6.4 Additional Solver Arguments

The following additional solver arguments are available for the steady-state solver:

Keyword| Options (default listed first) | Description
method | ‘direct’, ‘eigen’, ‘power’, | Method used for solving for the steady-state density matrix.
‘iterative-gmres’, iterative-
Igmres’, ‘svd’
sparse True, False Use sparse version of direct solver.
weight | None Allows the user to define the weighting factor used in the
'direct', "GMRES', and ' LGMRES"' solvers.
permc_spec COLAMD’, ‘NATURAL’ Column ordering used in the sparse LU decomposition.
use_rcm | False, True Use a Reverse Cuthill-Mckee reordering to minimize the band-
width of the modified Liouvillian used in the LU decomposi-
tion. If use_rcm=True then the column ordering is set to
'Natural' automatically unless explicitly set.
use_precaonHalse, True Attempt to generate a preconditioner when using the

'iterative—gmres' and

methods.

'iterative-lgmres'

M None, sparse_matrix, Linear- | A user defined preconditioner, if any.
Operator

use_wbm| False, True Use a Weighted Bipartite Matching algorithm to attempt to make
the modified Liouvillian more diagonally dominate, and thus for
favorable for preconditioning. Set to True automatically when
using a iterative method, unless explicitly set.

tol le-9 Tolerance used in finding the solution for all methods expect
'direct' and 'svd'.

maxiter | 10000 Maximum number of iterations to perform for all methods expect
'direct' and 'svd'.

fill_factor 10 Upper-bound on the allowed fill-in for the approximate inverse
preconditioner. This value may need to be set much higher than
this in some cases.

drop_tol | le-3 Sets the threshold for the relative magnitude of preconditioner el-
ements that should be dropped. A lower number yields a more ac-
curate approximate inverse at the expense of fill-in and increased
runtime.

diag_pivat_Nuomsh Sets the threshold between [0, 1] for which diagonal elements are
considered acceptable pivot points when using a preconditioner.

ILU_MILU smilu_2’ Selects the incomplete LU decomposition method algorithm

used.

Further information can be found in the qutip. steadystate. steadystate docstrings.

3.6.5 Example: Harmonic Oscillator in Thermal Bath

A simple example of a system that reaches a steady state is a harmonic oscillator coupled to a thermal environment.
Below we consider a harmonic oscillator, initially in the |10) number state, and weakly coupled to a thermal
environment characterized by an average particle expectation value of (n) = 2. We calculate the evolution via
master equation and Monte Carlo methods, and see that they converge to the steady-state solution. Here we choose
to perform only a few Monte Carlo trajectories so we can distinguish this evolution from the master-equation

solution.

import numpy as np
import pylab as plt
from qutip import =

# Define

paramters

(continues on next page)
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N = 20 # number of basis states to consider
a = destroy (N)
H = a.dag() * a

psi0 = basis (N, 10) # initial state
kappa = 0.1 # coupling to oscillator

# collapse operators
c_op_list = []
n_th_a = 2 # temperature with average of 2 excitations
rate = kappa * (1 + n_th_a)
if rate > 0.0:
c_op_list.append(np.sqrt (rate) x a) # decay operators
rate = kappa * n_th_a
if rate > 0.0:
c_op_list.append(np.sqgrt(rate) » a.dag()) # excitation operators

# find steady-state solution

final_state = steadystate(H, c_op_list)

# find expectation value for particle number in steady state
fexpt = expect(a.dag() * a, final_state)

tlist = np.linspace (0, 50, 100)
# monte-carlo

mcdata = mcsolve (H, psiO, tlist, c_op_list, [a.dag() * al, ntraj=100)
# master eq.
medata = mesolve(H, psiO, tlist, c_op_list, [a.dag() = al)

plt.plot (tlist, mcdata.expect[0], tlist, medata.expect[0], 1lw=2)
# plot steady-state expt. value as horizontal line (should be = 2)
plt.axhline (y=fexpt, color='r', lw=1.5)
plt.ylim ([0, 107)
plt.xlabel ('"Time', fontsize=14)
plt.ylabel ("Number of excitations', fontsize=14)
plt.legend(('Monte-Carlo', 'Master Equation', 'Steady State'))
plt.title('Decay of Fock state S$\left|10\\rangle\\right.S$' +

' in a thermal environment with $\langle n\\rangle=2$")
plt.show ()
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3.7 An Overview of the Eseries Class

3.7.1 Exponential-series representation of time-dependent quantum objects

The eseries object in QuTiP is a representation of an exponential-series expansion of time-dependent quantum

objects (a concept borrowed from the quantum optics toolbox).

An exponential series is parameterized by its amplitude coefficients ¢; and rates r;, so that the series takes the
form E(t) = Y, c;e”". The coefficients are typically quantum objects (type Qobj: states, operators, etc.), so that
the value of the eseries also is a quantum object, and the rates can be either real or complex numbers (describing
decay rates and oscillation frequencies, respectively). Note that all amplitude coefficients in an exponential series

must be of the same dimensions and composition.

In QuTiP, an exponential series object is constructed by creating an instance of the class qutip.eseries:

In [1]: esl = eseries(sigmax(), 173)

where the first argument is the amplitude coefficient (here, the sigma-X operator), and the second argument is the

rate. The eseries in this example represents the time-dependent operator o €.

it

To add more terms to an qutip.eseries object we simply add objects using the + operator:

In [2]: omega=1.0

In [3]: es2 = (eseries (0.5 » sigmax (), 1j * omega) +
: eseries (0.5 » sigmax (), -1j % omega))
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The qut ip.eseries in this example represents the operator 0.50,e'“! 4 0.50,e~**, which is the exponential
series representation of o, cos(wt). Alternatively, we can also specify a list of amplitudes and rates when the
qutip.eseries is created:

In [4]: es2 = eseries([0.5 » sigmax(), 0.5 % sigmax()], [1lj ~ omega, -13j = omegal)

We can inspect the structure of an qut ip. eseries object by printing it to the standard output console:

In [5]: es2
Out [5]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = -17
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0. 11
Exponent #1 = 17
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.5]
[0.5 0. 11

and we can evaluate it at time ¢ by using the qutip.eseries.esval function:

In [6]: esval(es2, 0.0) # equivalent to es2.value(0.0)
Out[6]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]]

or foralistof times [0.0, 1.0 * pi, 2.0 * pi]l:

In [7]: times = [0.0, 1.0 = pi, 2.0 * pi]
In [8]: esval(es2, times) # equivalent to es2.value (times)
Out[8]:
array ([Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =_
—True
Qobj data =
[[0. 1.]
[1. 0.11,
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =_
—True
Qobj data =
[[ 0. =1.]
[-1. 0.11,
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm =
—True
Qobj data =
[[0. 1.]
[1. 0.]1]1]1, dtype=object)

To calculate the expectation value of an time-dependent operator represented by an qut ip. eseries, we use the
qutip.expect function. For example, consider the operator o, cos(wt) + o, sin(wt), and say we would like
to know the expectation value of this operator for a spin in its excited state (rho = fock_dm (2, 1) produce
this state):

In [9]: es3 = (eseries([0.5xsigmaz (), O0.5xsigmaz ()], [13, -13]) +
: eseries ([-0.5j*sigmax (), 0.5jxsigmax ()], [13, -131))

(continues on next page)
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In [10]: rho = fock_dm(2, 1)
In [11]: es3_expect = expect(rho, es3)

In [12]: es3_expect

Out[12]:

ESERIES object: 2 terms

Hilbert space dimensions: [[1, 1]]
Exponent #0 = (-0-17)

(=0.5+079)

Exponent #1 = 17

(=0.5+079)

In [13]: es3_expect.value([0.0, pi/2])
Out[13]: array([-1.000000e+00, -6.123234e-17])

Note the expectation value of the qutip.eseries object, expect (rho, es3), itself is an qutip.
eseries, but with amplitude coefficients that are C-numbers instead of quantum operators. To evaluate the
C-number qutip.eseries at the times times we use esval (es3_expect, times), or, equivalently,
es3_expect.value (times).

3.7.2 Applications of exponential series

The exponential series formalism can be useful for the time-evolution of quantum systems. One approach to
calculating the time evolution of a quantum system is to diagonalize its Hamiltonian (or Liouvillian, for dissipative
systems) and to express the propagator (e.g., exp(—iHt)pexp(iHt)) as an exponential series.

The QuTiP function qutip.essolve.odeles and qutip.essolve use this method to evolve quantum
systems in time. The exponential series approach is particularly suitable for cases when the same system is to be
evolved for many different initial states, since the diagonalization only needs to be performed once (as opposed to
e.g. the ode solver that would need to be ran independently for each initial state).

As an example, consider a spin-1/2 with a Hamiltonian pointing in the o, direction, and that is subject to noise
causing relaxation. For a spin originally is in the up state, we can create an qut ip. eseries object describing
its dynamics by using the qut ip . es2ode function:

In [14]: psi0 = basis(2,1)

In [15]: H = sigmaz ()

In [16]: L = liouvillian(H, [sgrt(l1.0) * destroy(2)])

In [17]: es = ode2es (L, psiO)

The qutip.essolve.odeZes function diagonalizes the Liouvillian L and creates an exponential series with
the correct eigenfrequencies and amplitudes for the initial state 1 (psi0).

We can examine the resulting qutip.eseries object by printing a text representation:

In [18]: es

Out[18]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = (-1+07)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[-1. O0.]
[ 0. 1.]]

Exponent #1 = 0]

(continues on next page)
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Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]

[0. 0.]]

or by evaluating it and arbitrary points in time (here at 0.0 and 1.0):

In [19]: es.value([0.0, 1.01)
Out[19]:
array ([Quantum object: dims
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2), type = oper, isherm =
—True
Qobj data =
[[0. 0.]
(0. 1.11,

Quantum object: dims
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2), type = oper, isherm =

—True
Qobj data =
[[0.63212056 O. ]
[0. 0.36787944111, dtype=object)

and the expectation value of the exponential series can be calculated using the qutip. expect function:

In [20]: es_expect = expect(sigmaz (), es)

The result es_expect is now an exponential series with c-numbers as amplitudes, which easily can be evaluated at
arbitrary times:

In [21]: es_expect.value([0.0, 1.0, 2.0, 3.01)
Out[21]: array([-1. , 0.26424112, 0.72932943, 0.900425867])

In [22]: times = linspace(0.0, 10.0, 100)
In [23]: sz_expect = es_expect.value (times)
In [24]: from pylab import =«

In [25]: plot(times, sz_expect, lw=2);

In [26]: xlabel ("Time", fontsize=16)
....: ylabel ("Expectation value of sigma-z", fontsize=16);

In [27]: title("The expectation value of the $\sigma_ S operator", fontsize=16);
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3.8 Two-time correlation functions

With the QuTiP time-evolution functions (for example qutip.mesolve and qutip.mcsolve), a state vector
or density matrix can be evolved from an initial state at ¢ to an arbitrary time ¢, p(t) = V(¢,%0) {p(to)}, where
V (t,t0) is the propagator defined by the equation of motion. The resulting density matrix can then be used to
evaluate the expectation values of arbitrary combinations of same-time operators.

To calculate two-time correlation functions on the form (A(t 4+ 7)B(t)), we can use the quantum regression the-
orem (see, e.g., [Gar03]) to write

(At +7)B(t)) = Tr [AV (i + 7, ) {Bp(t)}] = Tr[AV (t + 7,1) {BV (£,0) {p(0) } }]
We therefore first calculate p(t) = V(¢,0) {p(0)} using one of the QuTiP evolution solvers with p(0) as initial

state, and then again use the same solver to calculate V(¢ + 7,t) { Bp(t) } using Bp(t) as initial state.
Note that if the initial state is the steady state, then p(t) = V(¢,0) {pss} = pss and

<A(t + T)B(t)> =Tr [AV(t +7, t) {BPSSH =Tr [AV(Tv O) {Bpss}] = <A(T)B(0)> )

which is independent of ¢, so that we only have one time coordinate 7.

QuTiP provides a family of functions that assists in the process of calculating two-time correlation functions.
The available functions and their usage is shown in the table below. Each of these functions can use one of the
following evolution solvers: Master-equation, Exponential series and the Monte-Carlo. The choice of solver is
defined by the optional argument solver.

QuTiP function Correlation function
qutip.correlation.correlation or qutip.correlation. | (A(t+ 7)B(t)) or
correlation_2op_2t (At)B(t +1)).
qutip.correlation.correlation_ss or qutip.correlation. | (A(7)B(0)) or
correlation_Z2op_ 1t (A(0)B(7)).
qutip.correlation.correlation 4op 1t (A(0)B(7)C(7)D(0))
qutip.correlation.correlation_4op 2t (A@®)B(t +71)C(t+7)D(t

The most common use-case is to calculate correlation functions of the kind (A(7)B(0)), in which case
we use the correlation function solvers that start from the steady state, e.g., the qutip.correlation.
correlation_Z2op_1t function. These correlation function solvers return a vector or matrix (in general
complex) with the correlations as a function of the delays times.
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3.8.1 Steadystate correlation function

The following code demonstrates how to calculate the (z(¢)z(0)) correlation for a leaky cavity with three different
relaxation rates.

In [1]: times = np.linspace(0,10.0,200)

In [2]: a = destroy(10)

In [3]: x = a.dag() + a

In [4]: H = a.dag() * a

In [5]: corrl = correlation_2op_1lt (H, None, times, [np.sqgrt(0.5) = al, x, Xx)
In [6]: corr2 = correlation_Z2o0p_1lt (H, None, times, [np.sqgrt(l1.0) * al, x, Xx)
In [7]: corr3 = correlation_Z2op_1lt (H, None, times, [np.sqrt(2.0) = al, x, X)

In [8]: figure()
Out[8]: <Figure size 640x480 with 0 Axes>

In [9]: plot(times, np.real(corrl), times, np.real(corr2), times, np.real (corr3))
Out[9]:

[<matplotlib.lines.Line2D at 0x1la26366c88>,

<matplotlib.lines.Line2D at 0x1a263669e8>,

<matplotlib.lines.Line2D at 0x1a26553978>]

In [10]: legend(['0.5',"'1.0","'2.0"'])
Out[10]: <matplotlib.legend.Legend at 0x1la26f66630>

In [11]: xlabel(r'Time S$tS$')
Out[11l]: Text (0.5,0, 'Time S$t$"')

In [12]: ylabel (r'Correlation $\left<x(t)x(0)\right>s$")
Out[12]: Text (0,0.5, 'Correlation $\\left<x(t)x(0)\\right>$")

In [13]: show()
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3.8.2 Emission spectrum

Given a correlation function (A(7)B(0)) we can define the corresponding power spectrum as

o0

S(w) = / (A(T)B(0)) e~ dr.
— 00

In QuTiP, we can calculate S(w) using either qutip.correlation. spectrum_ss, which first calculates

the correlation function using the qutip.essolve.essolve solver and then performs the Fourier transform

semi-analytically, or we can use the function qutip.correlation.spectrum correlation_fft to

numerically calculate the Fourier transform of a given correlation data using FFT.

The following example demonstrates how these two functions can be used to obtain the emission power spectrum.

import numpy as np
import pylab as plt
from qutip import =«

N 4 # number of cavity fock states
wc =wa = 1.0 x 2 x np.pi # cavity and atom fregquency
g = 0.1 » 2 » np.pi # coupling strength

kappa = 0.75 # cavity dissipation rate
gamma = 0.25 # atom dissipation rate

# Jaynes-Cummings Hamiltonian

a = tensor (destroy(N), geye(2))
sm = tensor (geye(N), destroy(2))
H wc * a.dag() * a + wa x sm.dag() » sm + g * (a.dag() * sm + a x sm.dag())

# collapse operators

n_th = 0.25

c_ops = [np.sqgrt(kappa * (1 + n_th)) * a, np.sqgrt(kappa * n_th) » a.dag(), np.
—sqrt (gamma) * sm]

# calculate the correlation function using the mesolve solver, and then fft to
# obtain the spectrum. Here we need to make sure to evaluate the correlation

(continues on next page)

98 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 4.5.0

(continued from previous page)

# function for a sufficient long time and sufficiently high sampling rate so
# that the discrete Fourier transform (FFT) captures all the features in the
# resulting spectrum.

tlist = np.linspace (0, 100, 5000)

corr = correlation_2op_1t (H, None, tlist, c_ops, a.dag(), a)

wlistl, specl = spectrum_correlation_fft (tlist, corr)

# calculate the power spectrum using spectrum, which internally uses essolve
# to solve for the dynamics (by default)

wlist2 = np.linspace(0.25, 1.75, 200) % 2 * np.pi

spec2 = spectrum(H, wlist2, c_ops, a.dag(), a)

# plot the spectra

fig, ax = plt.subplots(l, 1)

ax.plot (wlistl / (2 * np.pi), specl, 'b', 1lw=2, label='eseries method')
ax.plot (wlist2 / (2 * np.pi), spec2, 'r—-', 1lw=2, label='me+fft method")
ax.legend()

ax.set_xlabel ('Frequency')

ax.set_ylabel ('Power spectrum')

ax.set_title('Vacuum Rabi splitting')

ax.set_xlim(wlist2[0]/ (2+*np.pi), wlist2[-1]/(2+np.pi))

plt.show ()
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3.8.3 Non-steadystate correlation function

More generally, we can also calculate correlation functions of the kind (A(t; + t2)B(t1)), i.e., the correlation
function of a system that is not in its steadystate. In QuTiP, we can evoluate such correlation functions using the
function qutip.correlation.correlation_Zop_2t. The default behavior of this function is to return
a matrix with the correlations as a function of the two time coordinates (1 and ¢5).

import numpy as np
import pylab as plt
from qutip import =

times = np.linspace (0, 10.0, 200)

a = destroy(10)

x = a.dag() + a

H = a.dag() = a

alpha = 2.5

rho0 = coherent_dm (10, alpha)

corr = correlation_2o0p_2t (H, rho0O, times, times, [np.sqgrt(0.25) * al, x, Xx)

plt.pcolor (np.real (corr))

plt.xlabel (r'Time S$t_25")

plt.ylabel (r'Time S$t_1$")

plt.title(r'Correlation $\left<x(t)x(0)\right>$")
plt.show ()
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However, in some cases we might be interested in the correlation functions on the form (A(t; + t2)B(t1)),
but only as a function of time coordinate ¢5. In this case we can also use the qutip.correlation.
correlation_Z2op_Z2t function, if we pass the density matrix at time ¢; as second argument, and None as
third argument. The qutip.correlation.correlation_Z2op_2t function then returns a vector with the
correlation values corresponding to the times in faulist (the fourth argument).
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Example: first-order optical coherence function

This example demonstrates how to calculate a correlation function on the form (A(7)B(0)) for a non-steady initial
state. Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent
state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the

(af(1)a(0))
Vi{at()a(r))(at(0)a(0)) "
for a completely incoherent (thermal) state g")(7) = 0. The following code calculates and plots g!)(7) as a
function of 7.

first-order optical coherence function ¢V (7) = For a coherent state |¢(!)(7)| = 1, and

import numpy as np
import pylab as plt
from qutip import =«

N = 15

taus = np.linspace(0,10.0,200)
a destroy (N)

H=2 % np.pli » a.dag() * a

# collapse operator

Gl = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sgrt (Gl = (1 + n_th)) % a, np.sqrt (Gl = n_th) * a.dag()]

# start with a coherent state
rho0 = coherent_dm(N, 2.0)

# first calculate the occupation number as a function of time
n = mesolve (H, rhoO, taus, c_ops, [a.dag() * a]).expect[0]

# calculate the correlation function Gl and normalize with n to obtain gl
Gl = correlation_2op_2t (H, rhoO, None, taus, c_ops, a.dag(), a)
gl = G1 / np.sqrt(n[0] * n)

plt.plot (taus, np.real(gl), 'b', lw=2)

plt.plot (taus, n, 'r', 1lw=2)

plt.title('Decay of a coherent state to an incoherent (thermal) state')

plt.xlabel (r's\taus$")

plt.legend((r'First-order coherence function $g”{ (1)} (\tau)$"',
r'occupation number $n(\tau)$'))

plt.show ()
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Decay of a coherent state to an incoherent (thermal) state
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For convenience, the steps for calculating the first-order coherence function have been collected in the function
qutip.correlation.coherence_function_gl.

Example: second-order optical coherence function

The second-order optical coherence function, with time-delay , is defined as

(af(0)af(r)a(r)a(0))
(a?(0)a(0))?

9@(7) =

For a coherent state ¢(*)(7) = 1, for a thermal state ¢® (7 = 0) = 2 and it decreases as a function of time
(bunched photons, they tend to appear together), and for a Fock state with 7 photons ¢(?) (7 = 0) = n(n—1)/n? <
1 and it increases with time (anti-bunched photons, more likely to arrive separated in time).

To calculate this type of correlation function with QuTiP, we can use qutip.correlation.
correlation_4op_1t, which computes a correlation function on the form (A(0)B(7)C(7)D(0)) (four op-
erators, one delay-time vector).

The following code calculates and plots g(?) () as a function of 7 for a coherent, thermal and fock state.

import numpy as np
import pylab as plt
from qutip import =

N = 25
taus

= np.linspace (0, 25.0, 200)
a = destroy (N)

H=2 % np.pi » a.dag() * a

kappa = 0.25

n_th = 2.0 # bath temperature in terms of excitation number

c_ops = [np.sqgrt (kappa * (1 + n_th)) *» a, np.sqgrt(kappa » n_th) * a.dag()]

states = [{'state': coherent_dm(N, np.sqrt(2)), 'label': "coherent state"},
{'state': thermal_dm(N, 2), 'label': "thermal state"},

(continues on next page)
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(continued from previous page)

{'state': fock_dm(N, 2), 'label': "Fock state"}]
fig, ax = plt.subplots(l, 1)

for state in states:
rho0 = state['state']

# first calculate the occupation number as a function of time
n = mesolve(H, rhoO, taus, c_ops, [a.dag() =* a]).expect[0]

# calculate the correlation function G2 and normalize with n(0)n(t) to
# obtain g2

G2 = correlation_3op_1t (H, rhoO, taus, c_ops, a.dag(), a.dag()=*a, a)
g2 = G2 / (n[0] * n)

ax.plot (taus, np.real(g2), label=state['label'], 1lw=2)

ax.legend (loc=0)

ax.set_xlabel (r's\taus$")
ax.set_ylabel (r'$g”{(2)} (\tau)s")
plt.show ()
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1.8 4 - Fock state
1.6 1
1.4 A
E
% 1.2 1
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For convenience, the steps for calculating the second-order coherence function have been collected in the function
qutip.correlation.coherence function gZ2.
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3.9 Quantum Optimal Control

3.9.1 Introduction

In quantum control we look to prepare some specific state, effect some state-to-state transfer, or effect some
transformation (or gate) on a quantum system. For a given quantum system there will always be factors that
effect the dynamics that are outside of our control. As examples, the interactions between elements of the system
or a magnetic field required to trap the system. However, there may be methods of affecting the dynamics in a
controlled way, such as the time varying amplitude of the electric component of an interacting laser field. And so
this leads to some questions; given a specific quantum system with known time-independent dynamics generator
(referred to as the drift dynamics generators) and set of externally controllable fields for which the interaction can
be described by control dynamics generators:

1. what states or transformations can we achieve (if any)?
2. what is the shape of the control pulse required to achieve this?

These questions are addressed as controllability and quantum optimal control [dAless08]. The answer to question
of controllability is determined by the commutability of the dynamics generators and is formalised as the Lie
Algebra Rank Criterion and is discussed in detail in [dAless08]. The solutions to the second question can be
determined through optimal control algorithms, or control pulse optimisation.

Time varying
control fields

———P
Interactions

tt

Constant system field
I | |

Fig. 2: Schematic showing the principle of quantum control.

Quantum Control has many applications including NMR, quantum metrology, control of chemical reactions, and
quantum information processing.

To explain the physics behind these algorithms we will first consider only finite-dimensional, closed quantum
systems.

3.9.2 Closed Quantum Systems

In closed quantum systems the states can be represented by kets, and the transformations on these states are unitary
operators. The dynamics generators are Hamiltonians. The combined Hamiltonian for the system is given by

H(t) = Ho+ Y u;(t)H;

where H) is the drift Hamiltonian and the H; are the control Hamiltonians. The u; are time varying amplitude
functions for the specific control.

The dynamics of the system are governed by Schrodingers equation.

g ) = —iH(t) [¢)
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Note we use units where 2 = 1 throughout. The solutions to Schrodinger’s equation are of the form:

[¥(8)) = U(#) [vo)

where 1) is the state of the system at ¢ = 0 and U (¢) is a unitary operator on the Hilbert space containing the
states. U (t) is a solution to the Schridinger operator equation

4y = —iH{t)U, U(0)=WK

We can use optimal control algorithms to determine a set of u; that will drive our system from |¢g) to |11 ), this is
state-to-state transfer, or drive the system from some arbitary state to a given state |1)1), which is state preparation,
or effect some unitary transformation Uyqrget, called gate synthesis. The latter of these is most important in
quantum computation.

3.9.3 The GRAPE algorithm

The GRadient Ascent Pulse Engineering was first proposed in [2]. Solutions to Schrodinger’s equation for a
time-dependent Hamiltonian are not generally possible to obtain analytically. Therefore, a piecewise constant
approximation to the pulse amplitudes is made. Time allowed for the system to evolve 7' is split into M timeslots
(typically these are of equal duration), during which the control amplitude is assumed to remain constant. The
combined Hamiltonian can then be approximated as:

N
H(t)~ H(ty) = Ho+ Y ujH,

Jj=1

where k is a timeslot index, j is the control index, and N is the number of controls. Hence t; is the evolution
time at the start of the timeslot, and uy, is the amplitude of control j throughout timeslot k. The time evolution
operator, or propagator, within the timeslot can then be calculated as:

Xk: — e—iH(tk-)Atk-

where Aty is the duration of the timeslot. The evolution up to (and including) any timeslot &£ (including the full
evolution £ = M) can the be calculated as

X(ty) = XpXp—1--- X1Xo

If the objective is state-to-state transfer then Xy = |1)) and the target Xqry = |t1), for gate synthesis Xy =
U(0) = ¥ and the target X;4,g = Utarg.

A figure of merit or fidelity is some measure of how close the evolution is to the target, based on the control
amplitudes in the timeslots. The typical figure of merit for unitary systems is the normalised overlap of the
evolution and the target.

fPSU = é’ tr{XtTaqu(T)}’

where d is the system dimension. In this figure of merit the absolute value is taken to ignore any differences in
global phase, and 0 < f < 1. Typically the fidelity error (or infidelity) is more useful, in this case defined as
€ =1 — fpsy. There are many other possible objectives, and hence figures of merit.

As there are now N x M variables (the u;;) and one parameter to minimise ¢, then the problem becomes a finite
multi-variable optimisation problem, for which there are many established methods, often referred to as ‘hill-
climbing’ methods. The simplest of these to understand is that of steepest ascent (or descent). The gradient of the
fidelity with respect to all the variables is calculated (or approximated) and a step is made in the variable space
in the direction of steepest ascent (or descent). This method is a first order gradient method. In two dimensions
this describes a method of climbing a hill by heading in the direction where the ground rises fastest. This analogy
also clearly illustrates one of the main challenges in multi-variable optimisation, which is that all methods have a
tendency to get stuck in local maxima. It is hard to determine whether one has found a global maximum or not - a
local peak is likely not to be the highest mountain in the region. In quantum optimal control we can typically define
an infidelity that has a lower bound of zero. We can then look to minimise the infidelity (from here on we will
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only consider optimising for infidelity minima). This means that we can terminate any pulse optimisation when
the infidelity reaches zero (to a sufficient precision). This is however only possible for fully controllable systems;
otherwise it is hard (if not impossible) to know that the minimum possible infidelity has been achieved. In the hill
walking analogy the step size is roughly fixed to a stride, however, in computations the step size must be chosen.
Clearly there is a trade-off here between the number of steps (or iterations) required to reach the minima and the
possibility that we might step over a minima. In practice it is difficult to determine an efficient and effective step
size.

The second order differentials of the infidelity with respect to the variables can be used to approximate the local
landscape to a parabola. This way a step (or jump) can be made to where the minima would be if it were parabolic.
This typically vastly reduces the number of iterations, and removes the need to guess a step size. The method where
all the second differentials are calculated explicitly is called the Newton-Raphson method. However, calculating
the second-order differentials (the Hessian matrix) can be computationally expensive, and so there are a class of
methods known as quasi-Newton that approximate the Hessian based on successive iterations. The most popular
of these (in quantum optimal control) is the Broyden—Fletcher—Goldfarb—Shanno algorithm (BFGS). The default
method in the QuTiP Qtrl GRAPE implementation is the L-BFGS-B method in Scipy, which is a wrapper to the
implementation described in [Byrd95]. This limited memory and bounded method does not need to store the entire
Hessian, which reduces the computer memory required, and allows bounds to be set for variable values, which
considering these are field amplitudes is often physical.

The pulse optimisation is typically far more efficient if the gradients can be calculated exactly, rather than approxi-
mated. For simple fidelity measures such as fpgs this is possible. Firstly the propagator gradient for each timeslot
with respect to the control amplitudes is calculated. For closed systems, with unitary dynamics, a method using
the eigendecomposition is used, which is efficient as it is also used in the propagator calculation (to exponentiate
the combined Hamiltonian). More generally (for example open systems and symplectic dynamics) the Frechet
derivative (or augmented matrix) method is used, which is described in [Flo12]. For other optimisation goals it
may not be possible to calculate analytic gradients. In these cases it is necessary to approximate the gradients, but
this can be very expensive, and can lead to other algorithms out-performing GRAPE.

3.9.4 The CRAB Algorithm

It has been shown [Lloyd14], the dimension of a quantum optimal control problem is a polynomial function of the
dimension of the manifold of the time-polynomial reachable states, when allowing for a finite control precision
and evolution time. You can think of this as the information content of the pulse (as being the only effective input)
being very limited e.g. the pulse is compressible to a few bytes without loosing the target.

This is where the Chopped RAndom Basis (CRAB) algorithm [Dorial 1], [Caneval 1] comes into play: Since the
pulse complexity is usually very low, it is sufficient to transform the optimal control problem to a few parameter
search by introducing a physically motivated function basis that builds up the pulse. Compared to the number
of time slices needed to accurately simulate quantum dynamics (often equals basis dimension for Gradient based
algorithms), this number is lower by orders of magnitude, allowing CRAB to efficiently optimize smooth pulses
with realistic experimental constraints. It is important to point out, that CRAB does not make any suggestion
on the basis function to be used. The basis must be chosen carefully considered, taking into account a priori
knowledge of the system (such as symmetries, magnitudes of scales,...) and solution (e.g. sign, smoothness,
bang-bang behavior, singularities, maximum excursion or rate of change,....). By doing so, this algorithm allows
for native integration of experimental constraints such as maximum frequencies allowed, maximum amplitude,
smooth ramping up and down of the pulse and many more. Moreover initial guesses, if they are available, can
(however not have to) be included to speed up convergence.

As mentioned in the GRAPE paragraph, for CRAB local minima arising from algorithmic design can occur, too.
However, for CRAB a ‘dressed’ version has recently been introduced [Rach15] that allows to escape local minima.

For some control objectives and/or dynamical quantum descriptions, it is either not possible to derive the gradient
for the cost functional with respect to each time slice or it is computationally expensive to do so. The same can
apply for the necessary (reverse) propagation of the co-state. All this trouble does not occur within CRAB as
those elements are not in use here. CRAB, instead, takes the time evolution as a black-box where the pulse goes
as an input and the cost (e.g. infidelity) value will be returned as an output. This concept, on top, allows for
direct integration in a closed loop experimental environment where both the preliminarily open loop optimization,
as well as the final adoption, and integration to the lab (to account for modeling errors, experimental systematic
noise, ...) can be done all in one, using this algorithm.
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3.9.5 Optimal Quantum Control in QuTiP

There are two separate implementations of optimal control inside QuTiP. The first is an implementation of first
order GRAPE, and is not further described here, but there are the example notebooks. The second is referred to as
Qtrl (when a distinction needs to be made) as this was its name before it was integrated into QuTiP. Qtrl uses the
Scipy optimize functions to perform the multi-variable optimisation, typically the L-BFGS-B method for GRAPE
and Nelder-Mead for CRAB. The GRAPE implementation in Qtrl was initially based on the open-source package
DYNAMO, which is a MATLAB implementation, and is described in [DYNAMOJ]. It has since been restructured
and extended for flexibility and compatibility within QuTiP.

The rest of this section describes the Qtrl implementation and how to use it.

Object Model The Qtrl code is organised in a hierarchical object model in order to try and maximise configura-
bility whilst maintaining some clarity. It is not necessary to understand the model in order to use the pulse
optimisation functions, but it is the most flexible method of using Qtrl. If you just want to use a simple
single function call interface, then jump to Using the pulseoptim functions

Optimizer

| OptimCaonfig |

PropagatorComputer

TerminationConditions

Fig. 3: Qtrl code object model.

The object’s properties and methods are described in detail in the documentation, so that will not be repeated here.

OptimConfig The OptimConfig object is used simply to hold configuration parameters used by all the objects.
Typically this is the subclass types for the other objects and parameters for the users specific requirements.
The 1oadparams module can be used read parameter values from a configuration file.

Optimizer This acts as a wrapper to the Scipy.optimize functions that perform the work of the pulse opti-
misation algorithms. Using the main classes the user can specify which of the optimisation methods are to
be used. There are subclasses specifically for the BFGS and L-BFGS-B methods. There is another subclass
for using the CRAB algorithm.

Dynamics This is mainly a container for the lists that hold the dynamics generators, propagators, and time evo-
lution operators in each timeslot. The combining of dynamics generators is also complete by this object.
Different subclasses support a range of types of quantum systems, including closed systems with unitary
dynamics, systems with quadratic Hamiltonians that have Gaussian states and symplectic transforms, and a
general subclass that can be used for open system dynamics with Lindbladian operators.

PulseGen There are many subclasses of pulse generators that generate different types of pulses as the initial
amplitudes for the optimisation. Often the goal cannot be achieved from all starting conditions, and then
typically some kind of random pulse is used and repeated optimisations are performed until the desired
infidelity is reached or the minimum infidelity found is reported. There is a specific subclass that is used by
the CRAB algorithm to generate the pulses based on the basis coefficients that are being optimised.

TerminationConditions This is simply a convenient place to hold all the properties that will determine when the
single optimisation run terminates. Limits can be set for number of iterations, time, and of course the target
infidelity.

Stats Performance data are optionally collected during the optimisation. This object is shared to a single location
to store, calculate and report run statistics.
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FidelityComputer The subclass of the fidelity computer determines the type of fidelity measure. These are
closely linked to the type of dynamics in use. These are also the most commonly user customised subclasses.

PropagatorComputer This object computes propagators from one timeslot to the next and also the propagator
gradient. The options are using the spectral decomposition or Frechet derivative, as discussed above.

TimeslotComputer Here the time evolution is computed by calling the methods of the other computer objects.

OptimResult The result of a pulse optimisation run is returned as an object with properties for the outcome in
terms of the infidelity, reason for termination, performance statistics, final evolution, and more.

3.9.6 Using the pulseoptim functions

The simplest method for optimising a control pulse is to call one of the functions in the pulseopt im module.
This automates the creation and configuration of the necessary objects, generation of initial pulses, running the
optimisation and returning the result. There are functions specifically for unitary dynamics, and also specifically
for the CRAB algorithm (GRAPE is the default). The opt imise_pulse function can in fact be used for unitary
dynamics and / or the CRAB algorithm, the more specific functions simply have parameter names that are more
familiar in that application.

A semi-automated method is to use the create_optimizer_objects function to generate and configure
all the objects, then manually set the initial pulse and call the optimisation. This would be more efficient when
repeating runs with different starting conditions.

3.10 Plotting on the Bloch Sphere

Important: Updated in QuTiP version 3.0.

3.10.1 Introduction

When studying the dynamics of a two-level system, it is often convent to visualize the state of the system by
plotting the state-vector or density matrix on the Bloch sphere. In QuTiP, we have created two different classes
to allow for easy creation and manipulation of data sets, both vectors and data points, on the Bloch sphere. The
gqutip.Bloch class, uses Matplotlib to render the Bloch sphere, where as qutip.Bloch3d uses the Mayavi
rendering engine to generate a more faithful 3D reconstruction of the Bloch sphere.

3.10.2 The Bloch and Bloch3d Classes

In QuTiP, creating a Bloch sphere is accomplished by calling either:

’In [11: b = Bloch{()

which will load an instance of the qut ip .Bloch class, or using:

’>>> b3d = Bloch3d()

that loads the qut ip.Bloch3d version. Before getting into the details of these objects, we can simply plot the
blank Bloch sphere associated with these instances via:

’In [2]: Db.show ()
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In addition to the show() command, the Bloch class has the following functions:

As an example, we can add a single data point:

In [3]: pnt = [1/np.sqrt(3),1/np.sqgrt(3),1/np.sqrt(3) ]
In [4]: b.add_points (pnt)

In [5]: b.show()
<Figure size 500x500 with 1 Axes>
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and then a single vector:

In [6]: vec = [0,1,0]
In [7]: b.add_vectors (vec)

In [8]: b.show()
<Figure size 500x500 with 1 Axes>
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and then add another vector corresponding to the |up) state:

In [9]: up basis (2,0)

In [10]: b.add_states (up)

(continues on next page)
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(continued from previous page)

In [11]: b.show()
<Figure size 500x500 with 1 Axes>

Notice that when we add more than a single vector (or data point), a different color will automatically be applied
to the later data set (mod 4). In total, the code for constructing our Bloch sphere with one vector, one state, and a

single data point is:

In [12]: b = Bloch()

In [13]: pnt = [1./np.sgrt(3), 1./np.sqrt(3), 1./np.sqgrt(3)]

In [14]: b.add_points (pnt)
In [15]: vec = [0,1,0]

In [16]: b.add_vectors (vec)
In [17]: up = basis(2,0)

In [18]: b.add_states (up)

In [19]: b.show()

3.10. Plotting on the Bloch Sphere
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where we have removed the extra show () commands. Replacing b=Bloch () with b=Bloch3d () in the
above code generates the following 3D Bloch sphere.

0>

ly>

We can also plot multiple points, vectors, and states at the same time by passing list or arrays instead of individual

elements. Before giving an example, we can use the clear() command to remove the current data from our Bloch
sphere instead of creating a new instance:

In [20]: b.clear()

In [21]: b.show()
<Figure size 500x500 with 1 Axes>
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Now on the same Bloch sphere, we can plot the three states associated with the x, y, and z directions:

In [22]: x = (basis(2,0)+(1+07)+*basis(2,1)) .unit ()
In [23]: y = (basis(2,0)+(0+17)+*basis(2,1)) .unit ()
In [24]: z = (basis(2,0)+(0+073)*basis(2,1)) .unit ()
In [25]: b.add_states([x,y,z])

In [26]: b.show()
<Figure size 500x500 with 1 Axes>

a similar method works for adding vectors:
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In
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[27] :

[28] :

[29]:

[30]:

<Figure

b.clear ()

vec = [[1,0,0],100,1,01,00,0,11]

b.add_vectors (vec)

b.show ()
size 500x500 with 1 Axes>

)

—— I

Adding multiple points to the Bloch sphere works slightly differently than adding multiple states or vectors. For

example, lets add a set of 20 points around the equator (after calling clear()):

In [31]: xp = [np.cos(th) for th in np.linspace (0, 2xpi, 20)]

In [32]: yp = [np.sin(th) for th in np.linspace (0, 2xpi, 20)]

In [33]: zp = np.zeros (20)

In [34]: pnts = [xp, yp, zp]

In [35]: b.add_points (pnts)

In [36]: b.show()

<Figure size 500x500 with 1 Axes>
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Notice that, in contrast to states or vectors, each point remains the same color as the initial point. This is because
adding multiple data points using the add_points function is interpreted, by default, to correspond to a single data
point (single qubit state) plotted at different times. This is very useful when visualizing the dynamics of a qubit.
An example of this is given in the example . If we want to plot additional qubit states we can call additional
add_points functions:

In [37]: xz = np.zeros (20)

In [38]: yz = [np.sin(th) for th in np.linspace (0, pi, 20)]
In [39]: zz = [np.cos(th) for th in np.linspace (0, pi, 20)]
In [40]: b.add_points([xz, vz, zz])

In [41]: b.show()
<Figure size 500x500 with 1 Axes>
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The color and shape of the data points is varied automatically by the Bloch class. Notice how the color and point
markers change for each set of data. Again, we have had to call add_points twice because adding more than
one set of multiple data points is not supported by the add_points function.

What if we want to vary the color of our points. We can tell the qutip.Bloch class to vary the color of each
point according to the colors listed in the b . point_color list (see Configuring the Bloch sphere below). Again
after clear ():

In [42]: xp = [np.cos(th) for th in np.linspace (0, 2xpi, 20)]

In [43]: yp = [sin(th) for th in np.linspace (0, 2*pi, 20)]
In [44]: zp = np.zeros(20)

In [45]: pnts = [xp, yp, zp]

r

In [46]: b.add_points(pnts, 'm') # <-— add a 'm' string to signify 'multi' colored_

—points

In [47]: b.show()
<Figure size 500x500 with 1 Axes>
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|0)

B

Now, the data points cycle through a variety of predefined colors. Now lets add another set of points, but this time
we want the set to be a single color, representing say a qubit going from the |up) state to the [down) state in the
y-z plane:

In [48]: xz = np.zeros (20)

In [49]: yz = [np.sin(th) for th in np.linspace (0, pi ,20)]
In [50]: zz = [np.cos(th) for th in np.linspace (0, pi, 20)]
In [51]: b.add_points([xz, yz, zz]) # no 'm'

In [52]: b.show()
<Figure size 500x500 with 1 Axes>
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Again, the same plot can be generated using the qut ip.Bloch3d class by replacing Bloch with Bloch3d:
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A more slick way of using this ‘multi’ color feature is also given in the example, where we set the color of the
markers as a function of time.

Differences Between Bloch and Bloch3d

While in general the Bloch and B1och3d classes are interchangeable, there are some important differences to
consider when choosing between them.

* The Bloch class uses Matplotlib to generate figures. As such, the data plotted on the sphere is in reality
just a 2D object. In contrast the Bloch3d class uses the 3D rendering engine from VTK via mayavi to
generate the sphere and the included data. In this sense the Bloch3d class is much more advanced, as
objects are rendered in 3D leading to a higher quality figure.

* Only the Bloch class can be embedded in a Matplotlib figure window. Thus if you want to combine a
Bloch sphere with another figure generated in QuTiP, you can not use B1och3d. Of course you can always
post-process your figures using other software to get the desired result.

* Due to limitations in the rendering engine, the B1och3d class does not support LaTex for text. Again, you
can get around this by post-processing.

* The user customizable attributes for the Bloch and Bloch3d classes are not identical. Therefore, if you
change the properties of one of the classes, these changes will cause an exception if the class is switched.

3.10.3 Configuring the Bloch sphere

Bloch Class Options

At the end of the last section we saw that the colors and marker shapes of the data plotted on the Bloch sphere are
automatically varied according to the number of points and vectors added. But what if you want a different choice
of color, or you want your sphere to be purple with different axes labels? Well then you are in luck as the Bloch
class has 22 attributes which one can control. Assuming b=Bloch ():
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Attribute Function Default Setting
b.axes Matplotlib axes instance for animations. Set by | None

axes keyword arg.
b.fig User supplied Matplotlib Figure instance. Set by | None

fig keyword arg.
b.font_color Color of fonts ‘black’
b.font_size Size of fonts 20
b.frame_alpha Transparency of wireframe 0.1
b.frame_color Color of wireframe ‘gray’

b.frame_width

Width of wireframe

1

b.point_color

List of colors for Bloch point markers to cycle
through

[D)r) g’ #CC6600’]

b.point_marker List of point marker shapes to cycle through [‘0)s ) d’N]
b.point_size List of point marker sizes (not all markers look the | [55,62,65,75]
same size when plotted)
b.sphere_alpha Transparency of Bloch sphere 0.2
b.sphere_color Color of Bloch sphere ‘#FFDDDD’
b.size Sets size of figure window [7,7] (700x700 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [g’ #CC6600°,b’,r’]
b.vector_width Width of Bloch vectors 4
b.view Azimuthal and Elevation viewing angles [-60,30]
b.xlabel Labels for x-axis [‘$x$°,”] +x and -x (labels use LaTeX)
b.xlpos Position of x-axis labels [1.1,-1.1]
b.ylabel Labels for y-axis [$y$’,”] +y and -y (labels use LaTeX)
b.ylpos Position of y-axis labels [1.2,-1.2]
b.zlabel Labels for z-axis [ “SleftlONright>$’, $left| I\right>$’] +z and -z (la-
bels use LaTeX)
b.zlpos Position of z-axis labels [1.2,-1.2]

Bloch3d Class Options

The Bloch3d sphere is also customizable. Note however that the attributes for the B1och3d class are not in one-
to-one correspondence to those of the Bloch class due to the different underlying rendering engines. Assuming

b=Bloch3d():
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Attribute Function Default Setting
b.fig User supplied Mayavi Figure instance. Set by | None
fig keyword arg.
b.font_color Color of fonts ‘black’
b.font_scale Scale of fonts 0.08
b.frame Draw wireframe for sphere? True
b.frame_alpha Transparency of wireframe 0.05
b.frame_color Color of wireframe ‘gray’
b.frame_num Number of wireframe elements to draw 8
b.frame_radius Radius of wireframe lines 0.005
b.point_color List of colors for Bloch point markers to cycle | [7, ‘g’, ‘b’, V']
through
b.point_mode Type of point markers to draw sphere
b.point_size Size of points 0.075
b.sphere_alpha Transparency of Bloch sphere 0.1
b.sphere_color Color of Bloch sphere ‘#808080°
b.size Sets size of figure window [500,500] (500x500 pixels)
b.vector_color List of colors for Bloch vectors to cycle through [T, g, b, Y]
b.vector_width Width of Bloch vectors 3
b.view Azimuthal and Elevation viewing angles [45,65 ]
b.xlabel Labels for x-axis [‘Ix>", “] +x and -x
b.xlpos Position of x-axis labels [1.07,-1.07]
b.ylabel Labels for y-axis [‘$y$’”] +y and -y
b.ylpos Position of y-axis labels [1.07,-1.07]
b.zlabel Labels for z-axis [10>°, ‘1I1>"] +z and -z
b.zlpos Position of z-axis labels [1.07,-1.07]

These properties can also be accessed via the print command:

In [53]: b =

In [54]:
Bloch data:

Number of points:

print (b)

Bloch ()

0

Number of vectors: 0

Bloch sphere properties:

font_color: black
font_size: 20
frame_alpha: 0.2
frame_color: gray
frame_width: 1
point_color: ['b', 'r', 'g', '"#CC6600']
point_marker: ['o', 's', 'd', '"~']
point_size: [25, 32, 35, 45]
sphere_alpha: 0.2
sphere_color: #FFDDDD
figsize: [5, 5]
vector_color: ['g', '#CC6600', 'b', 'r']
vector_width: 3
vector_style: — >
vector_mutation: 20
view: [-60, 30]
xlabel: ['$xs', '']
x1lpos: [1.2, -1.2]
ylabel: ['Sys', "'l
(continues on next page)
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ylpos: [1.2, -1.2]
zlabel: ["$\\1left|O\\right>$"', '$\\left|1\\right>$"']
zlpos: [1.2, -1.2]

3.10.4 Animating with the Bloch sphere

The Bloch class was designed from the outset to generate animations. To animate a set of vectors or data points
the basic idea is: plot the data at time t1, save the sphere, clear the sphere, plot data at t2,... The Bloch sphere
will automatically number the output file based on how many times the object has been saved (this is stored in
b.savenum). The easiest way to animate data on the Bloch sphere is to use the save () method and generate
a series of images to convert into an animation. However, as of Matplotlib version 1.1, creating animations is
built-in. We will demonstrate both methods by looking at the decay of a qubit on the bloch sphere.

Example: Qubit Decay

The code for calculating the expectation values for the Pauli spin operators of a qubit decay is given below. This
code is common to both animation examples.

from qutip import =
from scipy import =
def qubit_integrate(w, theta, gammal, gamma2, psi0, tlist):
# operators and the hamiltonian
sx = sigmax(); sy = sigmay(); sz = sigmaz(); sm = sigmam()
H = w » (cos(theta) * sz + sin(theta) * sx)
# collapse operators

c_op_list = []

n_th = 0.5 # temperature

rate = gammal * (n_th + 1)

if rate > 0.0: c_op_list.append(sqgrt (rate) =* sm)

rate = gammal * n_th

if rate > 0.0: c_op_list.append(sqgrt (rate) =+ sm.dag())
rate = gamma2

if rate > 0.0: c_op_list.append(sqgrt (rate) =* sz)

# evolve and calculate expectation values
output = mesolve(H, psiO, tlist, c_op_list, [sx, sy, sz])
return output.expect[0], output.expect[l], output.expect[2]

## calculate the dynamics

w = 1.0 » 2 » pi # qubit angular frequency

theta = 0.2 * pi # qubit angle from sigma_z axis (toward sigma_x axis)
gammal = 0.5 # qubit relaxation rate

gamma2 = 0.2 # qubit dephasing rate

# initial state

a=1.0

psi0 = (a* basis(2,0) + (l-a)+*basis(2,1))/(sqrt(a**2 + (l-a)x*x2))

tlist = linspace(0,4,250)
#expectation values for ploting
sx, sy, sz = qubit_integrate(w, theta, gammal, gamma2, psiO, tlist)
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Generating Images for Animation

An example of generating images for generating an animation outside of Python is given below:

import numpy as np
b = Bloch{()
b.vector_color = ['r']
b.view = [-40,30]
for i in range(len(sx)):
b.clear ()
b.add_vectors([np.sin(theta), 0,np.cos (theta)l])
b.add_points([sx[:i+1],sy[:i+1],sz[:1+1]1])
b.save(dirc="temp') #saving images to temp directory in current working,
—directory

Generating an animation using ffmpeg (for example) is fairly simple:

ffmpeg -r 20 -b 1800 -i bloch_%01ld.png bloch.mp4

Directly Generating an Animation

Important: Generating animations directly from Matplotlib requires installing either mencoder or ffmpeg. While
either choice works on linux, it is best to choose ffmpeg when running on the Mac. If using macports just do:
sudo port install ffmpegq.

The code to directly generate an mp4 movie of the Qubit decay is as follows:

from pylab import =«
import matplotlib.animation as animation
from mpl toolkits.mplot3d import Axes3D

fig = figure()
ax = Axes3D(fig,azim=-40,elev=30)
sphere = Bloch (axes=ax)

def animate (i) :
sphere.clear ()
sphere.add_vectors ([np.sin(theta), 0,np.cos (theta)])
sphere.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
sphere.make_sphere ()
return ax

def init () :
sphere.vector_color = ['r']
return ax

ani = animation.FuncAnimation(fig, animate, np.arange(len(sx)),
init_func=init, blit=True, repeat=False)
ani.save('bloch_sphere.mp4', fps=20)

The resulting movie may be viewed here: bloch_decay.mp4
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3.11 Visualization of quantum states and processes

Visualization is often an important complement to a simulation of a quantum mechanical system. The first method
of visualization that come to mind might be to plot the expectation values of a few selected operators. But on top
of that, it can often be instructive to visualize for example the state vectors or density matices that describe the
state of the system, or how the state is transformed as a function of time (see process tomography below). In this
section we demonstrate how QuTiP and matplotlib can be used to perform a few types of visualizations that often
can provide additional understanding of quantum system.

3.11.1 Fock-basis probability distribution

In quantum mechanics probability distributions plays an important role, and as in statistics, the expectation values
computed from a probability distribution does not reveal the full story. For example, consider an quantum har-
monic oscillator mode with Hamiltonian H = hwa'a, which is in a state described by its density matrix p, and
which on average is occupied by two photons, Tr[pa’a] = 2. Given this information we cannot say whether the
oscillator is in a Fock state, a thermal state, a coherent state, etc. By visualizing the photon distribution in the Fock
state basis important clues about the underlying state can be obtained.

One convenient way to visualize a probability distribution is to use histograms. Consider the following histogram
visualization of the number-basis probability distribution, which can be obtained from the diagonal of the density
matrix, for a few possible oscillator states with on average occupation of two photons.

First we generate the density matrices for the coherent, thermal and fock states.

In [1]: N = 20
In [2]: rho_coherent = coherent_dm(N, np.sqgrt(2))
In [3]: rho_thermal = thermal_dm(N, 2)

In [4]: rho_fock = fock_dm(N, 2)

Next, we plot histograms of the diagonals of the density matrices:

In [5]: fig, axes = plt.subplots(l, 3, figsize=(12,3))

In [6]: bar0

axes[0] .bar (np.arange (0, N)-.5, rho_coherent.diag())

In [7]: 1bl0 = axes[0].set_title("Coherent state")

In [8]: 1imO

axes[0] .set_xlim([-.5, NJ])

In [9]: barl = axes[l].bar(np.arange (0, N)-.5, rho_thermal.diag())

In [10]: 1bll = axes[l].set_title("Thermal state')

In [11]: 1liml = axes[1l].set_xlim([-.5, NJ])

In [12]: bar2 = axes[2].bar(np.arange (0, N)-.5, rho_fock.diag())
In [13]: 1bl2 = axes[2].set_title("Fock state™)

In [14]: 1im2 = axes[2].set_xlim([-.5, NJ])

In [15]: plt.show()
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All these states correspond to an average of two photons, but by visualizing the photon distribution in Fock basis
the differences between these states are easily appreciated.

One frequently need to visualize the Fock-distribution in the way described above, so QuTiP provides a conve-
nience function for doing this, see qutip.visualization.plot_fock_distribution,and the follow-
ing example:

In [16]: fig, axes = plt.subplots(l, 3, figsize=(12,3))

In [17]: plot_fock_distribution (rho_coherent, fig=fig, ax=axes[0], title="Coherent
—state");

In [18]: plot_fock_distribution(rho_thermal, fig=fig, ax=axes[l], title="Thermal

—state");

In [19]: plot_fock_distribution(rho_fock, fig=fig, ax=axes[2], title="Fock state");
In [20]: fig.tight_layout ()
In [21]: plt.show()
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3.11.2 Quasi-probability distributions

The probability distribution in the number (Fock) basis only describes the occupation probabilities for a discrete
set of states. A more complete phase-space probability-distribution-like function for harmonic modes are the
Wigner and Husumi Q-functions, which are full descriptions of the quantum state (equivalent to the density ma-
trix). These are called quasi-distribution functions because unlike real probability distribution functions they can
for example be negative. In addition to being more complete descriptions of a state (compared to only the oc-
cupation probabilities plotted above), these distributions are also great for demonstrating if a quantum state is
quantum mechanical, since for example a negative Wigner function is a definite indicator that a state is distinctly
nonclassical.
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Wigner function

In QuTiP, the Wigner function for a harmonic mode can be calculated with the function qutip.wigner.
wigner. It takes a ket or a density matrix as input, together with arrays that define the ranges of the phase-space
coordinates (in the x-y plane). In the following example the Wigner functions are calculated and plotted for the
same three states as in the previous section.

In [22]: xvec = np.linspace(-5,5,200)

In [23]: W_coherent = wigner (rho_coherent, xvec, xvec)

In [24]: W_thermal = wigner (rho_thermal, xvec, xvec)

In [25]: W_fock = wigner (rho_fock, xvec, xvec)

In [26]: # plot the results

In [27]: fig, axes = plt.subplots(l, 3, figsize=(12,3))

In [28]: cont0 = axes[0].contourf (xvec, xvec, W_coherent, 100)
In [29]: 1bl0 = axes[0].set_title("Coherent state")

In [30]: contl = axes[1l].contourf (xvec, xvec, W_thermal, 100)
In [31]: 1bll = axes[l].set_title("Thermal state™)

In [32]: cont0 = axes[2].contourf (xvec, xvec, W_fock, 100)

In [33]: 1bl2 = axes[2].set_title("Fock state™)

In [34]: plt.show()

Coherent state Thermal state Fock state

Custom Color Maps

The main objective when plotting a Wigner function is to demonstrate that the underlying state is nonclassical,
as indicated by negative values in the Wigner function. Therefore, making these negative values stand out in
a figure is helpful for both analysis and publication purposes. Unfortunately, all of the color schemes used in
Matplotlib (or any other plotting software) are linear colormaps where small negative values tend to be near the
same color as the zero values, and are thus hidden. To fix this dilemma, QuTiP includes a nonlinear colormap
function qutip.matplotlib_utilities.wigner_cmap that colors all negative values differently than
positive or zero values. Below is a demonstration of how to use this function in your Wigner figures:

In [35]: import matplotlib as mpl
In [36]: from matplotlib import cm

In [37]: psi = (basis (10, 0) + basis (10, 3) + basis (10, 9)) .unit ()

(continues on next page)
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In [38]: xvec = np.linspace(-5, 5, 500)

In [39]: W = wigner (psi, xvec, xvec)

In [40]: wmap = wigner_cmap (W) # Generate Wigner colormap

In [41]: nrm = mpl.colors.Normalize (-W.max (), W.max())

In [42]: fig, axes = plt.subplots(l, 2, figsize=(10, 4))

In [43]: pltl = axes[0].contourf (xvec, xvec, W, 100, cmap=cm.RdBu, norm=nrm)
In [44]: axes[0].set_title("Standard Colormap");

In [45]: cbl = fig.colorbar(pltl, ax=axes[0])

In [46]: plt2 = axes[l].contourf (xvec, xvec, W, 100, cmap=wmap) # Apply Wigner,_
—colormap

In [47]: axes[l].set_title("Wigner Colormap");
In [48]: cb2 = fig.colorbar(plt2, ax=axes[1l])
In [49]: fig.tight_layout ()

In [50]: plt.show()
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Husimi Q-function

The Husimi Q function is, like the Wigner function, a quasiprobability distribution for harmonic modes. It is
defined as

1

™

Q) = —(alpla)

where |a) is a coherent state and v = x + iy. In QuTiP, the Husimi Q function can be computed given a state ket
or density matrix using the function qut ip.wigner. gfunc, as demonstrated below.

In [51]: Q_coherent = gfunc(rho_coherent, xvec, xvec)
In [52]: Q_thermal = gfunc(rho_thermal, xvec, xvec)

In [53]: Q_fock = gfunc(rho_fock, xvec, xvec)

(continues on next page)
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In [54]: fig, axes = plt.subplots(l, 3, figsize=(12,3))

In [55]: cont0 = axes[0].contourf (xvec, xvec, Q_coherent, 100)

In [56]: 1bl0 = axes[0].set_title("Coherent state")

In [57]: contl = axes[1l].contourf (xvec, xvec, Q_thermal, 100)

In [58]: 1bll = axes[1l].set_title("Thermal state')

In [59]: cont0 = axes[2].contourf (xvec, xvec, Q_fock, 100)

In [60]: 1bl2 = axes[2].set_title("Fock state")

In [61]: plt.show()

Coherent state Thermal state Fock state

3.11.3 Visualizing operators

Sometimes, it may also be useful to directly visualizing the underlying matrix representation of an operator. The
density matrix, for example, is an operator whose elements can give insights about the state it represents, but one
might also be interesting in plotting the matrix of an Hamiltonian to inspect the structure and relative importance
of various elements.

QuTiP offers a few functions for quickly visualizing matrix data in the form of his-
tograms, qutip.visualization.matrix _histogram and qutip.visualization.
matrix_histogram_ complex, and as Hinton diagram of weighted squares, qutip.visualization.
hinton. These functions takes a qutip.Qob7j.Qobj as first argument, and optional arguments to, for
example, set the axis labels and figure title (see the function’s documentation for details).

For example, to illustrate the use of qutip.visualization.matrix_histogram, let’s visualize of the
Jaynes-Cummings Hamiltonian:

In [62]: N

5
In [63]: a = tensor(destroy(N), geye(2))

In [64]: b

tensor (geye (N), destroy(2))

In [65]: sx = tensor(geye(N), sigmax())

In [66]: H = a.dag() » a + sx — 0.5 » (a ~ b.dag() + a.dag() % b)
In [67]: # visualize H

In [68]: 1lbls_list = [[str(d) for d in range(N)], ["u", "d"]]

In [69]: xlabels = []

(continues on next page)
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In [70]:
—list]):

In [71]:
In [72]:

In [73]:

for inds in tomography._index_permutations([len(lbls) for 1lbls in lbls_
xlabels.append("".join([1lbls_1list[k] [inds[k]]
for k in range(len(lbls_1list))]))
fig, ax = matrix_histogram(H, xlabels, xlabels, limits=[-4,4])
ax.view_init (azim=-55, elev=45)

plt.show ()

2u2d

3u3d OC}U

4d. . Ou

Similarly, we can use the function qutip.visualization.hinton, which is used below to visualize the
corresponding steadystate density matrix:

In [74]:

In [75]:
Out[75]:
(<Figure

rho_ss = steadystate(H, [np.sqgrt(0.1) * a, np.sqrt(0.4) = b.dag()])
hinton (rho_ss)

size 800x600 with 2 Axes>,

<matplotlib.axes._subplots.AxesSubplot at 0x1a25d06c88>)

In [76]:

plt.show ()
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3.11.4 Quantum process tomography

Quantum process tomography (QPT) is a useful technique for characterizing experimental implementations of
quantum gates involving a small number of qubits. It can also be a useful theoretical tool that can give insight
in how a process transforms states, and it can be used for example to study how noise or other imperfections
deteriorate a gate. Whereas a fidelity or distance measure can give a single number that indicates how far from
ideal a gate is, a quantum process tomography analysis can give detailed information about exactly what kind of
errors various imperfections introduce.

The idea is to construct a transformation matrix for a quantum process (for example a quantum gate) that describes
how the density matrix of a system is transformed by the process. We can then decompose the transformation in
some operator basis that represent well-defined and easily interpreted transformations of the input states.

To see how this works (see e.g. [MohO8] for more details), consider a process that is described by quantum map
€(pin) = Pout, Which can be written

N2
E(pin) = Pout = Z AipinAj7 (332)

where N is the number of states of the system (that is, p is represented by an [N x N] matrix). Given an orthogonal
operator basis of our choice { B; } *, which satisfies Tr[B;r Bj] = Nd;;, we can write the map as

€(pin) = Pout = Z anBmpinBIL- (3.33)

where Xomn = D ij bim, b;fn and A; = Zm bim Bm. Here, matrix x is the transformation matrix we are after, since
it describes how much B, pin B,T1 contributes to Pous-

In a numerical simulation of a quantum process we usually do not have access to the quantum map in the form Eq.
(3.32). Instead, what we usually can do is to calculate the propagator U for the density matrix in superoperator
form, using for example the QuTiP function qutip.propagator.propagator. We can then write

6(pNin) = Uﬁin = p~out
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where p is the vector representation of the density matrix p. If we write Eq. (3.33) in superoperator form as well
we obtain

Pout = ZanBmBLﬁin = Upin.

mn

so we can identify

U= Z anBmB;rL-

mn

Now this is a linear equation systems for the N2 x N2 elements in xy. We can solve it by writing x and the
superoperator propagator as [N*] vectors, and likewise write the superoperator product B, Bl as a [N* x N%]
matrix M:

N4
Ur=Y Mix;
J

with the solution
x=M"'U.

Note that to obtain y with this method we have to construct a matrix M with a size that is the square of the size of
the superoperator for the system. Obviously, this scales very badly with increasing system size, but this method
can still be a very useful for small systems (such as system comprised of a small number of coupled qubits).

Implementation in QuTiP

In QuTiP, the procedure described above is implemented in the function qutip. tomography.gpt, which
returns the x matrix given a density matrix propagator. To illustrate how to use this function, let’s consider the
i-SWAP gate for two qubits. In QuTiP the function qutip.gip.operations.iswap generates the unitary
transformation for the state kets:

U_psi = iswap()

To be able to use this unitary transformation matrix as input to the function qutip. tomography. got, we first
need to convert it to a transformation matrix for the corresponding density matrix:

In [1]: U_rho = spre(U_psi) * spost(U_psi.dag())

Next, we construct a list of operators that define the basis { B; } in the form of a list of operators for each composite
system. At the same time, we also construct a list of corresponding labels that will be used when plotting the x
matrix.

In [1]: op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2
In[1]: op_label = [[“i”, “x”, “y”, “2”]] *2

We are now ready to compute x using qutip.tomography . gpt, andto plotitusing qutip.tomography.
gpt_plot_combined.

In [1]: chi = gpt(U_rho, op_basis)
In[1]: fig = gpt_plot_combined(chi, op_label, r’$i$SWAP’)
@savefig visualization-chi-iswap.png width=>5.0in align=center In [1]: plt.show()

For a slightly more advanced example, where the density matrix propagator is calculated from the dynam-
ics of a system defined by its Hamiltonian and collapse operators using the function qutip.propagator.
propagator, see notebook “Time-dependent master equation: Landau-Zener transitions” on the tutorials sec-
tion on the QuTiP web site.
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3.12 Parallel computation

3.12.1 Parallel map and parallel for-loop

Often one is interested in the output of a given function as a single-parameter is varied. For instance, we can
calculate the steady-state response of our system as the driving frequency is varied. In cases such as this, where
each iteration is independent of the others, we can speedup the calculation by performing the iterations in parallel.
In QuTiP, parallel computations may be performed using the qutip.parallel.parallel_map function or
the qutip.parallel.parfor (parallel-for-loop) function.

To use the these functions we need to define a function of one or more variables, and the range over which one of
these variables are to be evaluated. For example:

In [1]: def funcl(x): return x, x*x*2, X**3
In [2]: a, b, c = parfor(funcl, range(10))

In [3]: print(a)
[001 2345%6 78 9]

In [4]: print (b)
[ 0 1 4 9 16 25 36 49 64 81]

In [5]: print(c)
[ 0 1 8 27 64 125 216 343 512 729]

or

In [6]: result = parallel_map (funcl, range (10))
In [7]: result_array = np.array(result)

In [8]: print (result_array([:, 0]) # == a
[01 2345%6 78 9]

In [9]: print (result_array([:, 1]) # == b
[ 0 1 4 9 16 25 36 49 64 81]

In [10]: print (result_arrayl[:, 2]) == C
[ 0 1 8 27 64 125 216 343 512 729]

Note that the return values are arranged differently for the qutip.parallel.parallel map and the
qutip.parallel.parfor functions, as illustrated below. In particular, the return value of qutip.
parallel.parallel_map is not enforced to be NumPy arrays, which can avoid unnecessary copying if
all that is needed is to iterate over the resulting list:

In [11]: result = parfor(funcl, range(5))

In [12]: print (result)
larray ([0, 1, 2, 3, 4]), array([ 0, 1, 4, 9, 16]), array([ O, 1, 8, 27, 64])]

In [13]: result = parallel_map (funcl, range(5))

In [14]: print (result)
(¢, o, 0y, (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

The qutip.parallel.parallel _mapand qutip.parallel.parfor functions are not limited to just
numbers, but also works for a variety of outputs:

In [15]: def func2(x): return x, Qobj(x), 'a' % x

(continues on next page)
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In [16]: a, b, ¢ = parfor (func2, range(5))

In [17]: print(a)
[0 1 2 3 4]

In [18]: print (b)

[Quantum object: dims = [[1], [1]1], shape = (1, 1), type = bra
Qobj data =

[[0.]]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[1.]1]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[2.]]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[3.]1]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[4.11]

In [19]: print(c)
[vv 'a' 'aa' 'aaa' laaaalJ

Note: New in QuTiP 3.

One can also define functions with multiple input arguments and even keyword arguments.  Here
the qutip.parallel.parallel_map and qutip.parallel.parfor functions behaves differently:
While qutip.parallel.parallel_map only iterate over the values arguments, the qut ip.parallel.
parfor function simultaneously iterates over all arguments:

In [20]: def sum_diff(x, y, z=0): return x + vy, x - vy, 2z

In [21]: parfor(sum_diff, [1, 2, 31, [4, 5, 6], z=5.0)
Out[21]: [array([5, 7, 9]), array([-3, -3, -31), array([5., 5., 5.1)]

In [22]: parallel map(sum_diff, [1, 2, 3], task_args=(np.array([4, 5, 61),), task_
—kwargs=dict (z=5.0))
Oout [22]:
[ (array ([5, 6, 71), array([-3, -4, -5]), 5.0),
(array([6, 7, 8]), array([-2, -3, —-4]), 5.0),
(array([7, 8, 9]), array([-1, -2, -31), 5.0)]

Note that the keyword arguments can be anything you like, but the keyword values are not iterated over. The
keyword argument num_cpus is reserved as it sets the number of CPU’s used by parfor. By default, this value
is set to the total number of physical processors on your system. You can change this number to a lower value,
however setting it higher than the number of CPU’s will cause a drop in performance. In qutip.parallel.
parallel_ map, keyword arguments to the task function are specified using task_kwargs argument, so there is
no special reserved keyword arguments.

The qutip.parallel.parallel map function also supports progressbar, using the keyword argument
progress_bar which can be set to True or to an instance of qutip.ui.progressbar.BaseProgressBar.
There is a function called qutip.parallel.serial_map that works as a non-parallel drop-in replacement
for qutip.parallel.parallel_map, which allows easy switching between serial and parallel computa-
tion.

In [23]: import time

(continues on next page)
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In [24]: def func(x): time.sleep(l)

In [25]: result = parallel_map (func, range(50), progress_bar=True)

10.0%. Run time: 3.01ls. Est. time left: 00:00:00:27
20.0%. Run time: 5.02s. Est. time left: 00:00:00:20
30.0%. Run time: 8.02s. Est. time left: 00:00:00:18

40.0