Source code for qutip.core.operators

"""
This module contains functions for generating Qobj representation of a variety
of commonly occuring quantum operators.
"""

__all__ = ['jmat', 'spin_Jx', 'spin_Jy', 'spin_Jz', 'spin_Jm', 'spin_Jp',
           'spin_J_set', 'sigmap', 'sigmam', 'sigmax', 'sigmay', 'sigmaz',
           'destroy', 'create', 'qeye', 'identity', 'position', 'momentum',
           'num', 'squeeze', 'squeezing', 'displace', 'commutator',
           'qutrit_ops', 'qdiags', 'phase', 'qzero', 'enr_destroy',
           'enr_identity', 'charge', 'tunneling', 'qft']

import numbers

import numpy as np
import scipy.sparse

from . import data as _data
from .qobj import Qobj
from .dimensions import flatten


[docs]def qdiags(diagonals, offsets=None, dims=None, shape=None, *, dtype=_data.CSR): """ Constructs an operator from an array of diagonals. Parameters ---------- diagonals : sequence of array_like Array of elements to place along the selected diagonals. offsets : sequence of ints, optional Sequence for diagonals to be set: - k=0 main diagonal - k>0 kth upper diagonal - k<0 kth lower diagonal dims : list, optional Dimensions for operator shape : list, tuple, optional Shape of operator. If omitted, a square operator large enough to contain the diagonals is generated. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Examples -------- >>> qdiags(sqrt(range(1, 4)), 1) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isherm = False Qobj data = [[ 0. 1. 0. 0. ] [ 0. 0. 1.41421356 0. ] [ 0. 0. 0. 1.73205081] [ 0. 0. 0. 0. ]] """ offsets = [0] if offsets is None else offsets data = _data.diag[dtype](diagonals, offsets, shape) return Qobj(data, dims=dims, type='oper', copy=False)
[docs]def jmat(j, which=None, *, dtype=_data.CSR): """Higher-order spin operators: Parameters ---------- j : float Spin of operator which : str Which operator to return 'x','y','z','+','-'. If no args given, then output is ['x','y','z'] dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- jmat : Qobj or tuple of Qobj ``qobj`` for requested spin operator(s). Examples -------- >>> jmat(1) # doctest: +SKIP [ Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0. 0.70710678 0. ] [ 0.70710678 0. 0.70710678] [ 0. 0.70710678 0. ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-0.70710678j 0.+0.j ] [ 0.+0.70710678j 0.+0.j 0.-0.70710678j] [ 0.+0.j 0.+0.70710678j 0.+0.j ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 1. 0. 0.] [ 0. 0. 0.] [ 0. 0. -1.]]] Notes ----- If no 'args' input, then returns array of ['x','y','z'] operators. """ if int(2 * j) != 2 * j or j < 0: raise ValueError('j must be a non-negative integer or half-integer') if not which: return ( jmat(j, 'x', dtype=dtype), jmat(j, 'y', dtype=dtype), jmat(j, 'z', dtype=dtype) ) dims = [[int(2*j + 1)]]*2 if which == '+': return Qobj(_jplus(j, dtype=dtype), dims=dims, type='oper', isherm=False, isunitary=False, copy=False) if which == '-': return Qobj(_jplus(j, dtype=dtype).adjoint(), dims=dims, type='oper', isherm=False, isunitary=False, copy=False) if which == 'x': A = _jplus(j, dtype=dtype) return Qobj(_data.add(A, A.adjoint()), dims=dims, type='oper', isherm=True, isunitary=False, copy=False) * 0.5 if which == 'y': A = _data.mul(_jplus(j, dtype=dtype), -0.5j) return Qobj(_data.add(A, A.adjoint()), dims=dims, type='oper', isherm=True, isunitary=False, copy=False) if which == 'z': return Qobj(_jz(j, dtype=dtype), dims=dims, type='oper', isherm=True, isunitary=False, copy=False) raise ValueError('Invalid spin operator: ' + which)
def _jplus(j, *, dtype=_data.CSR): """ Internal functions for generating the data representing the J-plus operator. """ m = np.arange(j, -j - 1, -1, dtype=complex) data = np.sqrt(j * (j + 1) - m * (m + 1))[1:] return _data.diag[dtype](data, 1) def _jz(j, *, dtype=_data.CSR): """ Internal functions for generating the data representing the J-z operator. """ N = int(2*j + 1) data = np.array([j-k for k in range(N)], dtype=complex) return _data.diag[dtype](data, 0) # # Spin j operators: #
[docs]def spin_Jx(j, *, dtype=_data.CSR): """Spin-j x operator Parameters ---------- j : float Spin of operator dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'x', dtype=dtype)
[docs]def spin_Jy(j, *, dtype=_data.CSR): """Spin-j y operator Parameters ---------- j : float Spin of operator dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'y', dtype=dtype)
[docs]def spin_Jz(j, *, dtype=_data.CSR): """Spin-j z operator Parameters ---------- j : float Spin of operator dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'z', dtype=dtype)
[docs]def spin_Jm(j, *, dtype=_data.CSR): """Spin-j annihilation operator Parameters ---------- j : float Spin of operator dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '-', dtype=dtype)
[docs]def spin_Jp(j, *, dtype=_data.CSR): """Spin-j creation operator Parameters ---------- j : float Spin of operator dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '+', dtype=dtype)
def spin_J_set(j, *, dtype=_data.CSR): """Set of spin-j operators (x, y, z) Parameters ---------- j : float Spin of operators dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- list : list of Qobj list of ``qobj`` representating of the spin operator. """ return jmat(j, dtype=dtype) # Pauli spin-1/2 operators. # # These are so common in quantum information that we want them to be # near-instantaneous to initialise, so we cache them at package import, and # just return copies when someone requests one. _SIGMAP = jmat(0.5, '+') _SIGMAM = jmat(0.5, '-') _SIGMAX = 2 * jmat(0.5, 'x') _SIGMAY = 2 * jmat(0.5, 'y') _SIGMAZ = 2 * jmat(0.5, 'z')
[docs]def sigmap(): """Creation operator for Pauli spins. Examples -------- >>> sigmap() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 0. 0.]] """ return _SIGMAP.copy()
[docs]def sigmam(): """Annihilation operator for Pauli spins. Examples -------- >>> sigmam() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 0.] [ 1. 0.]] """ return _SIGMAM.copy()
[docs]def sigmax(): """Pauli spin 1/2 sigma-x operator Examples -------- >>> sigmax() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 1. 0.]] """ return _SIGMAX.copy()
[docs]def sigmay(): """Pauli spin 1/2 sigma-y operator. Examples -------- >>> sigmay() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-1.j] [ 0.+1.j 0.+0.j]] """ return _SIGMAY.copy()
[docs]def sigmaz(): """Pauli spin 1/2 sigma-z operator. Examples -------- >>> sigmaz() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 1. 0.] [ 0. -1.]] """ return _SIGMAZ.copy()
[docs]def destroy(N, offset=0, *, dtype=_data.CSR): """ Destruction (lowering) operator. Parameters ---------- N : int Dimension of Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Qobj for lowering operator. Examples -------- >>> destroy(4) # doctest: +SKIP Quantum object: dims=[[4], [4]], shape=(4, 4), type='oper', isherm=False Qobj data = [[ 0.00000000+0.j 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]] """ if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") data = np.sqrt(np.arange(offset+1, N+offset, dtype=complex)) return qdiags(data, 1, dtype=dtype)
[docs]def create(N, offset=0, *, dtype=_data.CSR): """ Creation (raising) operator. Parameters ---------- N : int Dimension of Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Qobj for raising operator. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Examples -------- >>> create(4) # doctest: +SKIP Quantum object: dims=[[4], [4]], shape=(4, 4), type='oper', isherm=False Qobj data = [[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j 0.00000000+0.j]] """ if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") data = np.sqrt(np.arange(offset+1, N+offset, dtype=complex)) return qdiags(data, -1, dtype=dtype)
def _implicit_tensor_dimensions(dimensions): """ Total flattened size and operator dimensions for operator creation routines that automatically perform tensor products. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) First dimension of an operator which can create an implicit tensor product. If the type is `int`, it is promoted first to `[dimensions]`. From there, it should be one of the two-elements `dims` parameter of a `qutip.Qobj` representing an `oper` or `super`, with possible tensor products. Returns ------- size : int Dimension of backing matrix required to represent operator. dimensions : list Dimension list in the form required by ``Qobj`` creation. """ if not isinstance(dimensions, list): dimensions = [dimensions] flat = flatten(dimensions) if not all(isinstance(x, numbers.Integral) and x >= 0 for x in flat): raise ValueError("All dimensions must be integers >= 0") return np.prod(flat), [dimensions, dimensions]
[docs]def qzero(dimensions, *, dtype=_data.CSR): """ Zero operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- qzero : qobj Zero operator Qobj. """ size, dimensions = _implicit_tensor_dimensions(dimensions) # A sparse matrix with no data is equal to a zero matrix. type_ = 'super' if isinstance(dimensions[0][0], list) else 'oper' return Qobj(_data.zeros[dtype](size, size), dims=dimensions, type=type_, isherm=True, isunitary=False, copy=False)
[docs]def qeye(dimensions, *, dtype=_data.CSR): """ Identity operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Identity operator Qobj. Examples -------- >>> qeye(3) # doctest: +SKIP Quantum object: dims = [[3], [3]], shape = (3, 3), type = oper, \ isherm = True Qobj data = [[ 1. 0. 0.] [ 0. 1. 0.] [ 0. 0. 1.]] >>> qeye([2,2]) # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, \ isherm = True Qobj data = [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] """ size, dimensions = _implicit_tensor_dimensions(dimensions) type_ = 'super' if isinstance(dimensions[0][0], list) else 'oper' return Qobj(_data.identity[dtype](size), dims=dimensions, type=type_, isherm=True, isunitary=True, copy=False)
# Name alias. identity = qeye
[docs]def position(N, offset=0, *, dtype=_data.CSR): """ Position operator x=1/sqrt(2)*(a+a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Position operator as Qobj. """ a = destroy(N, offset=offset, dtype=dtype) position = np.sqrt(0.5) * (a + a.dag()) position.isherm = True return position
[docs]def momentum(N, offset=0, *, dtype=_data.CSR): """ Momentum operator p=-1j/sqrt(2)*(a-a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Momentum operator as Qobj. """ a = destroy(N, offset=offset, dtype=dtype) momentum = -1j * np.sqrt(0.5) * (a - a.dag()) momentum.isherm = True return momentum
[docs]def num(N, offset=0, *, dtype=_data.CSR): """ Quantum object for number operator. Parameters ---------- N : int The dimension of the Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper: qobj Qobj for number operator. Examples -------- >>> num(4) # doctest: +SKIP Quantum object: dims=[[4], [4]], shape=(4, 4), type='oper', isherm=True Qobj data = [[0 0 0 0] [0 1 0 0] [0 0 2 0] [0 0 0 3]] """ data = np.arange(offset, offset + N, dtype=complex) return qdiags(data, 0, dtype=dtype)
[docs]def squeeze(N, z, offset=0, *, dtype=_data.CSR): """Single-mode squeezing operator. Parameters ---------- N : int Dimension of hilbert space. z : float/complex Squeezing parameter. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : :class:`qutip.Qobj` Squeezing operator. Examples -------- >>> squeeze(4, 0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.98441565+0.j 0.00000000+0.j 0.17585742+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.95349007+0.j 0.00000000+0.j 0.30142443+0.j] [-0.17585742+0.j 0.00000000+0.j 0.98441565+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.30142443+0.j 0.00000000+0.j 0.95349007+0.j]] """ asq = destroy(N, offset=offset) ** 2 op = 0.5*np.conj(z)*asq - 0.5*z*asq.dag() return op.expm(dtype=dtype)
[docs]def squeezing(a1, a2, z): """Generalized squeezing operator. .. math:: S(z) = \\exp\\left(\\frac{1}{2}\\left(z^*a_1a_2 - za_1^\\dagger a_2^\\dagger\\right)\\right) Parameters ---------- a1 : :class:`qutip.Qobj` Operator 1. a2 : :class:`qutip.Qobj` Operator 2. z : float/complex Squeezing parameter. Returns ------- oper : :class:`qutip.Qobj` Squeezing operator. """ b = 0.5 * (np.conj(z)*(a1 @ a2) - z*(a1.dag() @ a2.dag())) return b.expm()
[docs]def displace(N, alpha, offset=0, *, dtype=_data.Dense): """Single-mode displacement operator. Parameters ---------- N : int Dimension of Hilbert space. alpha : float/complex Displacement amplitude. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Displacement operator. Examples -------- >>> displace(4,0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j] [ 0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j] [ 0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j] [ 0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]] """ a = destroy(N, offset=offset) return (alpha * a.dag() - np.conj(alpha) * a).expm(dtype=dtype)
[docs]def commutator(A, B, kind="normal"): """ Return the commutator of kind `kind` (normal, anti) of the two operators A and B. """ if kind == 'normal': return A @ B - B @ A elif kind == 'anti': return A @ B + B @ A else: raise TypeError("Unknown commutator kind '%s'" % kind)
[docs]def qutrit_ops(*, dtype=_data.CSR): """ Operators for a three level system (qutrit). Parameters ---------- dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- opers: array `array` of qutrit operators. """ from .states import qutrit_basis out = np.empty((6,), dtype=object) one, two, three = qutrit_basis(dtype=dtype) out[0] = one * one.dag() out[1] = two * two.dag() out[2] = three * three.dag() out[3] = one * two.dag() out[4] = two * three.dag() out[5] = three * one.dag() return out
[docs]def phase(N, phi0=0, *, dtype=_data.Dense): """ Single-mode Pegg-Barnett phase operator. Parameters ---------- N : int Number of basis states in Hilbert space. phi0 : float Reference phase. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- oper : qobj Phase operator with respect to reference phase. Notes ----- The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space. """ phim = phi0 + (2 * np.pi * np.arange(N)) / N # discrete phase angles n = np.arange(N)[:, np.newaxis] states = np.array([np.sqrt(kk) / np.sqrt(N) * np.exp(1j * n * kk) for kk in phim]) ops = np.sum([np.outer(st, st.conj()) for st in states], axis=0) return Qobj(ops, dims=[[N], [N]], type='oper', copy=False).to(dtype)
[docs]def enr_destroy(dims, excitations, *, dtype=_data.CSR): """ Generate annilation operators for modes in a excitation-number-restricted state space. For example, consider a system consisting of 4 modes, each with 5 states. The total hilbert space size is 5**4 = 625. If we are only interested in states that contain up to 2 excitations, we only need to include states such as (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) ... This function creates annihilation operators for the 4 modes that act within this state space: a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2) From this point onwards, the annihiltion operators a1, ..., a4 can be used to setup a Hamiltonian, collapse operators and expectation-value operators, etc., following the usual pattern. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- a_ops : list of qobj A list of annihilation operators for each mode in the composite quantum system described by dims. """ from .states import enr_state_dictionaries nstates, state2idx, idx2state = enr_state_dictionaries(dims, excitations) a_ops = [scipy.sparse.lil_matrix((nstates, nstates), dtype=np.complex128) for _ in dims] for n1, state1 in enumerate(idx2state): for idx, s in enumerate(state1): # if s > 0, the annihilation operator of mode idx has a non-zero # entry with one less excitation in mode idx in the final state if s > 0: state2 = state1[:idx] + (s-1,) + state1[idx+1:] n2 = state2idx[state2] a_ops[idx][n2, n1] = np.sqrt(s) return [Qobj(a, dims=[dims, dims]).to(dtype) for a in a_ops]
[docs]def enr_identity(dims, excitations, *, dtype=_data.CSR): """ Generate the identity operator for the excitation-number restricted state space defined by the `dims` and `exciations` arguments. See the docstring for enr_fock for a more detailed description of these arguments. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. state : list of integers The state in the number basis representation. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- op : Qobj A Qobj instance that represent the identity operator in the exication-number-restricted state space defined by `dims` and `exciations`. """ from .states import enr_state_dictionaries nstates, _, _ = enr_state_dictionaries(dims, excitations) return Qobj(_data.identity[dtype](nstates), dims=[dims, dims], type='oper', isherm=True, isunitary=True, copy=False)
[docs]def charge(Nmax, Nmin=None, frac=1, *, dtype=_data.CSR): """ Generate the diagonal charge operator over charge states from Nmin to Nmax. Parameters ---------- Nmax : int Maximum charge state to consider. Nmin : int (default = -Nmax) Lowest charge state to consider. frac : float (default = 1) Specify fractional charge if needed. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- C : Qobj Charge operator over [Nmin, Nmax]. Notes ----- .. versionadded:: 3.2 """ if Nmin is None: Nmin = -Nmax diag = frac * np.arange(Nmin, Nmax+1, dtype=float) out = qdiags(diag, 0, dtype=dtype) out.isherm = True return out
[docs]def tunneling(N, m=1, *, dtype=_data.CSR): r""" Tunneling operator with elements of the form :math:`\\sum |N><N+m| + |N+m><N|`. Parameters ---------- N : int Number of basis states in Hilbert space. m : int (default = 1) Number of excitations in tunneling event. dtype : type or str Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- T : Qobj Tunneling operator. Notes ----- .. versionadded:: 3.2 """ diags = [np.ones(N-m, dtype=int), np.ones(N-m, dtype=int)] T = qdiags(diags, [m, -m], dtype=dtype) T.isherm = True return T
def qft(dimensions, *, dtype="dense"): """ Quantum Fourier Transform operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. dtype : str or type, [keyword only] [optional] Storage representation. Any data-layer known to `qutip.data.to` is accepted. Returns ------- QFT: qobj Quantum Fourier transform operator. """ N2, dimensions = _implicit_tensor_dimensions(dimensions) phase = 2.0j * np.pi / N2 arr = np.arange(N2) L, M = np.meshgrid(arr, arr) data = np.exp(phase * (L * M)) / np.sqrt(N2) return Qobj(data, dims=dimensions).to(dtype)