Source code for qutip.topology

__all__ = ['berry_curvature', 'plot_berry_curvature']

from qutip import (Qobj, tensor, basis, qeye, isherm, sigmax, sigmay, sigmaz)
import numpy as np

try:
    import matplotlib.pyplot as plt
except:
    pass


[docs]def berry_curvature(eigfs): """Computes the discretized Berry curvature on the two dimensional grid of parameters. The function works well for cases with no band mixing. Parameters ========== eigfs : numpy ndarray 4 dimensional numpy ndarray where the first two indices are for the two discrete values of the two parameters and the third is the index of the occupied bands. The fourth dimension holds the eigenfunctions. Returns ------- b_curv : numpy ndarray A two dimensional array of the discretized Berry curvature defined for the values of the two parameters defined in the eigfs. """ nparam0 = eigfs.shape[0] nparam1 = eigfs.shape[1] nocc = eigfs.shape[2] b_curv = np.zeros((nparam0-1, nparam1-1), dtype=float) for i in range(nparam0-1): for j in range(nparam1-1): rect_prd = np.identity(nocc, dtype=complex) innP0 = np.zeros([nocc, nocc], dtype=complex) innP1 = np.zeros([nocc, nocc], dtype=complex) innP2 = np.zeros([nocc, nocc], dtype=complex) innP3 = np.zeros([nocc, nocc], dtype=complex) for k in range(nocc): for l in range(nocc): wf0 = eigfs[i, j, k, :] wf1 = eigfs[i+1, j, l, :] innP0[k, l] = np.dot(wf0.conjugate(), wf1) wf1 = eigfs[i+1, j, k, :] wf2 = eigfs[i+1, j+1, l, :] innP1[k, l] = np.dot(wf1.conjugate(), wf2) wf2 = eigfs[i+1, j+1, k, :] wf3 = eigfs[i, j+1, l, :] innP2[k, l] = np.dot(wf2.conjugate(), wf3) wf3 = eigfs[i, j+1, k, :] wf0 = eigfs[i, j, l, :] innP3[k, l] = np.dot(wf3.conjugate(), wf0) rect_prd = np.dot(rect_prd, innP0) rect_prd = np.dot(rect_prd, innP1) rect_prd = np.dot(rect_prd, innP2) rect_prd = np.dot(rect_prd, innP3) dett = np.linalg.det(rect_prd) curl_z = np.angle(dett) b_curv[i, j] = curl_z return b_curv
[docs]def plot_berry_curvature(eigfs): """Plots the discretized Berry curvature on the two dimensional grid of parameters. The function works well for cases with no band mixing.""" b_curv = berry_curvature(eigfs) fig, ax = plt.subplots() ax.imshow(b_curv, origin="lower") ax.set_title("Berry curvature") ax.set_xlabel(r"$Parameter0$") ax.set_ylabel(r"$Parameter1$") fig.tight_layout() fig.savefig("berry_curvature.pdf")