Source code for qutip.superoperator

__all__ = ['liouvillian', 'liouvillian_ref', 'lindblad_dissipator',
           'operator_to_vector', 'vector_to_operator', 'mat2vec', 'vec2mat',
           'vec2mat_index', 'mat2vec_index', 'spost', 'spre', 'sprepost']

import scipy.sparse as sp
import numpy as np
from qutip.qobj import Qobj
from qutip.fastsparse import fast_csr_matrix, fast_identity
from qutip.sparse import sp_reshape
from qutip.cy.spmath import zcsr_kron
from functools import partial


[docs]def liouvillian(H, c_ops=[], data_only=False, chi=None): """Assembles the Liouvillian superoperator from a Hamiltonian and a ``list`` of collapse operators. Like liouvillian, but with an experimental implementation which avoids creating extra Qobj instances, which can be advantageous for large systems. Parameters ---------- H : Qobj or QobjEvo System Hamiltonian. c_ops : array_like of Qobj or QobjEvo A ``list`` or ``array`` of collapse operators. Returns ------- L : Qobj or QobjEvo Liouvillian superoperator. """ if isinstance(c_ops, (Qobj, QobjEvo)): c_ops = [c_ops] if chi and len(chi) != len(c_ops): raise ValueError('chi must be a list with same length as c_ops') h = None if H is not None: if isinstance(H, QobjEvo): h = H.cte else: h = H if h.isoper: op_dims = h.dims op_shape = h.shape elif h.issuper: op_dims = h.dims[0] op_shape = [np.prod(op_dims[0]), np.prod(op_dims[0])] else: raise TypeError("Invalid type for Hamiltonian.") else: # no hamiltonian given, pick system size from a collapse operator if isinstance(c_ops, list) and len(c_ops) > 0: if isinstance(c_ops[0], QobjEvo): c = c_ops[0].cte else: c = c_ops[0] if c.isoper: op_dims = c.dims op_shape = c.shape elif c.issuper: op_dims = c.dims[0] op_shape = [np.prod(op_dims[0]), np.prod(op_dims[0])] else: raise TypeError("Invalid type for collapse operator.") else: raise TypeError("Either H or c_ops must be given.") sop_dims = [[op_dims[0], op_dims[0]], [op_dims[1], op_dims[1]]] sop_shape = [np.prod(op_dims), np.prod(op_dims)] spI = fast_identity(op_shape[0]) td = False L = None if isinstance(H, QobjEvo): td = True def H2L(H): if H.isoper: return -1.0j * (spre(H) - spost(H)) else: return H L = H.apply(H2L) data = L.cte.data elif isinstance(H, Qobj): if H.isoper: Ht = H.data.T data = -1j * zcsr_kron(spI, H.data) data += 1j * zcsr_kron(Ht, spI) else: data = H.data else: data = fast_csr_matrix(shape=(sop_shape[0], sop_shape[1])) td_c_ops = [] for idx, c_op in enumerate(c_ops): if isinstance(c_op, QobjEvo): td = True if c_op.const: c_ = c_op.cte elif chi: td_c_ops.append(lindblad_dissipator(c_op, chi=chi[idx])) continue else: td_c_ops.append(lindblad_dissipator(c_op)) continue else: c_ = c_op if c_.issuper: data = data + c_.data else: cd = c_.data.H c = c_.data if chi: data = data + np.exp(1j * chi[idx]) * \ zcsr_kron(c.conj(), c) else: data = data + zcsr_kron(c.conj(), c) cdc = cd * c cdct = cdc.T data = data - 0.5 * zcsr_kron(spI, cdc) data = data - 0.5 * zcsr_kron(cdct, spI) if not td: if data_only: return data else: L = Qobj() L.dims = sop_dims L.data = data L.superrep = 'super' return L else: if not L: l = Qobj() l.dims = sop_dims l.data = data l.superrep = 'super' L = QobjEvo(l) else: L.cte.data = data for c_op in td_c_ops: L += c_op return L
def liouvillian_ref(H, c_ops=[]): """Assembles the Liouvillian superoperator from a Hamiltonian and a ``list`` of collapse operators. Parameters ---------- H : qobj System Hamiltonian. c_ops : array_like A ``list`` or ``array`` of collapse operators. Returns ------- L : qobj Liouvillian superoperator. """ L = -1.0j * (spre(H) - spost(H)) if H else 0 for c in c_ops: if c.issuper: L += c else: cdc = c.dag() * c L += spre(c) * spost(c.dag()) - 0.5 * spre(cdc) - 0.5 * spost(cdc) return L
[docs]def lindblad_dissipator(a, b=None, data_only=False, chi=None): """ Lindblad dissipator (generalized) for a single pair of collapse operators (a, b), or for a single collapse operator (a) when b is not specified: .. math:: \\mathcal{D}[a,b]\\rho = a \\rho b^\\dagger - \\frac{1}{2}a^\\dagger b\\rho - \\frac{1}{2}\\rho a^\\dagger b Parameters ---------- a : Qobj or QobjEvo Left part of collapse operator. b : Qobj or QobjEvo (optional) Right part of collapse operator. If not specified, b defaults to a. Returns ------- D : qobj, QobjEvo Lindblad dissipator superoperator. """ if b is None: b = a ad_b = a.dag() * b if chi: D = spre(a) * spost(b.dag()) * np.exp(1j * chi) \ - 0.5 * spre(ad_b) - 0.5 * spost(ad_b) else: D = spre(a) * spost(b.dag()) - 0.5 * spre(ad_b) - 0.5 * spost(ad_b) if isinstance(a, QobjEvo) or isinstance(b, QobjEvo): return D else: return D.data if data_only else D
[docs]def operator_to_vector(op): """ Create a vector representation given a quantum operator in matrix form. The passed object should have a ``Qobj.type`` of 'oper' or 'super'; this function is not designed for general-purpose matrix reshaping. Parameters ---------- op : Qobj or QobjEvo Quantum operator in matrix form. This must have a type of 'oper' or 'super'. Returns ------- Qobj or QobjEvo The same object, but re-cast into a column-stacked-vector form of type 'operator-ket'. The output is the same type as the passed object. """ if isinstance(op, QobjEvo): return op.apply(operator_to_vector) if not (op.isoper or op.issuper): raise ValueError("only valid for operator matrices") size = op.shape[0] * op.shape[1] return Qobj( sp_reshape(op.data.T, (size, 1)), dims=[op.dims, [1]], shape=(size, 1), type='operator-ket', copy=False, )
[docs]def vector_to_operator(op): """ Create a matrix representation given a quantum operator in vector form. The passed object should have a ``Qobj.type`` of 'operator-ket'; this function is not designed for general-purpose matrix reshaping. Parameters ---------- op : Qobj or QobjEvo Quantum operator in column-stacked-vector form. This must have a type of 'operator-ket'. Returns ------- Qobj or QobjEvo The same object, but re-cast into "standard" operator form. The output is the same type as the passed object. """ if isinstance(op, QobjEvo): return op.apply(vector_to_operator) if not op.isoperket: raise ValueError( "only valid for operators in column-stacked 'operator-ket' format" ) # e.g. op.dims = [ [[rows], [cols]], [1]] dims = op.dims[0] shape = (np.prod(dims[0]), np.prod(dims[1])) return Qobj( sp_reshape(op.data.T, shape[::-1]).T, dims=dims, shape=shape, copy=False, )
def mat2vec(mat): """ Private function reshaping matrix to vector. """ return mat.T.reshape(np.prod(np.shape(mat)), 1) def vec2mat(vec, shape=None): """ Private function reshaping vector to matrix. """ if shape is None: n = int(np.sqrt(len(vec))) shape = (n, n) return vec.reshape(shape[::-1]).T def vec2mat_index(N, I): """ Convert a vector index to a matrix index pair that is compatible with the vector to matrix rearrangement done by the vec2mat function. """ j = int(I / N) i = I - N * j return i, j def mat2vec_index(N, i, j): """ Convert a matrix index pair to a vector index that is compatible with the matrix to vector rearrangement done by the mat2vec function. """ return i + N * j
[docs]def spost(A): """Superoperator formed from post-multiplication by operator A Parameters ---------- A : Qobj or QobjEvo Quantum operator for post multiplication. Returns ------- super : Qobj or QobjEvo Superoperator formed from input qauntum object. """ if isinstance(A, QobjEvo): return A.apply(spost) if not isinstance(A, Qobj): raise TypeError('Input is not a quantum object') if not A.isoper: raise TypeError('Input is not a quantum operator') S = Qobj(isherm=A.isherm, superrep='super') S.dims = [[A.dims[0], A.dims[1]], [A.dims[0], A.dims[1]]] S.data = zcsr_kron(A.data.T, fast_identity(np.prod(A.shape[0]))) return S
[docs]def spre(A): """Superoperator formed from pre-multiplication by operator A. Parameters ---------- A : Qobj or QobjEvo Quantum operator for pre-multiplication. Returns -------- super :Qobj or QobjEvo Superoperator formed from input quantum object. """ if isinstance(A, QobjEvo): return A.apply(spre) if not isinstance(A, Qobj): raise TypeError('Input is not a quantum object') if not A.isoper: raise TypeError('Input is not a quantum operator') S = Qobj(isherm=A.isherm, superrep='super') S.dims = [[A.dims[0], A.dims[1]], [A.dims[0], A.dims[1]]] S.data = zcsr_kron(fast_identity(np.prod(A.shape[1])), A.data) return S
def _drop_projected_dims(dims): """ Eliminate subsystems that has been collapsed to only one state due to a projection. """ return [d for d in dims if d != 1]
[docs]def sprepost(A, B): """Superoperator formed from pre-multiplication by operator A and post- multiplication of operator B. Parameters ---------- A : Qobj or QobjEvo Quantum operator for pre-multiplication. B : Qobj or QobjEvo Quantum operator for post-multiplication. Returns -------- super : Qobj or QobjEvo Superoperator formed from input quantum objects. """ if isinstance(A, QobjEvo) or isinstance(B, QobjEvo): return spre(A) * spost(B) else: dims = [[_drop_projected_dims(A.dims[0]), _drop_projected_dims(B.dims[1])], [_drop_projected_dims(A.dims[1]), _drop_projected_dims(B.dims[0])]] data = zcsr_kron(B.data.T, A.data) return Qobj(data, dims=dims, superrep='super')
from qutip.qobjevo import QobjEvo