Source code for qutip.stochastic

# -*- coding: utf-8 -*-

import numpy as np
from qutip.cy.stochastic import (
    SSESolver, SMESolver, PcSSESolver, PcSMESolver, PmSMESolver,
    GenericSSolver,
)
from qutip.qobj import Qobj, isket, isoper, issuper
from qutip.states import ket2dm
from qutip.solver import Result
from qutip.qobjevo import QobjEvo
from qutip.superoperator import spre, spost, mat2vec, liouvillian
from qutip.solver import Options
from qutip.parallel import serial_map
from qutip.ui.progressbar import TextProgressBar
from qutip.pdpsolve import main_ssepdpsolve, main_smepdpsolve

__all__ = ['ssesolve', 'photocurrent_sesolve', 'smepdpsolve',
           'smesolve', 'photocurrent_mesolve', 'ssepdpsolve',
           'stochastic_solvers', 'general_stochastic']


[docs]def stochastic_solvers(): # This docstring contains several literal backslash characters inside LaTeX # blocks, but it cannot be declared as a raw string because we also need to # use a line continuation. At one point we need a restructured text # "definition list", where the heading _must_ be entirely on one line, # however it will violate our line-length reporting if we do that. """ This function is purely a reference point for documenting the available stochastic solver methods, and takes no actions. Notes ----- Available solvers for :obj:`~ssesolve` and :obj:`~smesolve` euler-maruyama A simple generalization of the Euler method for ordinary differential equations to stochastic differential equations. Only solver which could take non-commuting ``sc_ops``. *not tested* - Order 0.5 - Code: ``'euler-maruyama'``, ``'euler'`` or ``0.5`` milstein An order 1.0 strong Taylor scheme. Better approximate numerical solution to stochastic differential equations. See eq. (2.9) of chapter 12.2 of [1]_. - Order strong 1.0 - Code: ``'milstein'`` or ``1.0`` milstein-imp An order 1.0 implicit strong Taylor scheme. Implicit Milstein scheme for the numerical simulation of stiff stochastic differential equations. - Order strong 1.0 - Code: ``'milstein-imp'`` predictor-corrector Generalization of the trapezoidal method to stochastic differential equations. More stable than explicit methods. See eq. (5.4) of chapter 15.5 of [1]_. - Order strong 0.5, weak 1.0 - Codes to only correct the stochastic part (:math:`\\alpha=0`, :math:`\\eta=1/2`): ``'pred-corr'``, ``'predictor-corrector'`` or ``'pc-euler'`` - Codes to correct both the stochastic and deterministic parts (:math:`\\alpha=1/2`, :math:`\\eta=1/2`): ``'pc-euler-imp'``, ``'pc-euler-2'`` or ``'pred-corr-2'`` platen Explicit scheme, creates the Milstein using finite differences instead of analytic derivatives. Also contains some higher order terms, thus converges better than Milstein while staying strong order 1.0. Does not require derivatives, therefore usable by :func:`~general_stochastic`. See eq. (7.47) of chapter 7 of [2]_. - Order strong 1.0, weak 2.0 - Code: ``'platen'``, ``'platen1'`` or ``'explicit1'`` rouchon Scheme keeping the positivity of the density matrix (:obj:`~smesolve` only). See eq. (4) with :math:`\\eta=1` of [3]_. - Order strong 1.0? - Code: ``'rouchon'`` or ``'Rouchon'`` taylor1.5 Order 1.5 strong Taylor scheme. Solver with more terms of the Ito-Taylor expansion. Default solver for :obj:`~smesolve` and :obj:`~ssesolve`. See eq. (4.6) of chapter 10.4 of [1]_. - Order strong 1.5 - Code: ``'taylor1.5'``, ``'taylor15'``, ``1.5``, or ``None`` taylor1.5-imp Order 1.5 implicit strong Taylor scheme. Implicit Taylor 1.5 (:math:`\\alpha = 1/2`, :math:`\\beta` doesn't matter). See eq. (2.18) of chapter 12.2 of [1]_. - Order strong 1.5 - Code: ``'taylor1.5-imp'`` or ``'taylor15-imp'`` explicit1.5 Explicit order 1.5 strong schemes. Reproduce the order 1.5 strong Taylor scheme using finite difference instead of derivatives. Slower than ``taylor15`` but usable by :func:`~general_stochastic`. See eq. (2.13) of chapter 11.2 of [1]_. - Order strong 1.5 - Code: ``'explicit1.5'``, ``'explicit15'`` or ``'platen15'`` taylor2.0 Order 2 strong Taylor scheme. Solver with more terms of the Stratonovich expansion. See eq. (5.2) of chapter 10.5 of [1]_. - Order strong 2.0 - Code: ``'taylor2.0'``, ``'taylor20'`` or ``2.0`` All solvers, except taylor2.0, are usable in both smesolve and ssesolve and for both heterodyne and homodyne. taylor2.0 only works for 1 stochastic operator independent of time with the homodyne method. :func:`~general_stochastic` only accepts the derivative-free solvers: ``'euler'``, ``'platen'`` and ``'explicit1.5'``. Available solvers for :obj:`~photocurrent_sesolve` and \ :obj:`~photocurrent_mesolve` Photocurrent use ordinary differential equations between stochastic "jump/collapse". euler Euler method for ordinary differential equations between jumps. Only one jump per time interval. Default solver. See eqs. (4.19) and (4.4) of chapter 4 of [4]_. - Order 1.0 - Code: ``'euler'`` predictor–corrector predictor–corrector method (PECE) for ordinary differential equations. Uses the Poisson distribution to obtain the number of jumps at each timestep. - Order 2.0 - Code: ``'pred-corr'`` References ---------- .. [1] Peter E. Kloeden and Exkhard Platen, *Numerical Solution of Stochastic Differential Equations*. .. [2] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems*. .. [3] Pierre Rouchon and Jason F. Ralpha, *Efficient Quantum Filtering for Quantum Feedback Control*, `arXiv:1410.5345 [quant-ph] <https://arxiv.org/abs/1410.5345>`_, Phys. Rev. A 91, 012118, (2015). .. [4] Howard M. Wiseman, Gerard J. Milburn, *Quantum measurement and control*. """
[docs]class StochasticSolverOptions: """Class of options for stochastic solvers such as :func:`qutip.stochastic.ssesolve`, :func:`qutip.stochastic.smesolve`, etc. The stochastic solvers :func:`qutip.stochastic.general_stochastic`, :func:`qutip.stochastic.ssesolve`, :func:`qutip.stochastic.smesolve`, :func:`qutip.stochastic.photocurrent_sesolve` and :func:`qutip.stochastic.photocurrent_mesolve` all take the same keyword arguments as the constructor of these class, and internally they use these arguments to construct an instance of this class, so it is rarely needed to explicitly create an instance of this class. Within the attribute list, a ``time_dependent_object`` is either - :class:`~qutip.Qobj`: a constant term - 2-element list of ``[Qobj, time_dependence]``: a time-dependent term where the ``Qobj`` will be multiplied by the time-dependent scalar. For more details on all allowed time-dependent objects, see the documentation for :class:`~qutip.QobjEvo`. Attributes ---------- H : time_dependent_object or list of time_dependent_object System Hamiltonian in standard time-dependent list format. This is the same as the argument that (e.g.) :func:`~qutip.mesolve` takes. If this is a list of elements, they are summed. state0 : :class:`qutip.Qobj` Initial state vector (ket) or density matrix. times : array_like of float List of times for :math:`t`. Must be uniformly spaced. c_ops : list of time_dependent_object List of deterministic collapse operators. Each element of the list is a separate operator; unlike the Hamiltonian, there is no implicit summation over the terms. sc_ops : list of time_dependent_object List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the equation of motion according to how the d1 and d2 functions are defined. Each element of the list is a separate operator, like ``c_ops``. e_ops : list of :class:`qutip.Qobj` Single operator or list of operators for which to evaluate expectation values. m_ops : list of :class:`qutip.Qobj` List of operators representing the measurement operators. The expected format is a nested list with one measurement operator for each stochastic increament, for each stochastic collapse operator. args : dict Dictionary of parameters for time dependent systems. tol : float Tolerance of the solver for implicit methods. ntraj : int Number of trajectors. nsubsteps : int Number of sub steps between each time-spep given in `times`. dW_factors : array Array of length len(sc_ops), containing scaling factors for each measurement operator in m_ops. solver : string Name of the solver method to use for solving the stochastic equations. Valid values are: - order 1/2 algorithms: 'euler-maruyama', 'pc-euler', 'pc-euler-imp' - order 1 algorithms: 'milstein', 'platen', 'milstein-imp', 'rouchon' - order 3/2 algorithms: 'taylor1.5', 'taylor1.5-imp', 'explicit1.5' - order 2 algorithms: 'taylor2.0' See the documentation of :func:`~qutip.stochastic.stochastic_solvers` for a description of the solvers. Implicit methods can adjust tolerance via the kw 'tol'. Default is {'tol': 1e-6} method : string ('homodyne', 'heterodyne') The name of the type of measurement process that give rise to the stochastic equation to solve. store_all_expect : bool (default False) Whether or not to store the e_ops expect values for all paths. store_measurement : bool (default False) Whether or not to store the measurement results in the :class:`qutip.solver.Result` instance returned by the solver. noise : int, or 1D array of int, or 4D array of float - int : seed of the noise - 1D array : length = ntraj, seeds for each trajectories. - 4D array : ``(ntraj, len(times), nsubsteps, len(sc_ops)*[1|2])``. Vector for the noise, the len of the last dimensions is doubled for solvers of order 1.5. This corresponds to results.noise. noiseDepth : int Number of terms kept of the truncated series used to create the noise used by taylor2.0 solver. normalize : bool (default True for (photo)ssesolve, False for (photo)smesolve) Whether or not to normalize the wave function during the evolution. Normalizing density matrices introduce numerical errors. options : :class:`qutip.solver.Options` Generic solver options. Only options.average_states and options.store_states are used. map_func: function A map function or managing the calls to single-trajactory solvers. map_kwargs: dictionary Optional keyword arguments to the map_func function function. progress_bar : :class:`qutip.ui.BaseProgressBar` Optional progress bar class instance. """ def __init__(self, me, H=None, c_ops=[], sc_ops=[], state0=None, e_ops=[], m_ops=None, store_all_expect=False, store_measurement=False, dW_factors=None, solver=None, method="homodyne", normalize=None, times=None, nsubsteps=1, ntraj=1, tol=None, generate_noise=None, noise=None, progress_bar=None, map_func=None, map_kwargs=None, args={}, options=None, noiseDepth=20): if options is None: options = Options() if progress_bar is None: progress_bar = TextProgressBar() # System # Cast to QobjEvo so the code has only one version for both the # constant and time-dependent case. self.me = me if H is not None: msg = "The Hamiltonian format is not valid. " try: self.H = QobjEvo(H, args=args, tlist=times, e_ops=e_ops, state0=state0) except Exception as e: raise ValueError(msg + str(e)) from e else: self.H = H if sc_ops: msg = ("The sc_ops format is not valid. Options are " "[ Qobj / QobjEvo / [Qobj, coeff]]. ") try: self.sc_ops = [QobjEvo(op, args=args, tlist=times, e_ops=e_ops, state0=state0) for op in sc_ops] except Exception as e: raise ValueError(msg + str(e)) from e else: self.sc_ops = sc_ops if c_ops: msg = ("The c_ops format is not valid. Options are " "[ Qobj / QobjEvo / [Qobj, coeff]]. ") try: self.c_ops = [QobjEvo(op, args=args, tlist=times, e_ops=e_ops, state0=state0) for op in c_ops] except Exception as e: raise ValueError(msg + str(e)) from e else: self.c_ops = c_ops self.state0 = state0 self.rho0 = mat2vec(state0.full()).ravel() # Observation for e_op in e_ops: if ( isinstance(e_op, Qobj) and self.H is not None and e_op.dims[1] != self.H.cte.dims[0] ): raise TypeError(f"e_ops dims ({e_op.dims}) are not compatible " f"with the system's ({self.H.cte.dims})") self.e_ops = e_ops self.m_ops = m_ops self.store_measurement = store_measurement self.store_all_expect = store_all_expect self.store_states = options.store_states self.dW_factors = dW_factors # Solver self.solver = solver self.method = method if normalize is None and me: self.normalize = 0 elif normalize is None and not me: self.normalize = 1 elif normalize: self.normalize = 1 else: self.normalize = 0 self.times = times self.nsubsteps = nsubsteps self.dt = (times[1] - times[0]) / self.nsubsteps self.ntraj = ntraj if tol is not None: self.tol = tol elif "tol" in args: self.tol = args["tol"] else: self.tol = 1e-7 # Noise if noise is not None: if isinstance(noise, int): # noise contain a seed np.random.seed(noise) noise = np.random.randint(0, 2**32, ntraj, dtype=np.uint32) noise = np.array(noise) if len(noise.shape) == 1: if noise.shape[0] < ntraj: raise ValueError("'noise' does not have enought seeds " + "len(noise) >= ntraj") # numpy seed must be between 0 and 2**32-1 # 'u4': unsigned 32bit int self.noise = noise.astype("u4") self.noise_type = 0 elif len(noise.shape) == 4: # taylor case not included dw_len = (2 if method == "heterodyne" else 1) dw_len_str = (" * 2" if method == "heterodyne" else "") msg = "Incorrect shape for 'noise': " if noise.shape[0] < ntraj: raise ValueError(msg + "shape[0] >= ntraj") if noise.shape[1] < len(times): raise ValueError(msg + "shape[1] >= len(times)") if noise.shape[2] < nsubsteps: raise ValueError(msg + "shape[2] >= nsubsteps") if noise.shape[3] < len(self.sc_ops) * dw_len: raise ValueError(msg + "shape[3] >= len(self.sc_ops)" + dw_len_str) self.noise_type = 1 self.noise = noise else: self.noise = np.random.randint(0, 2**32, ntraj, dtype=np.uint32) self.noise_type = 0 # Map self.progress_bar = progress_bar if self.ntraj > 1 and map_func: self.map_func = map_func else: self.map_func = serial_map self.map_kwargs = map_kwargs if map_kwargs is not None else {} # Other self.options = options self.args = args self.set_solver() self.p = noiseDepth def set_solver(self): if self.solver in ['euler-maruyama', 'euler', 50, 0.5]: self.solver_code = 50 self.solver = 'euler-maruyama' elif self.solver in ['platen', 'platen1', 'explicit1', 100]: self.solver_code = 100 self.solver = 'platen' elif self.solver in ['pred-corr', 'predictor-corrector', 'pc-euler', 101]: self.solver_code = 101 self.solver = 'pred-corr' elif self.solver in ['milstein', 102, 1.0]: self.solver_code = 102 self.solver = 'milstein' elif self.solver in ['milstein-imp', 103]: self.solver_code = 103 self.solver = 'milstein-imp' elif self.solver in ['pred-corr-2', 'pc-euler-2', 'pc-euler-imp', 104]: self.solver_code = 104 self.solver = 'pred-corr-2' elif self.solver in ['Rouchon', 'rouchon', 120]: self.solver_code = 120 self.solver = 'rouchon' if not all((op.const for op in self.sc_ops)): raise ValueError("Rouchon only works with constant sc_ops") elif self.solver in ['platen15', 'explicit1.5', 'explicit15', 150]: self.solver_code = 150 self.solver = 'explicit1.5' elif self.solver in ['taylor15', 'taylor1.5', None, 1.5, 152]: self.solver_code = 152 self.solver = 'taylor1.5' elif self.solver in ['taylor15-imp', 'taylor1.5-imp', 153]: self.solver_code = 153 self.solver = 'taylor1.5-imp' elif self.solver in ['taylor2.0', 'taylor20', 2.0, 202]: self.solver_code = 202 self.solver = 'taylor2.0' if not len(self.sc_ops) == 1 or \ not self.sc_ops[0].const or \ not self.method == "homodyne": raise ValueError( "Taylor2.0 only works with 1 constant sc_ops and for" " homodyne method" ) else: known = [ None, 'euler-maruyama', 'platen', 'pc-euler', 'pc-euler-imp', 'milstein', 'milstein-imp', 'rouchon', 'taylor1.5', 'taylor1.5-imp', 'explicit1.5', 'taylor2.0', ] raise ValueError("The solver should be one of {!r}".format(known))
class StochasticSolverOptionsPhoto(StochasticSolverOptions): """ Attributes ---------- solver : string Name of the solver method to use for solving the evolution of the system.* order 1 algorithms: 'euler' order 2 algorithms: 'pred-corr' In photocurrent evolution """ def set_solver(self): if self.solver in [None, 'euler', 1, 60]: self.solver_code = 60 self.solver = 'euler' elif self.solver in ['pred-corr', 'predictor-corrector', 110, 2]: self.solver_code = 110 self.solver = 'pred-corr' else: raise Exception("The solver should be one of " + "[None, 'euler', 'predictor-corrector']")
[docs]def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic master equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. Can depend on time, see StochasticSolverOptions help for format. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if "method" in kwargs and kwargs["method"] == "photocurrent": print("stochastic solver with photocurrent method has been moved to " "it's own function: photocurrent_mesolve") return photocurrent_mesolve(H, rho0, times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, _safe_mode=_safe_mode, args=args, **kwargs) if isket(rho0): rho0 = ket2dm(rho0) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptions(True, H=H, state0=rho0, times=times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.solver_code == 120: return _positive_map(sso, e_ops_dict) sso.LH = liouvillian(sso.H, c_ops=sso.sc_ops + sso.c_ops) * sso.dt if sso.method == 'homodyne' or sso.method is None: if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] sso.sops = [spre(op) + spost(op.dag()) for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.m_ops) elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as m_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] elif len(sso.m_ops) != 2 * len(sc_ops): raise ValueError( "When using the heterodyne method there should be two" " measurement operators (m_ops) for each collapse operator" " (sc_ops)." ) sso.sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * (c - c.dag())] sso.sops += [(spre(c) + spost(c.dag())) / np.sqrt(2), (spre(c) - spost(c.dag())) * -1j / np.sqrt(2)] if sso.m_ops is None: sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sso.sops) elif len(sso.dW_factors) == len(sso.m_ops): pass elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == "photocurrent": raise NotImplementedError("Moved to 'photocurrent_mesolve'") else: raise Exception("The method must be one of None, homodyne, heterodyne") sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.LH.compile() [op.compile() for op in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] if sso.solver_code in [103, 153]: sso.imp = 1 - sso.LH * 0.5 sso.imp.compile() sso.solver_obj = SMESolver sso.solver_name = "smesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
[docs]def ssesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic schrodinger equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. psi0 : :class:`qutip.Qobj` State vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if "method" in kwargs and kwargs["method"] == "photocurrent": print("stochastic solver with photocurrent method has been moved to " "it's own function: photocurrent_sesolve") return photocurrent_sesolve(H, psi0, times, sc_ops=sc_ops, e_ops=e_ops, _safe_mode=_safe_mode, args=args, **kwargs) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptions(False, H=H, state0=psi0, times=times, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.solver_code == 120: raise Exception("rouchon only work with smesolve") if sso.method == 'homodyne' or sso.method is None: if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] sso.sops = [[op, op + op.dag()] for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.sops) elif len(sso.dW_factors) != len(sso.sops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] sso.sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * (c - c.dag())] c1 = c / np.sqrt(2) c2 = c * (-1j / np.sqrt(2)) sso.sops += [[c1, c1 + c1.dag()], [c2, c2 + c2.dag()]] sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sso.sops) elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sso.sops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == "photocurrent": NotImplementedError("Moved to 'photocurrent_sesolve'") else: raise Exception("The method must be one of None, homodyne, heterodyne") sso.LH = sso.H * (-1j*sso.dt) for ops in sso.sops: sso.LH -= ops[0]._cdc()*0.5*sso.dt sso.ce_ops = [QobjEvo(op) for op in sso.e_ops] sso.cm_ops = [QobjEvo(op) for op in sso.m_ops] sso.LH.compile() [[op.compile() for op in ops] for ops in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] sso.solver_obj = SSESolver sso.solver_name = "ssesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
def _positive_map(sso, e_ops_dict): if sso.method == 'homodyne' or sso.method is None: sops = sso.sc_ops if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sops) elif len(sso.dW_factors) != len(sops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * (c - c.dag())] sops += [c / np.sqrt(2), -1j / np.sqrt(2) * c] sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sops) elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sops): raise Exception("The len of dW_factors is not the same as sc_ops") else: raise Exception("The method must be one of homodyne or heterodyne") LH = 1 - (sso.H * 1j * sso.dt) sso.pp = spre(sso.H) * 0 sso.sops = [] sso.preops = [] sso.postops = [] sso.preops2 = [] sso.postops2 = [] def _prespostdag(op): return spre(op) * spost(op.dag()) for op in sso.c_ops: LH -= op._cdc() * sso.dt * 0.5 sso.pp += op.apply(_prespostdag)._f_norm2() * sso.dt for i, op in enumerate(sops): LH -= op._cdc() * sso.dt * 0.5 sso.sops += [(spre(op) + spost(op.dag())) * sso.dt] sso.preops += [spre(op)] sso.postops += [spost(op.dag())] for op2 in sops[i:]: sso.preops2 += [spre(op * op2)] sso.postops2 += [spost(op.dag() * op2.dag())] sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.preLH = spre(LH) sso.postLH = spost(LH.dag()) sso.preLH.compile() sso.postLH.compile() sso.pp.compile() [op.compile() for op in sso.sops] [op.compile() for op in sso.preops] [op.compile() for op in sso.postops] [op.compile() for op in sso.preops2] [op.compile() for op in sso.postops2] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] sso.solver_obj = PmSMESolver sso.solver_name = "smesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
[docs]def photocurrent_mesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic master equation using the photocurrent method. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. Can depend on time, see StochasticSolverOptions help for format. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if isket(rho0): rho0 = ket2dm(rho0) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptionsPhoto(True, H=H, state0=rho0, times=times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.m_ops is None: sso.m_ops = [op * 0 for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.sc_ops) elif len(sso.dW_factors) != len(sso.sc_ops): raise Exception("The len of dW_factors is not the same as sc_ops") sso.solver_obj = PcSMESolver sso.solver_name = "photocurrent_mesolve" sso.LH = liouvillian(sso.H, c_ops=sso.c_ops) * sso.dt def _prespostdag(op): return spre(op) * spost(op.dag()) sso.sops = [[spre(op._cdc()) + spost(op._cdc()), spre(op._cdc()), op.apply(_prespostdag)._f_norm2()] for op in sso.sc_ops] sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.LH.compile() [[op.compile() for op in ops] for ops in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] res = _sesolve_generic(sso, sso.options, sso.progress_bar) res.num_collapse = [np.count_nonzero(noise) for noise in res.noise] if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
[docs]def photocurrent_sesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic schrodinger equation using the photocurrent method. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. psi0 : :class:`qutip.Qobj` Initial state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = list(e_ops.values()) else: e_ops_dict = None sso = StochasticSolverOptionsPhoto(False, H=H, state0=psi0, times=times, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.m_ops is None: sso.m_ops = [op * 0 for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.sc_ops) elif len(sso.dW_factors) != len(sso.sc_ops): raise Exception("The len of dW_factors is not the same as sc_ops") sso.solver_obj = PcSSESolver sso.solver_name = "photocurrent_sesolve" sso.sops = [[op, op._cdc()] for op in sso.sc_ops] sso.LH = sso.H * (-1j*sso.dt) for ops in sso.sops: sso.LH -= ops[0]._cdc()*0.5*sso.dt sso.ce_ops = [QobjEvo(op) for op in sso.e_ops] sso.cm_ops = [QobjEvo(op) for op in sso.m_ops] sso.LH.compile() [[op.compile() for op in ops] for ops in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] res = _sesolve_generic(sso, sso.options, sso.progress_bar) res.num_collapse = [np.count_nonzero(noise) for noise in res.noise] if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
[docs]def general_stochastic(state0, times, d1, d2, e_ops=[], m_ops=[], _safe_mode=True, len_d2=1, args={}, **kwargs): """ Solve stochastic general equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- state0 : :class:`qutip.Qobj` Initial state vector (ket) or density matrix as a vector. times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. d1 : function, callable class Function representing the deterministic evolution of the system. def d1(time (double), state (as a np.array vector)): return 1d np.array d2 : function, callable class Function representing the stochastic evolution of the system. def d2(time (double), state (as a np.array vector)): return 2d np.array (N_sc_ops, len(state0)) len_d2 : int Number of output vector produced by d2 e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. Must be a superoperator if the state vector is a density matrix. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None if "solver" not in kwargs: kwargs["solver"] = 50 sso = StochasticSolverOptions(False, H=None, state0=state0, times=times, e_ops=e_ops, args=args, **kwargs) if sso.solver_code not in [50, 100, 150]: raise ValueError("Only Euler, platen, platen15 can be " + "used for the general stochastic solver.") sso.d1 = d1 sso.d2 = d2 if _safe_mode: # This state0_vec is computed as mat2vec(state0.full()).ravel() # in the sso init. state0_vec = sso.rho0 l_vec = state0_vec.shape[0] try: out_d1 = d1(0., sso.rho0) except Exception as e: raise RuntimeError("Safety check: d1(0., state0_vec) failed.:\n" + str(e)) from e try: out_d2 = d2(0., sso.rho0) except Exception as e: raise RuntimeError("Safety check: d2(0., state0_vec) failed:\n" + str(e)) from e msg_d1 = ("d1 must return an 1d numpy array with the same number " "of elements as the initial state as a vector.") if not isinstance(out_d1, np.ndarray): raise TypeError(msg_d1) if (out_d1.ndim != 1 or out_d1.shape[0] != l_vec or len(out_d1.shape) != 1): raise ValueError(msg_d1) msg_d2 = ("Safety check: d2 must return a 2d numpy array " "with the shape (len_d2, len(state0_vec) ).") if not isinstance(out_d2, np.ndarray): raise TypeError(msg_d2) if (out_d2.ndim != 2 or out_d2.shape[1] != l_vec or out_d2.shape[0] != len_d2): raise ValueError(msg_d2) if out_d1.dtype != np.dtype('complex128') or \ out_d2.dtype != np.dtype('complex128'): raise ValueError("Safety check: d1 and d2 must return " + "complex numpy array.") msg_e_ops = ("Safety check: The shape of the e_ops " "does not fit the initial state.") for op in sso.e_ops: shape_op = op.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise ValueError(msg_e_ops) else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise ValueError(msg_e_ops + " Expecting e_ops as superoperators.") sso.m_ops = [] sso.cm_ops = [] if sso.store_measurement: if not m_ops: raise ValueError("General stochastic needs explicit " + "m_ops to store measurement.") sso.m_ops = m_ops sso.cm_ops = [QobjEvo(op) for op in sso.m_ops] [op.compile() for op in sso.cm_ops] if sso.dW_factors is None: sso.dW_factors = [1.] * len(sso.m_ops) elif len(sso.dW_factors) == 1: sso.dW_factors = sso.dW_factors * len(sso.m_ops) elif len(sso.dW_factors) != len(sso.m_ops): raise ValueError("The number of dW_factors must fit" + " the number of m_ops.") if sso.dW_factors is None: sso.dW_factors = [1.] * len_d2 sso.sops = [None] * len_d2 sso.ce_ops = [QobjEvo(op) for op in sso.e_ops] for op in sso.ce_ops: op.compile() sso.solver_obj = GenericSSolver sso.solver_name = "general_stochastic_solver_" + sso.solver ssolver = GenericSSolver() # ssolver.set_data(sso) ssolver.set_solver(sso) res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
def _safety_checks(sso): l_vec = sso.rho0.shape[0] if sso.H.cte.issuper: if not sso.me: raise ValueError( "Given a Liouvillian for a Schrödinger equation problem." ) shape_op = sso.H.cte.shape if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the hamiltonian does " "not fit the initial state") else: shape_op = sso.H.cte.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise Exception("The size of the hamiltonian does " "not fit the initial state") else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the hamiltonian does " "not fit the initial state") for op in sso.sc_ops: if op.cte.issuper: if not sso.me: raise ValueError( "Given a Liouvillian for a Schrödinger equation problem." ) shape_op = op.cte.shape if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the sc_ops does " "not fit the initial state") else: shape_op = op.cte.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise Exception("The size of the sc_ops does " "not fit the initial state") else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the sc_ops does " "not fit the initial state") for op in sso.c_ops: if op.cte.issuper: if not sso.me: raise ValueError( "Given a Liouvillian for a Schrödinger equation problem." ) shape_op = op.cte.shape if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the c_ops does " "not fit the initial state") else: shape_op = op.cte.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise Exception("The size of the c_ops does " "not fit the initial state") else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the c_ops does " "not fit the initial state") for op in sso.e_ops: shape_op = op.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise Exception("The size of the e_ops does " "not fit the initial state") else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the e_ops does " "not fit the initial state") if sso.m_ops is not None: for op in sso.m_ops: shape_op = op.shape if sso.me: if shape_op[0]**2 != l_vec or shape_op[1]**2 != l_vec: raise Exception("The size of the m_ops does " "not fit the initial state") else: if shape_op[0] != l_vec or shape_op[1] != l_vec: raise Exception("The size of the m_ops does " "not fit the initial state") def _sesolve_generic(sso, options, progress_bar): """ Internal function. See smesolve. """ res = Result() res.times = sso.times res.expect = np.zeros((len(sso.e_ops), len(sso.times)), dtype=complex) res.ss = np.zeros((len(sso.e_ops), len(sso.times)), dtype=complex) res.measurement = [] res.solver = sso.solver_name res.ntraj = sso.ntraj res.num_expect = len(sso.e_ops) nt = sso.ntraj task = _single_trajectory map_kwargs = {'progress_bar': sso.progress_bar} map_kwargs.update(sso.map_kwargs) task_args = (sso,) task_kwargs = {} results = sso.map_func(task, list(range(sso.ntraj)), task_args, task_kwargs, **map_kwargs) noise = [] for result in results: states_list, dW, m, expect = result if options.average_states or options.store_states: res.states.append(states_list) noise.append(dW) res.measurement.append(m) res.expect += expect res.ss += expect * expect res.noise = np.stack(noise) if sso.store_all_expect: paths_expect = [] for result in results: paths_expect.append(result[3]) res.runs_expect = np.stack(paths_expect) # average density matrices (vectorized maybe) # ajgpitch 2019-10-25: np.any(res.states) seems to error # I guess there may be a potential exception if there are no states? # store individual trajectory states if options.store_states: res.traj_states = res.states else: res.traj_states = None res.avg_states = None if options.average_states: avg_states_list = [] for n in range(len(res.times)): if res.states[0][n].shape[1] == 1: tslot_states = [ res.states[mm][n].proj().data for mm in range(nt) ] else: tslot_states = [res.states[mm][n].data for mm in range(nt)] if len(tslot_states) > 0: state = Qobj(np.sum(tslot_states), dims=[res.states[0][n].dims[0]] * 2).unit() avg_states_list.append(state) # store average states res.states = res.avg_states = avg_states_list # average res.expect = res.expect / nt # standard error if nt > 1: res.se = (res.ss - nt * (res.expect ** 2)) / (nt * (nt - 1)) else: res.se = None # convert complex data to real if hermitian res.expect = [np.real(res.expect[n, :]) if e.isherm else res.expect[n, :] for n, e in enumerate(sso.e_ops)] return res def _single_trajectory(i, sso): # Only one step? ssolver = sso.solver_obj() ssolver.set_solver(sso) result = ssolver.cy_sesolve_single_trajectory(i) return result # The code for ssepdpsolve have been moved to the file pdpsolve. # The call is still in stochastic for consistance.
[docs]def ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs): """ A stochastic (piecewse deterministic process) PDP solver for wavefunction evolution. For most purposes, use :func:`qutip.mcsolve` instead for quantum trajectory simulations. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. psi0 : :class:`qutip.Qobj` Initial state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj` Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ return main_ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs)
# The code for smepdpsolve have been moved to the file pdpsolve. # The call is still in stochastic for consistance.
[docs]def smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs): """ A stochastic (piecewse deterministic process) PDP solver for density matrix evolution. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. rho0 : :class:`qutip.Qobj` Initial density matrix. times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj` Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. sc_ops : list of :class:`qutip.Qobj` List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ return main_smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs)