Source code for qutip.sesolve

"""
This module provides solvers for the unitary Schrodinger equation.
"""

__all__ = ['sesolve']

import os
import types
import numpy as np
import scipy.integrate
from scipy.linalg import norm as la_norm
from qutip.cy.stochastic import normalize_inplace
import qutip.settings as qset
from qutip.qobj import Qobj
from qutip.qobjevo import QobjEvo
from qutip.cy.spconvert import dense1D_to_fastcsr_ket, dense2D_to_fastcsr_fmode
from qutip.cy.spmatfuncs import (cy_expect_psi, cy_ode_psi_func_td,
                                cy_ode_psi_func_td_with_state)
from qutip.solver import Result, Options, config, solver_safe, SolverSystem
from qutip.superoperator import vec2mat
from qutip.ui.progressbar import (BaseProgressBar, TextProgressBar)
from qutip.cy.openmp.utilities import check_use_openmp, openmp_components

[docs]def sesolve(H, psi0, tlist, e_ops=None, args=None, options=None, progress_bar=None, _safe_mode=True): """ Schrödinger equation evolution of a state vector or unitary matrix for a given Hamiltonian. Evolve the state vector (``psi0``) using a given Hamiltonian (``H``), by integrating the set of ordinary differential equations that define the system. Alternatively evolve a unitary matrix in solving the Schrodinger operator equation. The output is either the state vector or unitary matrix at arbitrary points in time (``tlist``), or the expectation values of the supplied operators (``e_ops``). If ``e_ops`` is a callback function, it is invoked for each time in ``tlist`` with time and the state as arguments, and the function does not use any return values. ``e_ops`` cannot be used in conjunction with solving the Schrodinger operator equation Parameters ---------- H : :class:`~qutip.Qobj`, :class:`~qutip.QobjEvo`, list, or callable System Hamiltonian as a :obj:`~qutip.Qobj` , list of :obj:`~qutip.Qobj` and coefficient, :obj:`~qutip.QobjEvo`, or a callback function for time-dependent Hamiltonians. List format and options can be found in QobjEvo's description. psi0 : :class:`~qutip.Qobj` Initial state vector (ket) or initial unitary operator ``psi0 = U``. tlist : array_like of float List of times for :math:`t`. e_ops : None / list / callback function, optional A list of operators as `Qobj` and/or callable functions (can be mixed) or a single callable function. For callable functions, they are called as ``f(t, state)`` and return the expectation value. A single callback's expectation value can be any type, but a callback part of a list must return a number as the expectation value. For operators, the result's expect will be computed by :func:`qutip.expect` when the state is a ``ket``. For operator evolution, the overlap is computed by: :: (e_ops[i].dag() * op(t)).tr() args : dict, optional Dictionary of scope parameters for time-dependent Hamiltonians. options : :obj:`~qutip.solver.Options`, optional Options for the ODE solver. progress_bar : :obj:`~BaseProgressBar`, optional Optional instance of :obj:`~BaseProgressBar`, or a subclass thereof, for showing the progress of the simulation. Returns ------- output: :class:`~qutip.solver.Result` An instance of the class :class:`~qutip.solver.Options`, which contains either an array of expectation values for the times specified by ``tlist``, or an array or state vectors corresponding to the times in ``tlist`` (if ``e_ops`` is an empty list), or nothing if a callback function was given inplace of operators for which to calculate the expectation values. """ if e_ops is None: e_ops = [] if isinstance(e_ops, Qobj): e_ops = [e_ops] elif isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None if progress_bar is None: progress_bar = BaseProgressBar() if progress_bar is True: progress_bar = TextProgressBar() if not (psi0.isket or psi0.isunitary): raise TypeError("The unitary solver requires psi0 to be" " a ket as initial state" " or a unitary as initial operator.") if options is None: options = Options() if options.rhs_reuse and not isinstance(H, SolverSystem): # TODO: deprecate when going to class based solver. if "sesolve" in solver_safe: H = solver_safe["sesolve"] if args is None: args = {} check_use_openmp(options) if isinstance(H, SolverSystem): ss = H elif isinstance(H, (list, Qobj, QobjEvo)): ss = _sesolve_QobjEvo(H, tlist, args, options) elif callable(H): ss = _sesolve_func_td(H, args, options) else: raise TypeError(f"Invalid H: {H!r}") func, ode_args = ss.makefunc(ss, psi0, args, e_ops, options) if _safe_mode: v = psi0.full().ravel('F') func(0., v, *ode_args) + v res = _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, options, progress_bar, dims=psi0.dims) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
# ----------------------------------------------------------------------------- # A time-dependent unitary wavefunction equation on the list-function format # def _sesolve_QobjEvo(H, tlist, args, opt): """ Prepare the system for the solver, H can be an QobjEvo. """ H_td = -1.0j * QobjEvo(H, args, tlist=tlist) if opt.rhs_with_state: H_td._check_old_with_state() nthread = opt.openmp_threads if opt.use_openmp else 0 H_td.compile(omp=nthread) ss = SolverSystem() ss.H = H_td ss.makefunc = _qobjevo_set solver_safe["sesolve"] = ss return ss def _qobjevo_set(HS, psi, args, e_ops, opt): """ From the system, get the ode function and args """ H_td = HS.H H_td.solver_set_args(args, psi, e_ops) if psi.isunitary: func = H_td.compiled_qobjevo.ode_mul_mat_f_vec elif psi.isket: func = H_td.compiled_qobjevo.mul_vec else: raise TypeError("The unitary solver requires psi0 to be" " a ket as initial state" " or a unitary as initial operator.") return func, () # ----------------------------------------------------------------------------- # Wave function evolution using a ODE solver (unitary quantum evolution), for # time dependent hamiltonians. # def _sesolve_func_td(H_func, args, opt): """ Prepare the system for the solver, H is a function. """ ss = SolverSystem() ss.H = H_func ss.makefunc = _Hfunc_set solver_safe["sesolve"] = ss return ss def _Hfunc_set(HS, psi, args, e_ops, opt): """ From the system, get the ode function and args """ H_func = HS.H if psi.isunitary: if not opt.rhs_with_state: func = _ode_oper_func_td else: func = _ode_oper_func_td_with_state else: if not opt.rhs_with_state: func = cy_ode_psi_func_td else: func = cy_ode_psi_func_td_with_state return func, (H_func, args) # ----------------------------------------------------------------------------- # evaluate dU(t)/dt according to the schrodinger equation # def _ode_oper_func_td(t, y, H_func, args): H = H_func(t, args).data * -1j ym = vec2mat(y) return (H * ym).ravel("F") def _ode_oper_func_td_with_state(t, y, H_func, args): H = H_func(t, y, args).data * -1j ym = vec2mat(y) return (H * ym).ravel("F") # ----------------------------------------------------------------------------- # Solve an ODE for func. # Calculate the required expectation values or invoke callback # function at each time step. def _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, opt, progress_bar, dims=None): """ Internal function for solving ODEs. """ # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # This function is made similar to mesolve's one for futur merging in a # solver class # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # prepare output array n_tsteps = len(tlist) output = Result() output.solver = "sesolve" output.times = tlist if psi0.isunitary: initial_vector = psi0.full().ravel('F') oper_evo = True size = psi0.shape[0] # oper_n = dims[0][0] # norm_dim_factor = np.sqrt(oper_n) elif psi0.isket: initial_vector = psi0.full().ravel() oper_evo = False # norm_dim_factor = 1.0 r = scipy.integrate.ode(func) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) if ode_args: r.set_f_params(*ode_args) r.set_initial_value(initial_vector, tlist[0]) e_ops_data = [] output.expect = [] if callable(e_ops): n_expt_op = 0 expt_callback = True output.num_expect = 1 elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False output.num_expect = n_expt_op if n_expt_op == 0: # fallback on storing states opt.store_states = True else: for op in e_ops: if not isinstance(op, Qobj) and callable(op): output.expect.append(np.zeros(n_tsteps, dtype=complex)) continue if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) if oper_evo: for e in e_ops: if not isinstance(e, Qobj): e_ops_data.append(e) elif e.dims[1] != psi0.dims[0]: raise TypeError(f"e_ops dims ({e.dims}) are not compatible" f" with the state's ({psi0.dims})") else: e_ops_data.append(e.dag().data) else: for e in e_ops: if not isinstance(e, Qobj): e_ops_data.append(e) elif e.dims[1] != psi0.dims[0]: raise TypeError(f"e_ops dims ({e.dims}) are not compatible" f" with the state's ({psi0.dims})") else: e_ops_data.append(e.data) else: raise TypeError("Expectation parameter must be a list or a function") if opt.store_states: output.states = [] if oper_evo: def get_curr_state_data(r): return vec2mat(r.y) else: def get_curr_state_data(r): return r.y # # start evolution # dt = np.diff(tlist) cdata = None progress_bar.start(n_tsteps) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") # get the current state / oper data if needed if opt.store_states or opt.normalize_output \ or n_expt_op > 0 or expt_callback: cdata = get_curr_state_data(r) if opt.normalize_output: # normalize per column if oper_evo: cdata /= la_norm(cdata, axis=0) #cdata *= norm_dim_factor / la_norm(cdata) r.set_initial_value(cdata.ravel('F'), r.t) else: #cdata /= la_norm(cdata) norm = normalize_inplace(cdata) if norm > 1e-12: # only reset the solver if state changed r.set_initial_value(cdata, r.t) else: r._y = cdata if opt.store_states: if oper_evo: fdata = dense2D_to_fastcsr_fmode(cdata, size, size) output.states.append(Qobj(fdata, dims=dims)) else: fdata = dense1D_to_fastcsr_ket(cdata) output.states.append(Qobj(fdata, dims=dims, fast='mc')) if expt_callback: # use callback method output.expect.append(e_ops(t, Qobj(cdata, dims=dims))) if oper_evo: for m in range(n_expt_op): if callable(e_ops_data[m]): func = e_ops_data[m] output.expect[m][t_idx] = func(t, Qobj(cdata, dims=dims)) continue output.expect[m][t_idx] = (e_ops_data[m] * cdata).trace() else: for m in range(n_expt_op): if callable(e_ops_data[m]): func = e_ops_data[m] output.expect[m][t_idx] = func(t, Qobj(cdata, dims=dims)) continue output.expect[m][t_idx] = cy_expect_psi(e_ops_data[m], cdata, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if opt.store_final_state: cdata = get_curr_state_data(r) if opt.normalize_output: cdata /= la_norm(cdata, axis=0) # cdata *= norm_dim_factor / la_norm(cdata) output.final_state = Qobj(cdata, dims=dims) return output