Source code for qutip.random_objects

# -*- coding: utf-8 -*-
"""
This module is a collection of random state and operator generators.
The sparsity of the ouput Qobj's is controlled by varing the
`density` parameter.
"""

__all__ = [
    'rand_herm', 'rand_unitary', 'rand_ket', 'rand_dm',
    'rand_unitary_haar', 'rand_ket_haar', 'rand_dm_ginibre',
    'rand_dm_hs', 'rand_super_bcsz', 'rand_stochastic', 'rand_super'
]

import numpy as np
import scipy.linalg as la
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.operators import create, destroy, jmat
from qutip.states import basis
import qutip.superop_reps as sr


UNITS = np.array([1, 1j])


def rand_jacobi_rotation(A, seed=None):
    """Random Jacobi rotation of a sparse matrix.

    Parameters
    ----------
    A : spmatrix
        Input sparse matrix.

    Returns
    -------
    spmatrix
        Rotated sparse matrix.
    """
    if seed is not None:
        np.random.seed(seed=seed)
    if A.shape[0] != A.shape[1]:
        raise ValueError('Input matrix must be square.')
    n = A.shape[0]
    angle = 2*np.random.random()*np.pi
    a = 1.0/np.sqrt(2)*np.exp(-1j*angle)
    b = 1.0/np.sqrt(2)*np.exp(1j*angle)
    i = int(np.floor(np.random.random()*n))
    j = i
    while i == j:
        j = int(np.floor(np.random.random()*n))
    data = np.hstack((np.array([a, -b, a, b], dtype=complex),
                      np.ones(n-2, dtype=complex)))
    diag = np.delete(np.arange(n), [i, j])
    rows = np.hstack(([i, i, j, j], diag))
    cols = np.hstack(([i, j, i, j], diag))
    R = sp.coo_matrix(
        (data, (rows, cols)), shape=(n, n), dtype=complex,
    ).tocsr()
    A = R*A*R.conj().transpose()
    return A


def randnz(shape, norm=1 / np.sqrt(2), seed=None):
    # This function is intended for internal use.
    """
    Returns an array of standard normal complex random variates.
    The Ginibre ensemble corresponds to setting ``norm = 1`` [Mis12]_.

    Parameters
    ----------
    shape : tuple
        Shape of the returned array of random variates.
    norm : float
        Scale of the returned random variates, or 'ginibre' to draw
        from the Ginibre ensemble.
    """
    if seed is not None:
        np.random.seed(seed=seed)
    if norm == 'ginibre':
        norm = 1
    return np.sum(np.random.randn(*(shape + (2,))) * UNITS, axis=-1) * norm


[docs]def rand_herm(N, density=0.75, dims=None, pos_def=False, seed=None): """Creates a random NxN sparse Hermitian quantum object. If 'N' is an integer, uses :math:`H=0.5*(X+X^{+})` where :math:`X` is a randomly generated quantum operator with a given `density`. Else uses complex Jacobi rotations when 'N' is given by an array. Parameters ---------- N : int, list/ndarray If int, then shape of output operator. If list/ndarray then eigenvalues of generated operator. density : float Density between [0,1] of output Hermitian operator. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. pos_def : bool (default=False) Return a positive semi-definite matrix (by diagonal dominance). seed : int seed for the random number generator Returns ------- oper : qobj NxN Hermitian quantum operator. Notes ----- If given a list/ndarray as input 'N', this function returns a random Hermitian object with eigenvalues given in the list/ndarray. This is accomplished via complex Jacobi rotations. While this method is ~50% faster than the corresponding (real only) Matlab code, it should not be repeatedly used for generating matrices larger than ~1000x1000. """ if seed is not None: np.random.seed(seed=seed) if isinstance(N, (np.ndarray, list)): M = sp.diags(N, 0, dtype=complex, format='csr') N = len(N) if dims: _check_dims(dims, N, N) nvals = max([N**2 * density, 1]) M = rand_jacobi_rotation(M) while M.nnz < 0.95 * nvals: M = rand_jacobi_rotation(M) M.sort_indices() elif isinstance(N, (int, np.int32, np.int64)): if dims: _check_dims(dims, N, N) if density < 0.5: M = _rand_herm_sparse(N, density, pos_def) else: M = _rand_herm_dense(N, density, pos_def) else: raise TypeError('Input N must be an integer or array_like.') return Qobj(M, dims=dims, isherm=True)
def _rand_herm_sparse(N, density, pos_def): target = (1-(1-density)**0.5) num_elems = (N**2 - 0.666 * N) * target + 0.666 * N * density num_elems = max([num_elems, 1]) num_elems = int(num_elems) data = (2 * np.random.rand(num_elems) - 1) + \ (2 * np.random.rand(num_elems) - 1) * 1j row_idx, col_idx = zip(*[ divmod(index, N) for index in np.random.choice(N*N, num_elems, replace=False) ]) M = sp.coo_matrix((data, (row_idx, col_idx)), dtype=complex, shape=(N, N)) M = 0.5 * (M + M.conj().transpose()) if pos_def: M = M.tocoo() M.setdiag(np.abs(M.diagonal()) + np.sqrt(2)*N) M = M.tocsr() M.sort_indices() return M def _rand_herm_dense(N, density, pos_def): M = ( (2*np.random.rand(N, N) - 1) + 1j*(2*np.random.rand(N, N) - 1) ) M = 0.5 * (M + M.conj().transpose()) target = 1 - density**0.5 num_remove = N * (N - 0.666) * target + 0.666 * N * (1 - density) num_remove = max([num_remove, 1]) num_remove = int(num_remove) for index in np.random.choice(N*N, num_remove, replace=False): row, col = divmod(index, N) M[col, row] = 0 M[row, col] = 0 if pos_def: np.fill_diagonal(M, np.abs(M.diagonal()) + np.sqrt(2)*N) return M
[docs]def rand_unitary(N, density=0.75, dims=None, seed=None): r"""Creates a random NxN sparse unitary quantum object. Uses :math:`\exp(-iH)` where H is a randomly generated Hermitian operator. Parameters ---------- N : int Shape of output quantum operator. density : float Density between [0,1] of output Unitary operator. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. Returns ------- oper : qobj NxN Unitary quantum operator. """ if dims: _check_dims(dims, N, N) U = (-1.0j * rand_herm(N, density, seed=seed)).expm() U.data.sort_indices() return Qobj(U, dims=dims, shape=[N, N])
[docs]def rand_unitary_haar(N=2, dims=None, seed=None): """ Returns a Haar random unitary matrix of dimension ``dim``, using the algorithm of [Mez07]_. Parameters ---------- N : int Dimension of the unitary to be returned. dims : list of lists of int, or None Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. Returns ------- U : Qobj Unitary of dims ``[[dim], [dim]]`` drawn from the Haar measure. """ if dims is not None: _check_dims(dims, N, N) else: dims = [[N], [N]] # Mez01 STEP 1: Generate an N × N matrix Z of complex standard # normal random variates. Z = randnz((N, N), seed=seed) # Mez01 STEP 2: Find a QR decomposition Z = Q · R. Q, R = la.qr(Z) # Mez01 STEP 3: Create a diagonal matrix Lambda by rescaling # the diagonal elements of R. Lambda = np.diag(R).copy() Lambda /= np.abs(Lambda) # Mez01 STEP 4: Note that R' := Λ¯¹ · R has real and # strictly positive elements, such that # Q' = Q · Λ is Haar distributed. # NOTE: Λ is a diagonal matrix, represented as a vector # of the diagonal entries. Thus, the matrix dot product # is represented nicely by the NumPy broadcasting of # the *scalar* multiplication. In particular, # Q · Λ = Q_ij Λ_jk = Q_ij δ_jk λ_k = Q_ij λ_j. # As NumPy arrays, Q has shape (N, N) and # Lambda has shape (N, ), such that the broadcasting # represents precisely Q_ij λ_j. U = Qobj(Q * Lambda) U.dims = dims return U
[docs]def rand_ket(N=None, density=1, dims=None, seed=None): """Creates a random Nx1 sparse ket vector. Parameters ---------- N : int Number of rows for output quantum vector. If None, N is deduced from dims. density : float Density between [0,1] of output ket state. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[1]]. seed : int Seed for the random number generator. Returns ------- oper : qobj Nx1 ket quantum state vector. Raises ------- ValueError If neither `N` or `dims` are specified. """ if seed is not None: np.random.seed(seed=seed) if N is None and dims is None: raise ValueError('Specify either the number of rows of state vector' '(N) or dimensions of quantum object (dims)') if N is not None and dims: _check_dims(dims, N, 1) elif dims: N = np.prod(dims[0]) _check_dims(dims, N, 1) else: dims = [[N], [1]] X = sp.rand(N, 1, density, format='csr') while X.nnz == 0: # ensure that the ket is not all zeros. X = sp.rand(N, 1, density+1/N, format='csr') X.data = X.data - 0.5 Y = X.copy() Y.data = 1.0j * (np.random.random(len(X.data)) - 0.5) X = X + Y X.sort_indices() X = Qobj(X) return Qobj(X / X.norm(), dims=dims)
[docs]def rand_ket_haar(N=None, dims=None, seed=None): """ Returns a Haar random pure state of dimension ``dim`` by applying a Haar random unitary to a fixed pure state. Parameters ---------- N : int Dimension of the state vector to be returned. If None, N is deduced from dims. dims : list of ints, or None Dimensions of the resultant quantum object. If None, [[N],[1]] is used. Returns ------- psi : Qobj A random state vector drawn from the Haar measure. Raises ------- ValueError If neither `N` or `dims` are specified. """ if N is None and dims is None: raise ValueError('Specify either the number of rows of state vector' '(N) or dimensions of quantum object (dims)') if N and dims: _check_dims(dims, N, 1) elif dims: N = np.prod(dims[0]) _check_dims(dims, N, 1) else: dims = [[N], [1]] psi = rand_unitary_haar(N, seed=seed) * basis(N, 0) psi.dims = dims return psi
[docs]def rand_dm(N, density=0.75, pure=False, dims=None, seed=None): r"""Creates a random NxN density matrix. Parameters ---------- N : int, ndarray, list If int, then shape of output operator. If list/ndarray then eigenvalues of generated density matrix. density : float Density between [0,1] of output density matrix. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. seed : int Seed for the random number generator. Returns ------- oper : qobj NxN density matrix quantum operator. Notes ----- For small density matrices., choosing a low density will result in an error as no diagonal elements will be generated such that :math:`Tr(\rho)=1`. """ if isinstance(N, (np.ndarray, list)): if np.abs(np.sum(N)-1.0) > 1e-15: raise ValueError('Eigenvalues of a density matrix ' 'must sum to one.') H = sp.diags(N, 0, dtype=complex, format='csr') N = len(N) if dims: _check_dims(dims, N, N) nvals = N**2*density H = rand_jacobi_rotation(H, seed=seed) while H.nnz < 0.95*nvals: H = rand_jacobi_rotation(H) H.sort_indices() elif isinstance(N, (int, np.int32, np.int64)): if dims: _check_dims(dims, N, N) if pure: dm_density = np.sqrt(density) psi = rand_ket(N, dm_density, seed=seed) H = psi * psi.dag() H.data.sort_indices() else: non_zero = 0 tries = 0 while non_zero == 0 and tries < 10: H = rand_herm(N, density, seed=seed) H = H.dag() * H non_zero = H.tr() tries += 1 if tries >= 10: raise ValueError( "Requested density is too low to generate density matrix.") H = H / H.tr() H.data.sort_indices() else: raise TypeError('Input N must be an integer or array_like.') return Qobj(H, dims=dims)
[docs]def rand_dm_ginibre(N=2, rank=None, dims=None, seed=None): """ Returns a Ginibre random density operator of dimension ``dim`` and rank ``rank`` by using the algorithm of [BCSZ08]_. If ``rank`` is `None`, a full-rank (Hilbert-Schmidt ensemble) random density operator will be returned. Parameters ---------- N : int Dimension of the density operator to be returned. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. rank : int or None Rank of the sampled density operator. If None, a full-rank density operator is generated. Returns ------- rho : Qobj An N × N density operator sampled from the Ginibre or Hilbert-Schmidt distribution. """ if rank is None: rank = N if rank > N: raise ValueError("Rank cannot exceed dimension.") X = randnz((N, rank), norm='ginibre', seed=seed) rho = np.dot(X, X.T.conj()) rho /= np.trace(rho) return Qobj(rho, dims=dims)
[docs]def rand_dm_hs(N=2, dims=None, seed=None): """ Returns a Hilbert-Schmidt random density operator of dimension ``dim`` and rank ``rank`` by using the algorithm of [BCSZ08]_. Parameters ---------- N : int Dimension of the density operator to be returned. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. Returns ------- rho : Qobj A dim × dim density operator sampled from the Ginibre or Hilbert-Schmidt distribution. """ return rand_dm_ginibre(N, rank=None, dims=dims, seed=seed)
def rand_kraus_map(N, dims=None, seed=None): """ Creates a random CPTP map on an N-dimensional Hilbert space in Kraus form. Parameters ---------- N : int Length of input/output density matrix. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. Returns ------- oper_list : list of qobj N^2 x N x N qobj operators. """ if dims: _check_dims(dims, N, N) # Random unitary (Stinespring Dilation) orthog_cols = rand_unitary(N ** 3, seed=seed).full()[:, :N] oper_list = np.reshape(orthog_cols, (N ** 2, N, N)) return list(map(lambda x: Qobj(inpt=x, dims=dims), oper_list))
[docs]def rand_super(N=5, dims=None, seed=None): """ Returns a randomly drawn superoperator acting on operators acting on N dimensions. Parameters ---------- N : int Square root of the dimension of the superoperator to be returned. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[[N],[N]], [[N],[N]]]. """ from .propagator import propagator if dims is not None: # TODO: check! pass else: dims = [[[N], [N]], [[N], [N]]] H = rand_herm(N, seed=seed) S = propagator(H, np.random.rand(), [ create(N), destroy(N), jmat(float(N - 1) / 2.0, 'z') ]) S.dims = dims return S
[docs]def rand_super_bcsz(N=2, enforce_tp=True, rank=None, dims=None, seed=None): """ Returns a random superoperator drawn from the Bruzda et al ensemble for CPTP maps [BCSZ08]_. Note that due to finite numerical precision, for ranks less than full-rank, zero eigenvalues may become slightly negative, such that the returned operator is not actually completely positive. Parameters ---------- N : int Square root of the dimension of the superoperator to be returned. enforce_tp : bool If True, the trace-preserving condition of [BCSZ08]_ is enforced; otherwise only complete positivity is enforced. rank : int or None Rank of the sampled superoperator. If None, a full-rank superoperator is generated. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[[N],[N]], [[N],[N]]]. Returns ------- rho : Qobj A superoperator acting on vectorized dim × dim density operators, sampled from the BCSZ distribution. """ if dims is not None: # TODO: check! pass else: dims = [[[N], [N]], [[N], [N]]] if rank is None: rank = N**2 if rank > N**2: raise ValueError("Rank cannot exceed superoperator dimension.") # We use mainly dense matrices here for speed in low # dimensions. In the future, it would likely be better to switch off # between sparse and dense matrices as the dimension grows. # We start with a Ginibre uniform matrix X of the appropriate rank, # and use it to construct a positive semidefinite matrix X X⁺. X = randnz((N**2, rank), norm='ginibre', seed=seed) # Precompute X X⁺, as we'll need it in two different places. XXdag = np.dot(X, X.T.conj()) if enforce_tp: # We do the partial trace over the first index by using dense reshape # operations, so that we can avoid bouncing to a sparse representation # and back. Y = np.einsum('ijik->jk', XXdag.reshape((N, N, N, N))) # Now we have the matrix 𝟙 ⊗ Y^{-1/2}, which we can find by doing # the square root and the inverse separately. As a possible # improvement, iterative methods exist to find inverse square root # matrices directly, as this is important in statistics. Z = np.kron( np.eye(N), la.sqrtm(la.inv(Y)) ) # Finally, we dot everything together and pack it into a Qobj, # marking the dimensions as that of a type=super (that is, # with left and right compound indices, each representing # left and right indices on the underlying Hilbert space). D = Qobj(np.dot(Z, np.dot(XXdag, Z))) else: D = N * Qobj(XXdag / np.trace(XXdag)) D.dims = [ # Left dims [[N], [N]], # Right dims [[N], [N]] ] # Since [BCSZ08] gives a row-stacking Choi matrix, but QuTiP # expects a column-stacking Choi matrix, we must permute the indices. D = D.permute([[1], [0]]) D.dims = dims # Mark that we've made a Choi matrix. D.superrep = 'choi' return sr.to_super(D)
[docs]def rand_stochastic(N, density=0.75, kind='left', dims=None, seed=None): """Generates a random stochastic matrix. Parameters ---------- N : int Dimension of matrix. density : float Density between [0,1] of output density matrix. kind : str (Default = 'left') Generate 'left' or 'right' stochastic matrix. dims : list Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]]. Returns ------- oper : qobj Quantum operator form of stochastic matrix. """ if seed is not None: np.random.seed(seed=seed) if dims: _check_dims(dims, N, N) num_elems = max([int(np.ceil(N*(N+1)*density)/2), N]) data = np.random.rand(num_elems) # Ensure an element on every row and column row_idx = np.hstack([np.random.permutation(N), np.random.choice(N, num_elems-N)]) col_idx = np.hstack([np.random.permutation(N), np.random.choice(N, num_elems-N)]) M = sp.coo_matrix((data, (row_idx, col_idx)), dtype=float, shape=(N, N)).tocsr() M = 0.5 * (M + M.conj().transpose()) num_rows = M.indptr.shape[0]-1 for row in range(num_rows): row_start = M.indptr[row] row_end = M.indptr[row+1] row_sum = np.sum(M.data[row_start:row_end]) M.data[row_start:row_end] /= row_sum if kind == 'left': M = M.transpose() return Qobj(M, dims=dims, shape=(N, N))
def _check_dims(dims, N1, N2): if len(dims) != 2: raise Exception("Qobj dimensions must be list of length 2.") if (not isinstance(dims[0], list)) or (not isinstance(dims[1], list)): raise TypeError( "Qobj dimension components must be lists. i.e. dims=[[N],[N]]") if np.prod(dims[0]) != N1 or np.prod(dims[1]) != N2: raise ValueError("Qobj dimensions must match matrix shape.") if len(dims[0]) != len(dims[1]): raise TypeError("Qobj dimension components must have same length.")