Source code for qutip.qip.compiler.spinchaincompiler

import numpy as np

from qutip.qip.circuit import QubitCircuit, Gate
from qutip.qip.compiler import GateCompiler, Instruction


__all__ = ['SpinChainCompiler']


[docs]class SpinChainCompiler(GateCompiler): """ Compile a :class:`.QubitCircuit` into the pulse sequence for the processor. Parameters ---------- N: int The number of qubits in the system. params: dict A Python dictionary contains the name and the value of the parameters. See :meth:`.SpinChain.set_up_params` for the definition. setup: string "linear" or "circular" for two sub-classes. global_phase: bool Record of the global phase change and will be returned. pulse_dict: dict, optional A map between the pulse label and its index in the pulse list. If given, the compiled pulse can be identified with ``(pulse_label, coeff)``, instead of ``(pulse_index, coeff)``. The number of key-value pairs should match the number of pulses in the processor. If it is empty, an integer ``pulse_index`` needs to be used in the compiling routine saved under the attributes ``gate_compiler``. Attributes ---------- N: int The number of the component systems. params: dict A Python dictionary contains the name and the value of the parameters, such as laser frequency, detuning etc. pulse_dict: dict A map between the pulse label and its index in the pulse list. gate_compiler: dict The Python dictionary in the form of {gate_name: decompose_function}. It saves the decomposition scheme for each gate. setup: string "linear" or "circular" for two sub-classes. global_phase: bool Record of the global phase change and will be returned. """ def __init__(self, N, params, pulse_dict, setup="linear", global_phase=0.): super(SpinChainCompiler, self).__init__( N=N, params=params, pulse_dict=pulse_dict) self.gate_compiler.update({ "ISWAP": self.iswap_compiler, "SQRTISWAP": self.sqrtiswap_compiler, "RZ": self.rz_compiler, "RX": self.rx_compiler, "GLOBALPHASE": self.globalphase_compiler }) self.global_phase = global_phase
[docs] def rz_compiler(self, gate, args): """ Compiler for the RZ gate """ targets = gate.targets g = self.params["sz"][targets[0]] coeff = np.sign(gate.arg_value) * g tlist = abs(gate.arg_value) / (2 * g) pulse_info = [("sz" + str(targets[0]), coeff)] return [Instruction(gate, tlist, pulse_info)]
[docs] def rx_compiler(self, gate, args): """ Compiler for the RX gate """ targets = gate.targets g = self.params["sx"][targets[0]] coeff = np.sign(gate.arg_value) * g tlist = abs(gate.arg_value) / (2 * g) pulse_info = [("sx" + str(targets[0]), coeff)] return [Instruction(gate, tlist, pulse_info)]
[docs] def iswap_compiler(self, gate, args): """ Compiler for the ISWAP gate """ targets = gate.targets q1, q2 = min(targets), max(targets) g = self.params["sxsy"][q1] coeff = -g tlist = np.pi / (4 * g) if self.N != 2 and q1 == 0 and q2 == self.N - 1: pulse_name = "g" + str(q2) else: pulse_name = "g" + str(q1) pulse_info = [(pulse_name, coeff)] return [Instruction(gate, tlist, pulse_info)]
[docs] def sqrtiswap_compiler(self, gate, args): """ Compiler for the SQRTISWAP gate """ targets = gate.targets q1, q2 = min(targets), max(targets) g = self.params["sxsy"][q1] coeff = -g tlist = np.pi / (8 * g) if self.N != 2 and q1 == 0 and q2 == self.N - 1: pulse_name = "g" + str(q2) else: pulse_name = "g" + str(q1) pulse_info = [(pulse_name, coeff)] return [Instruction(gate, tlist, pulse_info)]
[docs] def globalphase_compiler(self, gate, args): """ Compiler for the GLOBALPHASE gate """ self.global_phase += gate.arg_value