Source code for qutip.nonmarkov.bofin_solvers

"""
This module provides solvers for system-bath evoluation using the
HEOM (hierarchy equations of motion).

See https://en.wikipedia.org/wiki/Hierarchical_equations_of_motion for a very
basic introduction to the technique.

The implementation is derived from the BoFiN library (see
https://github.com/tehruhn/bofin) which was itself derived from an earlier
implementation in QuTiP itself.
"""

from copy import deepcopy

import numpy as np
import scipy.sparse as sp
import scipy.integrate
from scipy.sparse.linalg import spsolve

from qutip import settings
from qutip import state_number_enumerate
from qutip.qobj import Qobj
from qutip.qobjevo import QobjEvo
from qutip.superoperator import liouvillian, spre, spost, vec2mat
from qutip.cy.spmatfuncs import cy_ode_rhs
from qutip.solver import Options, Result
from qutip.cy.spconvert import dense2D_to_fastcsr_fmode
from qutip.ui.progressbar import BaseProgressBar, TextProgressBar
from qutip.fastsparse import fast_identity, fast_csr_matrix
from qutip.nonmarkov.bofin_baths import (
    BathExponent, DrudeLorentzBath,
)

# Load MKL spsolve if avaiable
if settings.has_mkl:
    from qutip._mkl.spsolve import mkl_spsolve
else:
    mkl_spsolve = None


[docs]class HierarchyADOs: """ A description of ADOs (auxilliary density operators) with the hierarchical equations of motion. The list of ADOs is constructed from a list of bath exponents (corresponding to one or more baths). Each ADO is referred to by a label that lists the number of "excitations" of each bath exponent. The level of a label within the hierarchy is the sum of the "excitations" within the label. For example the label ``(0, 0, ..., 0)`` represents the density matrix of the system being solved and is the only 0th level label. The labels with a single 1, i.e. ``(1, 0, ..., 0)``, ``(0, 1, 0, ... 0)``, etc. are the 1st level labels. The second level labels all have either two 1s or a single 2, and so on for the third and higher levels of the hierarchy. Parameters ---------- exponents : list of BathExponent The exponents of the correlation function describing the bath or baths. max_depth : int The maximum depth of the hierarchy (i.e. the maximum sum of "excitations" in the hierarchy ADO labels or maximum ADO level). Attributes ---------- exponents : list of BathExponent The exponents of the correlation function describing the bath or baths. max_depth : int The maximum depth of the hierarchy (i.e. the maximum sum of "excitations" in the hierarchy ADO labels). dims : list of int The dimensions of each exponent within the bath(s). vk : list of complex The frequency of each exponent within the bath(s). ck : list of complex The coefficient of each exponent within the bath(s). ck2: list of complex For exponents of type "RI", the coefficient of the exponent within the imaginary expansion. For other exponent types, the entry is None. sigma_bar_k_offset: list of int For exponents of type "+" or "-" the offset within the list of modes of the corresponding "-" or "+" exponent. For other exponent types, the entry is None. labels: list of tuples A list of the ADO labels within the hierarchy. """ def __init__(self, exponents, max_depth): self.exponents = exponents self.max_depth = max_depth self.dims = [exp.dim or (max_depth + 1) for exp in self.exponents] self.vk = [exp.vk for exp in self.exponents] self.ck = [exp.ck for exp in self.exponents] self.ck2 = [exp.ck2 for exp in self.exponents] self.sigma_bar_k_offset = [ exp.sigma_bar_k_offset for exp in self.exponents ] self.labels = list(state_number_enumerate(self.dims, max_depth)) self._label_idx = {s: i for i, s in enumerate(self.labels)}
[docs] def idx(self, label): """ Return the index of the ADO label within the list of labels, i.e. within ``self.labels``. Parameters ---------- label : tuple The label to look up. Returns ------- int The index of the label within the list of ADO labels. """ return self._label_idx[label]
[docs] def next(self, label, k): """ Return the ADO label with one more excitation in the k'th exponent dimension or ``None`` if adding the excitation would exceed the dimension or maximum depth of the hierarchy. Parameters ---------- label : tuple The ADO label to add an excitation to. k : int The exponent to add the excitation to. Returns ------- tuple or None The next label. """ if label[k] >= self.dims[k] - 1: return None if sum(label) >= self.max_depth: return None return label[:k] + (label[k] + 1,) + label[k + 1:]
[docs] def prev(self, label, k): """ Return the ADO label with one fewer excitation in the k'th exponent dimension or ``None`` if the label has no exciations in the k'th exponent. Parameters ---------- label : tuple The ADO label to remove the excitation from. k : int The exponent to remove the excitation from. Returns ------- tuple or None The previous label. """ if label[k] <= 0: return None return label[:k] + (label[k] - 1,) + label[k + 1:]
[docs] def exps(self, label): """ Converts an ADO label into a tuple of exponents, with one exponent for each "excitation" within the label. The number of exponents returned is always equal to the level of the label within the hierarchy (i.e. the sum of the indices within the label). Parameters ---------- label : tuple The ADO label to convert to a list of exponents. Returns ------- tuple of BathExponent A tuple of BathExponents. Examples -------- ``ados.exps((1, 0, 0))`` would return ``[ados.exponents[0]]`` ``ados.exps((2, 0, 0))`` would return ``[ados.exponents[0], ados.exponents[0]]``. ``ados.exps((1, 2, 1))`` would return ``[ados.exponents[0], ados.exponents[1], ados.exponents[1], \ ados.exponents[2]]``. """ return sum( ((exp,) * n for (n, exp) in zip(label, self.exponents) if n > 0), (), )
[docs] def filter(self, level=None, tags=None, dims=None, types=None): """ Return a list of ADO labels for ADOs whose "excitations" match the given patterns. Each of the filter parameters (tags, dims, types) may be either unspecified (None) or a list. Unspecified parameters are excluded from the filtering. All specified filter parameters must be lists of the same length. Each position in the lists describes a particular excitation and any exponent that matches the filters may supply that excitation. The level of all labels returned is thus equal to the length of the filter parameter lists. Within a filter parameter list, items that are None represent wildcards and match any value of that exponent attribute Parameters ---------- level : int The hierarchy depth to return ADOs from. tags : list of object or None Filter parameter that matches the ``.tag`` attribute of exponents. dims : list of int Filter parameter that matches the ``.dim`` attribute of exponents. types : list of BathExponent types or list of str Filter parameter that matches the ``.type`` attribute of exponents. Types may be supplied by name (e.g. "R", "I", "+") instead of by the actual type (e.g. ``BathExponent.types.R``). Returns ------- list of tuple The ADO label for each ADO whose exponent excitations (i.e. label) match the given filters or level. """ if types is not None: types = [ t if t is None or isinstance(t, BathExponent.types) else BathExponent.types[t] for t in types ] filters = [("tag", tags), ("type", types), ("dim", dims)] filters = [(attr, f) for attr, f in filters if f is not None] n = max((len(f) for _, f in filters), default=0) if any(len(f) != n for _, f in filters): raise ValueError( "The tags, dims and types filters must all be the same length." ) if n > self.max_depth: raise ValueError( f"The maximum depth for the hierarchy is {self.max_depth} but" f" {n} levels of excitation filters were given." ) if level is None: if not filters: # fast path for when there are no excitation filters return self.labels[:] else: if not filters: # fast path for when there are no excitation filters return [label for label in self.labels if sum(label) == level] if level != n: raise ValueError( f"The level parameter is {level} but {n} levels of" " excitation filters were given." ) filtered_dims = [1] * len(self.exponents) for lvl in range(n): level_filters = [ (attr, f[lvl]) for attr, f in filters if f[lvl] is not None ] for j, exp in enumerate(self.exponents): if any(getattr(exp, attr) != f for attr, f in level_filters): continue filtered_dims[j] += 1 filtered_dims[j] = min(self.dims[j], filtered_dims[j]) return [ label for label in state_number_enumerate(filtered_dims, n) if sum(label) == n ]
[docs]class HierarchyADOsState: """ Provides convenient access to the full hierarchy ADO state at a particular point in time, ``t``. Parameters ---------- rho : :class:`~qutip.Qobj` The current state of the system (i.e. the 0th component of the hierarchy). ados : :class:`HierarchyADOs` The description of the hierarchy. ado_state : numpy.array The full state of the hierarchy. Attributes ---------- rho : Qobj The system state. In addition, all of the attributes of the hierarchy description, i.e. ``HierarchyADOs``, are provided directly on this class for convenience. E.g. one can access ``.labels``, or ``.exponents`` or call ``.idx(label)`` directly. See :class:`HierarchyADOs` for a full list of the available attributes and methods. """ def __init__(self, rho, ados, ado_state): self.rho = rho self._ado_state = ado_state self._ados = ados def __getattr__(self, name): return getattr(self._ados, name)
[docs] def extract(self, idx_or_label): """ Extract a Qobj representing specified ADO from a full representation of the ADO states. Parameters ---------- idx : int or label The index of the ADO to extract. If an ADO label, e.g. ``(0, 1, 0, ...)`` is supplied instead, then the ADO is extracted by label instead. Returns ------- Qobj A :obj:`~qutip.Qobj` representing the state of the specified ADO. """ if isinstance(idx_or_label, int): idx = idx_or_label else: idx = self._ados.idx(idx_or_label) return Qobj(self._ado_state[idx, :].T, dims=self.rho.dims)
[docs]class HEOMSolver: """ HEOM solver that supports multiple baths. The baths must be all either bosonic or fermionic baths. Parameters ---------- H_sys : QObj, QobjEvo or a list The system Hamiltonian or Liouvillian specified as either a :obj:`~qutip.Qobj`, a :obj:`~qutip.QobjEvo`, or a list of elements that may be converted to a :obj:`~qutip.QobjEvo`. bath : Bath or list of Bath A :obj:`Bath` containing the exponents of the expansion of the bath correlation funcion and their associated coefficients and coupling operators, or a list of baths. If multiple baths are given, they must all be either fermionic or bosonic baths. max_depth : int The maximum depth of the heirarchy (i.e. the maximum number of bath exponent "excitations" to retain). options : :class:`qutip.solver.Options` Generic solver options. If set to None the default options will be used. progress_bar : None, True or :class:`BaseProgressBar` Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the solver. If True, an instance of :class:`TextProgressBar` is used instead. Attributes ---------- ados : :obj:`HierarchyADOs` The description of the hierarchy constructed from the given bath and maximum depth. """ def __init__( self, H_sys, bath, max_depth, options=None, progress_bar=None, ): self.H_sys = self._convert_h_sys(H_sys) self.options = Options() if options is None else options self._is_timedep = isinstance(self.H_sys, QobjEvo) self._H0 = self.H_sys.to_list()[0] if self._is_timedep else self.H_sys self._is_hamiltonian = self._H0.type == "oper" self._L0 = liouvillian(self._H0) if self._is_hamiltonian else self._H0 self._sys_shape = ( self._H0.shape[0] if self._is_hamiltonian else int(np.sqrt(self._H0.shape[0])) ) self._sup_shape = self._L0.shape[0] self._sys_dims = ( self._H0.dims if self._is_hamiltonian else self._H0.dims[0] ) self.ados = HierarchyADOs( self._combine_bath_exponents(bath), max_depth, ) self._n_ados = len(self.ados.labels) self._n_exponents = len(self.ados.exponents) # pre-calculate identity matrix required by _grad_n self._sId = fast_identity(self._sup_shape) # pre-calculate superoperators required by _grad_prev and _grad_next: Qs = [exp.Q for exp in self.ados.exponents] self._spreQ = [spre(op).data for op in Qs] self._spostQ = [spost(op).data for op in Qs] self._s_pre_minus_post_Q = [ self._spreQ[k] - self._spostQ[k] for k in range(self._n_exponents) ] self._s_pre_plus_post_Q = [ self._spreQ[k] + self._spostQ[k] for k in range(self._n_exponents) ] self._spreQdag = [spre(op.dag()).data for op in Qs] self._spostQdag = [spost(op.dag()).data for op in Qs] self._s_pre_minus_post_Qdag = [ self._spreQdag[k] - self._spostQdag[k] for k in range(self._n_exponents) ] self._s_pre_plus_post_Qdag = [ self._spreQdag[k] + self._spostQdag[k] for k in range(self._n_exponents) ] if progress_bar is None: self.progress_bar = BaseProgressBar() elif progress_bar is True: self.progress_bar = TextProgressBar() elif isinstance(progress_bar, BaseProgressBar): self.progress_bar = progress_bar else: raise TypeError( "progress_bar is not an instance of " "qutip.ui.BaseProgressBar" ) self._configure_solver() def _convert_h_sys(self, H_sys): """ Process input system Hamiltonian, converting and raising as needed. """ if isinstance(H_sys, (Qobj, QobjEvo)): pass elif isinstance(H_sys, list): try: H_sys = QobjEvo(H_sys) except Exception as err: raise ValueError( "Hamiltonian (H_sys) of type list cannot be converted to" " QObjEvo" ) from err else: raise TypeError( f"Hamiltonian (H_sys) has unsupported type: {type(H_sys)!r}") return H_sys def _combine_bath_exponents(self, bath): """ Combine the exponents for the specified baths. """ if not isinstance(bath, (list, tuple)): exponents = bath.exponents else: exponents = [] for b in bath: exponents.extend(b.exponents) all_bosonic = all( exp.type in (exp.types.R, exp.types.I, exp.types.RI) for exp in exponents ) all_fermionic = all( exp.type in (exp.types["+"], exp.types["-"]) for exp in exponents ) if not (all_bosonic or all_fermionic): raise ValueError( "Bath exponents are currently restricted to being either" " all bosonic or all fermionic, but a mixture of bath" " exponents was given." ) if not all(exp.Q.dims == exponents[0].Q.dims for exp in exponents): raise ValueError( "All bath exponents must have system coupling operators" " with the same dimensions but a mixture of dimensions" " was given." ) return exponents def _dsuper_list_td(self, t, y, L_list): """ Auxiliary function for the time-dependent integration. Called every time step. """ L = L_list[0][0] for n in range(1, len(L_list)): L = L + L_list[n][0] * L_list[n][1](t) return L * y def _grad_n(self, L, he_n): """ Get the gradient for the hierarchy ADO at level n. """ vk = self.ados.vk vk_sum = sum(he_n[i] * vk[i] for i in range(len(vk))) op = L - vk_sum * self._sId return op def _grad_prev(self, he_n, k): """ Get the previous gradient. """ if self.ados.exponents[k].type in ( BathExponent.types.R, BathExponent.types.I, BathExponent.types.RI ): return self._grad_prev_bosonic(he_n, k) elif self.ados.exponents[k].type in ( BathExponent.types["+"], BathExponent.types["-"] ): return self._grad_prev_fermionic(he_n, k) else: raise ValueError( f"Mode {k} has unsupported type {self.ados.exponents[k].type}") def _grad_prev_bosonic(self, he_n, k): if self.ados.exponents[k].type == BathExponent.types.R: op = (-1j * he_n[k] * self.ados.ck[k]) * ( self._s_pre_minus_post_Q[k] ) elif self.ados.exponents[k].type == BathExponent.types.I: op = (-1j * he_n[k] * 1j * self.ados.ck[k]) * ( self._s_pre_plus_post_Q[k] ) elif self.ados.exponents[k].type == BathExponent.types.RI: term1 = (he_n[k] * -1j * self.ados.ck[k]) * ( self._s_pre_minus_post_Q[k] ) term2 = (he_n[k] * self.ados.ck2[k]) * self._s_pre_plus_post_Q[k] op = term1 + term2 else: raise ValueError( f"Unsupported type {self.ados.exponents[k].type}" f" for exponent {k}" ) return op def _grad_prev_fermionic(self, he_n, k): ck = self.ados.ck n_excite = sum(he_n) sign1 = (-1) ** (n_excite + 1) n_excite_before_m = sum(he_n[:k]) sign2 = (-1) ** (n_excite_before_m) sigma_bar_k = k + self.ados.sigma_bar_k_offset[k] if self.ados.exponents[k].type == BathExponent.types["+"]: op = -1j * sign2 * ( (ck[k] * self._spreQdag[k]) - (sign1 * np.conj(ck[sigma_bar_k]) * self._spostQdag[k]) ) elif self.ados.exponents[k].type == BathExponent.types["-"]: op = -1j * sign2 * ( (ck[k] * self._spreQ[k]) - (sign1 * np.conj(ck[sigma_bar_k]) * self._spostQ[k]) ) else: raise ValueError( f"Unsupported type {self.ados.exponents[k].type}" f" for exponent {k}" ) return op def _grad_next(self, he_n, k): """ Get the previous gradient. """ if self.ados.exponents[k].type in ( BathExponent.types.R, BathExponent.types.I, BathExponent.types.RI ): return self._grad_next_bosonic(he_n, k) elif self.ados.exponents[k].type in ( BathExponent.types["+"], BathExponent.types["-"] ): return self._grad_next_fermionic(he_n, k) else: raise ValueError( f"Mode {k} has unsupported type {self.ados.exponents[k].type}") def _grad_next_bosonic(self, he_n, k): op = -1j * self._s_pre_minus_post_Q[k] return op def _grad_next_fermionic(self, he_n, k): n_excite = sum(he_n) sign1 = (-1) ** (n_excite + 1) n_excite_before_m = sum(he_n[:k]) sign2 = (-1) ** (n_excite_before_m) if self.ados.exponents[k].type == BathExponent.types["+"]: if sign1 == -1: op = (-1j * sign2) * self._s_pre_minus_post_Q[k] else: op = (-1j * sign2) * self._s_pre_plus_post_Q[k] elif self.ados.exponents[k].type == BathExponent.types["-"]: if sign1 == -1: op = (-1j * sign2) * self._s_pre_minus_post_Qdag[k] else: op = (-1j * sign2) * self._s_pre_plus_post_Qdag[k] else: raise ValueError( f"Unsupported type {self.ados.exponents[k].type}" f" for exponent {k}" ) return op def _rhs(self, L): """ Make the RHS for the HEOM. """ ops = _GatherHEOMRHS(self.ados.idx, block=L.shape[0], nhe=self._n_ados) for he_n in self.ados.labels: op = self._grad_n(L, he_n) ops.add_op(he_n, he_n, op) for k in range(len(self.ados.dims)): next_he = self.ados.next(he_n, k) if next_he is not None: op = self._grad_next(he_n, k) ops.add_op(he_n, next_he, op) prev_he = self.ados.prev(he_n, k) if prev_he is not None: op = self._grad_prev(he_n, k) ops.add_op(he_n, prev_he, op) return ops.gather() def _configure_solver(self): """ Set up the solver. """ RHSmat = self._rhs(self._L0.data) assert isinstance(RHSmat, sp.csr_matrix) if self._is_timedep: # In the time dependent case, we construct the parameters # for the ODE gradient function _dsuper_list_td under the # assumption that RHSmat(t) = RHSmat + time dependent terms # that only affect the diagonal blocks of the RHS matrix. # This assumption holds because only _grad_n dependents on # the system Liovillian (and not _grad_prev or _grad_next). h_identity_mat = sp.identity(self._n_ados, format="csr") H_list = self.H_sys.to_list() solver_params = [[RHSmat]] for idx in range(1, len(H_list)): temp_mat = sp.kron( h_identity_mat, liouvillian(H_list[idx][0]) ) solver_params.append([temp_mat, H_list[idx][1]]) solver = scipy.integrate.ode(self._dsuper_list_td) solver.set_f_params(solver_params) else: solver = scipy.integrate.ode(cy_ode_rhs) solver.set_f_params(RHSmat.data, RHSmat.indices, RHSmat.indptr) solver.set_integrator( "zvode", method=self.options.method, order=self.options.order, atol=self.options.atol, rtol=self.options.rtol, nsteps=self.options.nsteps, first_step=self.options.first_step, min_step=self.options.min_step, max_step=self.options.max_step, ) self._ode = solver self.RHSmat = RHSmat
[docs] def steady_state( self, use_mkl=True, mkl_max_iter_refine=100, mkl_weighted_matching=False ): """ Compute the steady state of the system. Parameters ---------- use_mkl : bool, default=False Whether to use mkl or not. If mkl is not installed or if this is false, use the scipy splu solver instead. mkl_max_iter_refine : int Specifies the the maximum number of iterative refinement steps that the MKL PARDISO solver performs. For a complete description, see iparm(8) in http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm. mkl_weighted_matching : bool MKL PARDISO can use a maximum weighted matching algorithm to permute large elements close the diagonal. This strategy adds an additional level of reliability to the factorization methods. For a complete description, see iparm(13) in http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm. Returns ------- steady_state : Qobj The steady state density matrix of the system. steady_ados : :class:`HierarchyADOsState` The steady state of the full ADO hierarchy. A particular ADO may be extracted from the full state by calling :meth:`.extract`. """ n = self._sys_shape b_mat = np.zeros(n ** 2 * self._n_ados, dtype=complex) b_mat[0] = 1.0 L = deepcopy(self.RHSmat) L = L.tolil() L[0, 0: n ** 2 * self._n_ados] = 0.0 L = L.tocsr() L += sp.csr_matrix(( np.ones(n), (np.zeros(n), [num * (n + 1) for num in range(n)]) ), shape=(n ** 2 * self._n_ados, n ** 2 * self._n_ados)) if mkl_spsolve is not None and use_mkl: L.sort_indices() solution = mkl_spsolve( L, b_mat, perm=None, verbose=False, max_iter_refine=mkl_max_iter_refine, scaling_vectors=True, weighted_matching=mkl_weighted_matching, ) else: L = L.tocsc() solution = spsolve(L, b_mat) data = dense2D_to_fastcsr_fmode(vec2mat(solution[:n ** 2]), n, n) data = 0.5 * (data + data.H) steady_state = Qobj(data, dims=self._sys_dims) solution = solution.reshape((self._n_ados, n, n)) steady_ados = HierarchyADOsState(steady_state, self.ados, solution) return steady_state, steady_ados
def _convert_e_ops(self, e_ops): """ Parse and convert a dictionary or list of e_ops. Returns ------- e_ops, expected : tuple If the input ``e_ops`` was a list or scalar, ``expected`` is a list with one item for each element of the original e_ops. If the input ``e_ops`` was a dictionary, ``expected`` is a dictionary with the same keys. The output ``e_ops`` is always a dictionary. Its keys are the keys or indexes for ``expected`` and its elements are the e_ops functions or callables. """ if isinstance(e_ops, (list, dict)): pass elif e_ops is None: e_ops = [] elif isinstance(e_ops, Qobj): e_ops = [e_ops] elif callable(e_ops): e_ops = [e_ops] else: try: e_ops = list(e_ops) except Exception as err: raise TypeError( "e_ops must be an iterable, Qobj or function" ) from err if isinstance(e_ops, dict): expected = {k: [] for k in e_ops} else: expected = [[] for _ in e_ops] e_ops = {i: op for i, op in enumerate(e_ops)} if not all( callable(op) or isinstance(op, Qobj) for op in e_ops.values() ): raise TypeError("e_ops must only contain Qobj or functions") return e_ops, expected
[docs] def run(self, rho0, tlist, e_ops=None, ado_init=False, ado_return=False): """ Solve for the time evolution of the system. Parameters ---------- rho0 : Qobj or HierarchyADOsState or numpy.array Initial state (:obj:`~qutip.Qobj` density matrix) of the system if ``ado_init`` is ``False``. If ``ado_init`` is ``True``, then ``rho0`` should be an instance of :obj:`~HierarchyADOsState` or a numpy array giving the initial state of all ADOs. Usually the state of the ADOs would be determine from a previous call to ``.run(..., ado_return=True)``. For example, ``result = solver.run(..., ado_return=True)`` could be followed by ``solver.run(result.ado_states[-1], tlist, ado_init=True)``. If a numpy array is passed its shape must be ``(number_of_ados, n, n)`` where ``(n, n)`` is the system shape (i.e. shape of the system density matrix) and the ADOs must be in the same order as in ``.ados.labels``. tlist : list An ordered list of times at which to return the value of the state. e_ops : Qobj / callable / list / dict / None, optional A list or dictionary of operators as `Qobj` and/or callable functions (they can be mixed) or a single operator or callable function. For an operator ``op``, the result will be computed using ``(state * op).tr()`` and the state at each time ``t``. For callable functions, ``f``, the result is computed using ``f(t, ado_state)``. The values are stored in ``expect`` on (see the return section below). ado_init: bool, default False Indicates if initial condition is just the system state, or a numpy array including all ADOs. ado_return: bool, default True Whether to also return as output the full state of all ADOs. Returns ------- :class:`qutip.solver.Result` The results of the simulation run, with the following attributes: * ``times``: the times ``t`` (i.e. the ``tlist``). * ``states``: the system state at each time ``t`` (only available if ``e_ops`` was ``None`` or if the solver option ``store_states`` was set to ``True``). * ``ado_states``: the full ADO state at each time (only available if ``ado_return`` was set to ``True``). Each element is an instance of :class:`HierarchyADOsState`. . The state of a particular ADO may be extracted from ``result.ado_states[i]`` by calling :meth:`.extract`. * ``expect``: the value of each ``e_ops`` at time ``t`` (only available if ``e_ops`` were given). If ``e_ops`` was passed as a dictionary, then ``expect`` will be a dictionary with the same keys as ``e_ops`` and values giving the list of outcomes for the corresponding key. """ e_ops, expected = self._convert_e_ops(e_ops) e_ops_callables = any( not isinstance(op, Qobj) for op in e_ops.values() ) n = self._sys_shape rho_shape = (n, n) rho_dims = self._sys_dims hierarchy_shape = (self._n_ados, n, n) output = Result() output.solver = "HEOMSolver" output.times = tlist if e_ops: output.expect = expected if not e_ops or self.options.store_states: output.states = [] if ado_init: if isinstance(rho0, HierarchyADOsState): rho0_he = rho0._ado_state else: rho0_he = rho0 if rho0_he.shape != hierarchy_shape: raise ValueError( f"ADOs passed with ado_init have shape {rho0_he.shape}" f"but the solver hierarchy shape is {hierarchy_shape}" ) rho0_he = rho0_he.reshape(n ** 2 * self._n_ados) else: rho0_he = np.zeros([n ** 2 * self._n_ados], dtype=complex) rho0_he[:n ** 2] = rho0.full().ravel('F') if ado_return: output.ado_states = [] solver = self._ode solver.set_initial_value(rho0_he, tlist[0]) self.progress_bar.start(len(tlist)) for t_idx, t in enumerate(tlist): self.progress_bar.update(t_idx) if t_idx != 0: solver.integrate(t) if not solver.successful(): raise RuntimeError( "HEOMSolver ODE integration error. Try increasing" " the nsteps given in the HEOMSolver options" " (which increases the allowed substeps in each" " step between times given in tlist).") rho = Qobj( solver.y[:n ** 2].reshape(rho_shape, order='F'), dims=rho_dims, ) if self.options.store_states or not e_ops: output.states.append(rho) if ado_return or e_ops_callables: ado_state = HierarchyADOsState( rho, self.ados, solver.y.reshape(hierarchy_shape) ) if ado_return: output.ado_states.append(ado_state) for e_key, e_op in e_ops.items(): if isinstance(e_op, Qobj): e_result = (rho * e_op).tr() else: e_result = e_op(t, ado_state) output.expect[e_key].append(e_result) self.progress_bar.finished() return output
[docs]class HSolverDL(HEOMSolver): """ A helper class for creating an :class:`HEOMSolver` that is backwards compatible with the ``HSolverDL`` provided in ``qutip.nonmarkov.heom`` in QuTiP 4.6 and below. See :class:`HEOMSolver` and :class:`DrudeLorentzBath` for more descriptions of the underlying solver and bath construction. An exact copy of the QuTiP 4.6 HSolverDL is provided in ``qutip.nonmarkov.dlheom_solver`` for cases where the functionality of the older solver is required. The older solver will be completely removed in QuTiP 5. .. note:: Unlike the version of ``HSolverDL`` in QuTiP 4.6, this solver supports supplying a time-dependent or Liouvillian ``H_sys``. .. note:: For compatibility with ``HSolverDL`` in QuTiP 4.6 and below, the parameter ``N_exp`` specifying the number of exponents to keep in the expansion of the bath correlation function is one more than the equivalent ``Nk`` used in the :class:`DrudeLorentzBath`. I.e., ``Nk = N_exp - 1``. The ``Nk`` parameter in the :class:`DrudeLorentzBath` does not count the zeroeth exponent in order to better match common usage in the literature. .. note:: The ``stats`` and ``renorm`` arguments accepted in QuTiP 4.6 and below are no longer supported. Parameters ---------- H_sys : Qobj or QobjEvo or list The system Hamiltonian or Liouvillian. See :class:`HEOMSolver` for a complete description. coup_op : Qobj Operator describing the coupling between system and bath. See parameter ``Q`` in :class:`BosonicBath` for a complete description. coup_strength : float Coupling strength. Referred to as ``lam`` in :class:`DrudeLorentzBath`. temperature : float Bath temperature. Referred to as ``T`` in :class:`DrudeLorentzBath`. N_cut : int The maximum depth of the hierarchy. See ``max_depth`` in :class:`HEOMSolver` for a full description. N_exp : int Number of exponential terms used to approximate the bath correlation functions. The equivalent ``Nk`` in :class:`DrudeLorentzBath` is one less than ``N_exp`` (see note above). cut_freq : float Bath spectral density cutoff frequency. Referred to as ``gamma`` in :class:`DrudeLorentzBath`. bnd_cut_approx : bool Use boundary cut off approximation. If true, the Matsubara terminator is added to the system Liouvillian (and H_sys is promoted to a Liouvillian if it was a Hamiltonian). options : :class:`qutip.solver.Options` Generic solver options. If set to None the default options will be used. progress_bar : None, True or :class:`BaseProgressBar` Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the solver. If True, an instance of :class:`TextProgressBar` is used instead. combine : bool, default True Whether to combine exponents with the same frequency (and coupling operator). See :meth:`BosonicBath.combine` for details. """ def __init__( self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq, bnd_cut_approx=False, options=None, progress_bar=None, combine=True, ): bath = DrudeLorentzBath( Q=coup_op, lam=coup_strength, gamma=cut_freq, Nk=N_exp - 1, T=temperature, combine=combine, ) if bnd_cut_approx: # upgrade H_sys to a Liouvillian if needed and add the # bath terminator H_sys = self._convert_h_sys(H_sys) is_timedep = isinstance(H_sys, QobjEvo) H0 = H_sys.to_list()[0] if is_timedep else H_sys is_hamiltonian = H0.type == "oper" if is_hamiltonian: H_sys = liouvillian(H_sys) _, terminator = bath.terminator() H_sys = H_sys + terminator super().__init__( H_sys, bath=bath, max_depth=N_cut, options=options, progress_bar=progress_bar, ) # store input parameters as attributes for politeness and compatibility # with HSolverDL in QuTiP 4.6 and below. self.coup_strength = coup_strength self.cut_freq = cut_freq self.temperature = temperature self.N_exp = N_exp self.bnd_cut_approx = bnd_cut_approx
class _GatherHEOMRHS: """ A class for collecting elements of the right-hand side matrix of the HEOM. Parameters ---------- f_idx: function(he_state) -> he_idx A function that returns the index of a hierarchy state (i.e. an ADO label). block : int The size of a single ADO Liovillian operator in the hierarchy. nhe : int The number of ADOs in the hierarchy. """ def __init__(self, f_idx, block, nhe): self._block = block self._nhe = nhe self._f_idx = f_idx self._ops = [] def add_op(self, row_he, col_he, op): """ Add an block operator to the list. """ self._ops.append( (self._f_idx(row_he), self._f_idx(col_he), op) ) def gather(self): """ Create the HEOM liouvillian from a sorted list of smaller (fast) CSR matrices. .. note:: The list of operators contains tuples of the form ``(row_idx, col_idx, op)``. The row_idx and col_idx give the *block* row and column for each op. An operator with block indices ``(N, M)`` is placed at position ``[N * block: (N + 1) * block, M * block: (M + 1) * block]`` in the output matrix. Returns ------- rhs : :obj:`qutip.fastsparse.fast_csr_matrix` A combined matrix of shape ``(block * nhe, block * ne)``. """ block = self._block nhe = self._nhe ops = self._ops shape = (block * nhe, block * nhe) if not ops: return sp.csr_matrix(shape, dtype=np.complex128) ops.sort() nnz = sum(op.nnz for _, _, op in ops) indptr = np.zeros(shape[0] + 1, dtype=np.int32) indices = np.zeros(nnz, dtype=np.int32) data = np.zeros(nnz, dtype=np.complex128) end = 0 op_idx = 0 op_len = len(ops) for row_idx in range(nhe): prev_op_idx = op_idx while op_idx < op_len: if ops[op_idx][0] != row_idx: break op_idx += 1 row_ops = ops[prev_op_idx: op_idx] rowpos = row_idx * block for op_row in range(block): for _, col_idx, op in row_ops: colpos = col_idx * block op_row_start = op.indptr[op_row] op_row_end = op.indptr[op_row + 1] op_row_len = op_row_end - op_row_start if op_row_len == 0: continue indices[end: end + op_row_len] = ( op.indices[op_row_start: op_row_end] + colpos ) data[end: end + op_row_len] = ( op.data[op_row_start: op_row_end] ) end += op_row_len indptr[rowpos + op_row + 1] = end return fast_csr_matrix( (data, indices, indptr), shape=shape, dtype=np.complex128, )