Source code for qutip.eseries

__all__ = ['eseries', 'esval', 'esspec', 'estidy']

import numpy as np
import scipy.sparse as sp
from qutip.qobj import Qobj

import warnings


[docs]class eseries(): """ Class representation of an exponential-series expansion of time-dependent quantum objects. .. deprecated:: 4.6.0 :obj:`~eseries` will be removed in QuTiP 5. Please use :obj:`~qutip.QobjEvo` for general time-dependence. Attributes ---------- ampl : ndarray Array of amplitudes for exponential series. rates : ndarray Array of rates for exponential series. dims : list Dimensions of exponential series components shape : list Shape corresponding to exponential series components Methods ------- value(tlist) Evaluate an exponential series at the times listed in tlist spec(wlist) Evaluate the spectrum of an exponential series at frequencies in wlist. tidyup() Returns a tidier version of the exponential series """ __array_priority__ = 101 def __init__(self, q=None, s=np.array([])): warnings.warn( "eseries is to be removed in QuTiP 5.0," " consider swapping to QobjEvo for general time dependence.", DeprecationWarning, stacklevel=2, ) if isinstance(s, (int, float, complex)): s = np.array([s]) if q is None: self.ampl = np.array([]) self.rates = np.array([]) self.dims = [[1, 1]] self.shape = [1, 1] elif (len(s) == 0): if isinstance(q, eseries): self.ampl = q.ampl self.rates = q.rates self.dims = q.dims self.shape = q.shape elif isinstance(q, (np.ndarray, list)): num = len(q) # number of elements in q if any([Qobj(x).shape != Qobj(q[0]).shape for x in q]): raise TypeError('All amplitudes must have same dimension.') self.ampl = np.empty((num,), dtype=object) self.ampl[:] = q self.rates = np.zeros((num,)) self.dims = self.ampl[0].dims self.shape = self.ampl[0].shape elif isinstance(q, Qobj): qo = Qobj(q) self.ampl = np.empty((1,), dtype=object) self.ampl[0] = qo self.rates = np.array([0]) self.dims = qo.dims self.shape = qo.shape else: self.ampl = np.array([q]) self.rates = np.array([0]) self.dims = [[1, 1]] self.shape = [1, 1] elif len(s) != 0: if isinstance(q, (np.ndarray, list)): num = len(q) if any([Qobj(x).shape != Qobj(q[0]).shape for x in q]): raise TypeError('All amplitudes must have same dimension.') self.ampl = np.empty((num,), dtype=object) self.ampl[:] = [Qobj(qq) for qq in q] self.dims = self.ampl[0].dims self.shape = self.ampl[0].shape else: num = 1 self.ampl = np.empty((num,), dtype=object) self.ampl[0] = Qobj(q) self.dims = self.ampl[0].dims self.shape = self.ampl[0].shape if isinstance(s, (int, complex, float)): if num != 1: raise TypeError('Number of rates must match number ' + 'of members in object array.') self.rates = np.array([s]) elif isinstance(s, (np.ndarray, list)): if len(s) != num: raise TypeError('Number of rates must match number ' + ' of members in object array.') self.rates = np.array(s) if len(self.ampl) != 0: # Sort rates from lowest to highest. order = np.argsort(self.rates) self.ampl, self.rates = self.ampl[order], self.rates[order] def __str__(self): # string of ESERIES information self.tidyup() s = "ESERIES object: " + str(len(self.ampl)) + " terms\n" s += "Hilbert space dimensions: " + str(self.dims) + "\n" for k in range(0, len(self.ampl)): s += "Exponent #" + str(k) + " = " + str(self.rates[k]) + "\n" if isinstance(self.ampl[k], sp.spmatrix): s += str(self.ampl[k]) + "\n" else: s += str(self.ampl[k]) + "\n" return s def __repr__(self): return self.__str__() # Addition with ESERIES on left (ex. ESERIES+5) def __add__(self, other): right = eseries(other) if self.dims != right.dims: raise TypeError("Incompatible operands for ESERIES addition") out = eseries() out.dims = self.dims out.shape = self.shape out.ampl = np.append(self.ampl, right.ampl) out.rates = np.append(self.rates, right.rates) return out # Addition with ESERIES on right(ex. 5+ESERIES) def __radd__(self, other): return self + other # define negation of ESERIES def __neg__(self): out = eseries() out.dims = self.dims out.shape = self.shape out.ampl = -self.ampl out.rates = self.rates return out # Subtraction with ESERIES on left (ex. ESERIES-5) def __sub__(self, other): return self + (-other) # Subtraction with ESERIES on right (ex. 5-ESERIES) def __rsub__(self, other): return other + (-self) # Multiplication with ESERIES on left (ex. ESERIES*other) def __mul__(self, other): if isinstance(other, eseries): out = eseries() out.dims = self.dims out.shape = self.shape for i in range(len(self.rates)): for j in range(len(other.rates)): out += eseries(self.ampl[i] * other.ampl[j], self.rates[i] + other.rates[j]) return out else: out = eseries() out.dims = self.dims out.shape = self.shape out.ampl = self.ampl * other out.rates = self.rates return out # Multiplication with ESERIES on right (ex. other*ESERIES) def __rmul__(self, other): out = eseries() out.dims = self.dims out.shape = self.shape out.ampl = other * self.ampl out.rates = self.rates return out # # todo: # select_ampl, select_rate: functions to select some terms given the ampl # or rate. This is done with {ampl} or (rate) in qotoolbox. we should use # functions with descriptive names for this. # # # evaluate the eseries for a list of times #
[docs] def value(self, tlist): """ Evaluates an exponential series at the times listed in ``tlist``. Parameters ---------- tlist : ndarray Times at which to evaluate exponential series. Returns ------- val_list : ndarray Values of exponential at times in ``tlist``. """ if self.ampl is None or len(self.ampl) == 0: # no terms, evalue to zero return np.zeros(np.shape(tlist)) if isinstance(tlist, float) or isinstance(tlist, int): tlist = [tlist] if isinstance(self.ampl[0], Qobj): # amplitude vector contains quantum objects val_list = np.empty((len(tlist),), dtype=object) for j in range(len(tlist)): exp_factors = np.exp(np.array(self.rates) * tlist[j]) val = 0 for i in range(len(self.ampl)): val += self.ampl[i] * exp_factors[i] val_list[j] = val else: # the amplitude vector contains c numbers val_list = np.zeros(np.size(tlist), dtype=complex) for j in range(len(tlist)): exp_factors = np.exp(np.array(self.rates) * tlist[j]) val_list[j] = np.sum(np.dot(self.ampl, exp_factors)) if all(np.imag(val_list) == 0): val_list = np.real(val_list) if len(tlist) == 1: return val_list[0] else: return val_list
[docs] def spec(self, wlist): """ Evaluate the spectrum of an exponential series at frequencies in ``wlist``. Parameters ---------- wlist : array_like Array/list of frequenies. Returns ------- val_list : ndarray Values of exponential series at frequencies in ``wlist``. """ val_list = np.zeros(np.size(wlist)) for i in range(len(wlist)): val_list[i] = 2 * np.real( np.dot(self.ampl, 1. / (1.0j * wlist[i] - self.rates))) return val_list
[docs] def tidyup(self, *args): """ Returns a tidier version of exponential series. """ # # combine duplicate entries (same rate) # rate_tol = 1e-10 ampl_tol = 1e-10 ampl_dict = {} unique_rates = {} ur_len = 0 for r_idx in range(len(self.rates)): # look for a matching rate in the list of unique rates idx = -1 for ur_key in unique_rates.keys(): if abs(self.rates[r_idx] - unique_rates[ur_key]) < rate_tol: idx = ur_key break if idx == -1: # no matching rate, add it unique_rates[ur_len] = self.rates[r_idx] ampl_dict[ur_len] = [self.ampl[r_idx]] ur_len = len(unique_rates) else: # found matching rate, append amplitude to its list ampl_dict[idx].append(self.ampl[r_idx]) # create new amplitude and rate list with only unique rates, and # nonzero amplitudes rates, ampl = [], [] for ur_key in unique_rates.keys(): total_ampl = sum(ampl_dict[ur_key]) if (isinstance(total_ampl, float) or isinstance(total_ampl, complex)): if abs(total_ampl) > ampl_tol: rates.append(unique_rates[ur_key]) ampl.append(total_ampl) else: if abs(total_ampl.full()).max() > ampl_tol: rates.append(unique_rates[ur_key]) ampl.append(total_ampl) self.rates = np.array(rates) self.ampl = np.empty((len(ampl),), dtype=object) self.ampl[:] = ampl return self
# ----------------------------------------------------------------------------- # # wrapper functions for accessing the class methods (for compatibility with # quantum optics toolbox) # def esval(es, tlist): """ Evaluates an exponential series at the times listed in ``tlist``. Parameters ---------- tlist : ndarray Times at which to evaluate exponential series. Returns ------- val_list : ndarray Values of exponential at times in ``tlist``. """ return es.value(tlist) def esspec(es, wlist): """Evaluate the spectrum of an exponential series at frequencies in ``wlist``. Parameters ---------- wlist : array_like Array/list of frequenies. Returns ------- val_list : ndarray Values of exponential series at frequencies in ``wlist``. """ return es.spec(wlist) def estidy(es, *args): """ Returns a tidier version of exponential series. """ return es.tidyup()