Source code for qutip.control.pulsegen

# -*- coding: utf-8 -*-
# @author: Alexander Pitchford
# @email1: agp1@aber.ac.uk
# @email2: alex.pitchford@gmail.com
# @organization: Aberystwyth University
# @supervisor: Daniel Burgarth

"""
Pulse generator - Generate pulses for the timeslots
Each class defines a gen_pulse function that produces a float array of
size num_tslots. Each class produces a differ type of pulse.
See the class and gen_pulse function descriptions for details
"""

import numpy as np

import qutip.logging_utils as logging
logger = logging.get_logger()

import qutip.control.dynamics as dynamics
import qutip.control.errors as errors

[docs]def create_pulse_gen(pulse_type='RND', dyn=None, pulse_params=None): """ Create and return a pulse generator object matching the given type. The pulse generators each produce a different type of pulse, see the gen_pulse function description for details. These are the random pulse options: RND - Independent random value in each timeslot RNDFOURIER - Fourier series with random coefficients RNDWAVES - Summation of random waves RNDWALK1 - Random change in amplitude each timeslot RNDWALK2 - Random change in amp gradient each timeslot These are the other non-periodic options: LIN - Linear, i.e. contant gradient over the time ZERO - special case of the LIN pulse, where the gradient is 0 These are the periodic options SINE - Sine wave SQUARE - Square wave SAW - Saw tooth wave TRIANGLE - Triangular wave If a Dynamics object is passed in then this is used in instantiate the PulseGen, meaning that some timeslot and amplitude properties are copied over. """ if pulse_type == 'RND': return PulseGenRandom(dyn, params=pulse_params) if pulse_type == 'RNDFOURIER': return PulseGenRndFourier(dyn, params=pulse_params) if pulse_type == 'RNDWAVES': return PulseGenRndWaves(dyn, params=pulse_params) if pulse_type == 'RNDWALK1': return PulseGenRndWalk1(dyn, params=pulse_params) if pulse_type == 'RNDWALK2': return PulseGenRndWalk2(dyn, params=pulse_params) elif pulse_type == 'LIN': return PulseGenLinear(dyn, params=pulse_params) elif pulse_type == 'ZERO': return PulseGenZero(dyn, params=pulse_params) elif pulse_type == 'SINE': return PulseGenSine(dyn, params=pulse_params) elif pulse_type == 'SQUARE': return PulseGenSquare(dyn, params=pulse_params) elif pulse_type == 'SAW': return PulseGenSaw(dyn, params=pulse_params) elif pulse_type == 'TRIANGLE': return PulseGenTriangle(dyn, params=pulse_params) elif pulse_type == 'GAUSSIAN': return PulseGenGaussian(dyn, params=pulse_params) elif pulse_type == 'CRAB_FOURIER': return PulseGenCrabFourier(dyn, params=pulse_params) elif pulse_type == 'GAUSSIAN_EDGE': return PulseGenGaussianEdge(dyn, params=pulse_params) else: raise ValueError("No option for pulse_type '{}'".format(pulse_type))
[docs]class PulseGen(object): """ Pulse generator Base class for all Pulse generators The object can optionally be instantiated with a Dynamics object, in which case the timeslots and amplitude scaling and offset are copied from that. Otherwise the class can be used independently by setting: tau (array of timeslot durations) or num_tslots and pulse_time for equally spaced timeslots Attributes ---------- num_tslots : integer Number of timeslots, aka timeslices (copied from Dynamics if given) pulse_time : float total duration of the pulse (copied from Dynamics.evo_time if given) scaling : float linear scaling applied to the pulse (copied from Dynamics.initial_ctrl_scaling if given) offset : float linear offset applied to the pulse (copied from Dynamics.initial_ctrl_offset if given) tau : array[num_tslots] of float Duration of each timeslot (copied from Dynamics if given) lbound : float Lower boundary for the pulse amplitudes Note that the scaling and offset attributes can be used to fully bound the pulse for all generators except some of the random ones This bound (if set) may result in additional shifting / scaling Default is -Inf ubound : float Upper boundary for the pulse amplitudes Note that the scaling and offset attributes can be used to fully bound the pulse for all generators except some of the random ones This bound (if set) may result in additional shifting / scaling Default is Inf periodic : boolean True if the pulse generator produces periodic pulses random : boolean True if the pulse generator produces random pulses log_level : integer level of messaging output from the logger. Options are attributes of qutip.logging_utils, in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effectively 'quiet' execution, assuming everything runs as expected. The default NOTSET implies that the level will be taken from the QuTiP settings file, which by default is WARN """ def __init__(self, dyn=None, params=None): self.parent = dyn self.params = params self.reset()
[docs] def reset(self): """ reset attributes to default values """ if isinstance(self.parent, dynamics.Dynamics): dyn = self.parent self.num_tslots = dyn.num_tslots self.pulse_time = dyn.evo_time self.scaling = dyn.initial_ctrl_scaling self.offset = dyn.initial_ctrl_offset self.tau = dyn.tau self.log_level = dyn.log_level else: self.num_tslots = 100 self.pulse_time = 1.0 self.scaling = 1.0 self.tau = None self.offset = 0.0 self._uses_time = False self.time = None self._pulse_initialised = False self.periodic = False self.random = False self.lbound = None self.ubound = None self.ramping_pulse = None self.apply_params()
[docs] def apply_params(self, params=None): """ Set object attributes based on the dictionary (if any) passed in the instantiation, or passed as a parameter This is called during the instantiation automatically. The key value pairs are the attribute name and value """ if not params: params = self.params if isinstance(params, dict): self.params = params for key in params: setattr(self, key, params[key])
@property def log_level(self): return logger.level @log_level.setter def log_level(self, lvl): """ Set the log_level attribute and set the level of the logger that is call logger.setLevel(lvl) """ logger.setLevel(lvl)
[docs] def gen_pulse(self): """ returns the pulse as an array of vales for each timeslot Must be implemented by subclass """ # must be implemented by subclass raise errors.UsageError( "No method defined for generating a pulse. " " Suspect base class was used where sub class should have been")
[docs] def init_pulse(self): """ Initialise the pulse parameters """ if self.tau is None: self.tau = np.ones(self.num_tslots, dtype='f') * \ self.pulse_time/self.num_tslots if self._uses_time: self.time = np.zeros(self.num_tslots, dtype=float) for k in range(self.num_tslots-1): self.time[k+1] = self.time[k] + self.tau[k] self._pulse_initialised = True if not self.lbound is None: if np.isinf(self.lbound): self.lbound = None if not self.ubound is None: if np.isinf(self.ubound): self.ubound = None if not self.ubound is None and not self.lbound is None: if self.ubound < self.lbound: raise ValueError("ubound cannot be less the lbound")
def _apply_bounds_and_offset(self, pulse): """ Ensure that the randomly generated pulse fits within the bounds (after applying the offset) Assumes that pulses passed are centered around zero (on average) """ if self.lbound is None and self.ubound is None: return pulse + self.offset max_amp = max(pulse) min_amp = min(pulse) if ((self.ubound is None or max_amp + self.offset <= self.ubound) and (self.lbound is None or min_amp + self.offset >= self.lbound)): return pulse + self.offset # Some shifting / scaling is required. if self.ubound is None or self.lbound is None: # One of the bounds is inf, so just shift the pulse if self.lbound is None: # max_amp + offset must exceed the ubound return pulse + self.ubound - max_amp else: # min_amp + offset must exceed the lbound return pulse + self.lbound - min_amp else: bound_range = self.ubound - self.lbound amp_range = max_amp - min_amp if max_amp - min_amp > bound_range: # pulse range is too high, it must be scaled pulse = pulse * bound_range / amp_range # otherwise the pulse should fit anyway return pulse + self.lbound - min(pulse) def _apply_ramping_pulse(self, pulse, ramping_pulse=None): if ramping_pulse is None: ramping_pulse = self.ramping_pulse if ramping_pulse is not None: pulse = pulse*ramping_pulse return pulse
[docs]class PulseGenZero(PulseGen): """ Generates a flat pulse """
[docs] def gen_pulse(self): """ Generate a pulse with the same value in every timeslot. The value will be zero, unless the offset is not zero, in which case it will be the offset """ pulse = np.zeros(self.num_tslots) return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenRandom(PulseGen): """ Generates random pulses as simply random values for each timeslot """
[docs] def reset(self): PulseGen.reset(self) self.random = True self.apply_params()
[docs] def gen_pulse(self): """ Generate a pulse of random values between 1 and -1 Values are scaled using the scaling property and shifted using the offset property Returns the pulse as an array of vales for each timeslot """ pulse = (2*np.random.random(self.num_tslots) - 1) * self.scaling return self._apply_bounds_and_offset(pulse)
class PulseGenRndFourier(PulseGen): """ Generates pulses by summing sine waves as a Fourier series with random coefficients Attributes ---------- scaling : float The pulses should fit approximately within -/+scaling (before the offset is applied) as it is used to set a maximum for each component wave Use bounds to be sure (copied from Dynamics.initial_ctrl_scaling if given) min_wavelen : float Minimum wavelength of any component wave Set by default to 1/10th of the pulse time """ def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.random = True self._uses_time = True try: self.min_wavelen = self.pulse_time / 10.0 except: self.min_wavelen = 0.1 self.apply_params() def gen_pulse(self, min_wavelen=None): """ Generate a random pulse based on a Fourier series with a minimum wavelength """ if min_wavelen is not None: self.min_wavelen = min_wavelen min_wavelen = self.min_wavelen if min_wavelen > self.pulse_time: raise ValueError("Minimum wavelength cannot be greater than " "the pulse time") if not self._pulse_initialised: self.init_pulse() # use some phase to avoid the first pulse being always 0 sum_wave = np.zeros(self.tau.shape) wavelen = 2.0*self.pulse_time t = self.time wl = [] while wavelen > min_wavelen: wl.append(wavelen) wavelen = wavelen/2.0 num_comp_waves = len(wl) amp_scale = np.sqrt(8)*self.scaling / float(num_comp_waves) for wavelen in wl: amp = amp_scale*(np.random.rand()*2 - 1) phase_off = np.random.rand()*np.pi/2.0 curr_wave = amp*np.sin(2*np.pi*t/wavelen + phase_off) sum_wave += curr_wave return self._apply_bounds_and_offset(sum_wave) class PulseGenRndWaves(PulseGen): """ Generates pulses by summing sine waves with random frequencies amplitudes and phase offset Attributes ---------- scaling : float The pulses should fit approximately within -/+scaling (before the offset is applied) as it is used to set a maximum for each component wave Use bounds to be sure (copied from Dynamics.initial_ctrl_scaling if given) num_comp_waves : integer Number of component waves. That is the number of waves that are summed to make the pulse signal Set to 20 by default. min_wavelen : float Minimum wavelength of any component wave Set by default to 1/10th of the pulse time max_wavelen : float Maximum wavelength of any component wave Set by default to twice the pulse time """ def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.random = True self._uses_time = True self.num_comp_waves = 20 try: self.min_wavelen = self.pulse_time / 10.0 except: self.min_wavelen = 0.1 try: self.max_wavelen = 2*self.pulse_time except: self.max_wavelen = 10.0 self.apply_params() def gen_pulse(self, num_comp_waves=None, min_wavelen=None, max_wavelen=None): """ Generate a random pulse by summing sine waves with random freq, amplitude and phase offset """ if num_comp_waves is not None: self.num_comp_waves = num_comp_waves if min_wavelen is not None: self.min_wavelen = min_wavelen if max_wavelen is not None: self.max_wavelen = max_wavelen num_comp_waves = self.num_comp_waves min_wavelen = self.min_wavelen max_wavelen = self.max_wavelen if min_wavelen > self.pulse_time: raise ValueError("Minimum wavelength cannot be greater than " "the pulse time") if max_wavelen <= min_wavelen: raise ValueError("Maximum wavelength must be greater than " "the minimum wavelength") if not self._pulse_initialised: self.init_pulse() # use some phase to avoid the first pulse being always 0 sum_wave = np.zeros(self.tau.shape) t = self.time wl_range = max_wavelen - min_wavelen amp_scale = np.sqrt(8)*self.scaling / float(num_comp_waves) for n in range(num_comp_waves): amp = amp_scale*(np.random.rand()*2 - 1) phase_off = np.random.rand()*np.pi/2.0 wavelen = min_wavelen + np.random.rand()*wl_range curr_wave = amp*np.sin(2*np.pi*t/wavelen + phase_off) sum_wave += curr_wave return self._apply_bounds_and_offset(sum_wave) class PulseGenRndWalk1(PulseGen): """ Generates pulses by using a random walk algorithm Attributes ---------- scaling : float Used as the range for the starting amplitude Note must used bounds if values must be restricted. Also scales the max_d_amp value (copied from Dynamics.initial_ctrl_scaling if given) max_d_amp : float Maximum amount amplitude will change between timeslots Note this is also factored by the scaling attribute """ def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.random = True self.max_d_amp = 0.1 self.apply_params() def gen_pulse(self, max_d_amp=None): """ Generate a pulse by changing the amplitude a random amount between -max_d_amp and +max_d_amp at each timeslot. The walk will start at a random amplitude between -/+scaling. """ if max_d_amp is not None: self.max_d_amp = max_d_amp max_d_amp = self.max_d_amp*self.scaling if not self._pulse_initialised: self.init_pulse() walk = np.zeros(self.tau.shape) amp = self.scaling*(np.random.rand()*2 - 1) for k in range(len(walk)): walk[k] = amp amp += (np.random.rand()*2 - 1)*max_d_amp return self._apply_bounds_and_offset(walk) class PulseGenRndWalk2(PulseGen): """ Generates pulses by using a random walk algorithm Note this is best used with bounds as the walks tend to wander far Attributes ---------- scaling : float Used as the range for the starting amplitude Note must used bounds if values must be restricted. Also scales the max_d2_amp value (copied from Dynamics.initial_ctrl_scaling if given) max_d2_amp : float Maximum amount amplitude gradient will change between timeslots Note this is also factored by the scaling attribute """ def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.random = True self.max_d2_amp = 0.01 self.apply_params() def gen_pulse(self, init_grad_range=None, max_d2_amp=None): """ Generate a pulse by changing the amplitude gradient a random amount between -max_d2_amp and +max_d2_amp at each timeslot. The walk will start at a random amplitude between -/+scaling. The gradient will start at 0 """ if max_d2_amp is not None: self.max_d2_amp = max_d2_amp max_d2_amp = self.max_d2_amp if not self._pulse_initialised: self.init_pulse() walk = np.zeros(self.tau.shape) amp = self.scaling*(np.random.rand()*2 - 1) print("Start amp {}".format(amp)) grad = 0.0 print("Start grad {}".format(grad)) for k in range(len(walk)): walk[k] = amp grad += (np.random.rand()*2 - 1)*max_d2_amp amp += grad # print("grad {}".format(grad)) return self._apply_bounds_and_offset(walk)
[docs]class PulseGenLinear(PulseGen): """ Generates linear pulses Attributes ---------- gradient : float Gradient of the line. Note this is calculated from the start_val and end_val if these are given start_val : float Start point of the line. That is the starting amplitude end_val : float End point of the line. That is the amplitude at the start of the last timeslot """
[docs] def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.gradient = None self.start_val = -1.0 self.end_val = 1.0 self.apply_params()
[docs] def init_pulse(self, gradient=None, start_val=None, end_val=None): """ Calculate the gradient if pulse is defined by start and end point values """ PulseGen.init_pulse(self) if start_val is not None and end_val is not None: self.start_val = start_val self.end_val = end_val if self.start_val is not None and self.end_val is not None: self.gradient = float(self.end_val - self.start_val) / \ (self.pulse_time - self.tau[-1])
[docs] def gen_pulse(self, gradient=None, start_val=None, end_val=None): """ Generate a linear pulse using either the gradient and start value or using the end point to calulate the gradient Note that the scaling and offset parameters are still applied, so unless these values are the default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales for each timeslot """ if (gradient is not None or start_val is not None or end_val is not None): self.init_pulse(gradient, start_val, end_val) if not self._pulse_initialised: self.init_pulse() pulse = np.empty(self.num_tslots) t = 0.0 for k in range(self.num_tslots): y = self.gradient*t + self.start_val pulse[k] = self.scaling*y t = t + self.tau[k] return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenPeriodic(PulseGen): """ Intermediate class for all periodic pulse generators All of the periodic pulses range from -1 to 1 All have a start phase that can be set between 0 and 2pi Attributes ---------- num_waves : float Number of complete waves (cycles) that occur in the pulse. wavelen and freq calculated from this if it is given wavelen : float Wavelength of the pulse (assuming the speed is 1) freq is calculated from this if it is given freq : float Frequency of the pulse start_phase : float Phase of the pulse signal when t=0 """
[docs] def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.periodic = True self.num_waves = None self.freq = 1.0 self.wavelen = None self.start_phase = 0.0 self.apply_params()
[docs] def init_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None): """ Calculate the wavelength, frequency, number of waves etc from the each other and the other parameters If num_waves is given then the other parameters are worked from this Otherwise if the wavelength is given then it is the driver Otherwise the frequency is used to calculate wavelength and num_waves """ PulseGen.init_pulse(self) if start_phase is not None: self.start_phase = start_phase if num_waves is not None or wavelen is not None or freq is not None: self.num_waves = num_waves self.wavelen = wavelen self.freq = freq if self.num_waves is not None: self.freq = float(self.num_waves) / self.pulse_time self.wavelen = 1.0/self.freq elif self.wavelen is not None: self.freq = 1.0/self.wavelen self.num_waves = self.wavelen*self.pulse_time else: self.wavelen = 1.0/self.freq self.num_waves = self.wavelen*self.pulse_time
[docs]class PulseGenSine(PulseGenPeriodic): """ Generates sine wave pulses """
[docs] def gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None): """ Generate a sine wave pulse If no params are provided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs. returns the pulse as an array of vales for each timeslot """ if start_phase is not None: self.start_phase = start_phase if num_waves is not None or wavelen is not None or freq is not None: self.init_pulse(num_waves, wavelen, freq, start_phase) if not self._pulse_initialised: self.init_pulse() pulse = np.empty(self.num_tslots) t = 0.0 for k in range(self.num_tslots): phase = 2*np.pi*self.freq*t + self.start_phase pulse[k] = self.scaling*np.sin(phase) t = t + self.tau[k] return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenSquare(PulseGenPeriodic): """ Generates square wave pulses """
[docs] def gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None): """ Generate a square wave pulse If no parameters are pavided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs """ if start_phase is not None: self.start_phase = start_phase if num_waves is not None or wavelen is not None or freq is not None: self.init_pulse(num_waves, wavelen, freq, start_phase) if not self._pulse_initialised: self.init_pulse() pulse = np.empty(self.num_tslots) t = 0.0 for k in range(self.num_tslots): phase = 2*np.pi*self.freq*t + self.start_phase x = phase/(2*np.pi) y = 4*np.floor(x) - 2*np.floor(2*x) + 1 pulse[k] = self.scaling*y t = t + self.tau[k] return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenSaw(PulseGenPeriodic): """ Generates saw tooth wave pulses """
[docs] def gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None): """ Generate a saw tooth wave pulse If no parameters are pavided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs """ if start_phase is not None: self.start_phase = start_phase if num_waves is not None or wavelen is not None or freq is not None: self.init_pulse(num_waves, wavelen, freq, start_phase) if not self._pulse_initialised: self.init_pulse() pulse = np.empty(self.num_tslots) t = 0.0 for k in range(self.num_tslots): phase = 2*np.pi*self.freq*t + self.start_phase x = phase/(2*np.pi) y = 2*(x - np.floor(0.5 + x)) pulse[k] = self.scaling*y t = t + self.tau[k] return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenTriangle(PulseGenPeriodic): """ Generates triangular wave pulses """
[docs] def gen_pulse(self, num_waves=None, wavelen=None, freq=None, start_phase=None): """ Generate a sine wave pulse If no parameters are pavided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs """ if start_phase is not None: self.start_phase = start_phase if num_waves is not None or wavelen is not None or freq is not None: self.init_pulse(num_waves, wavelen, freq, start_phase) if not self._pulse_initialised: self.init_pulse() pulse = np.empty(self.num_tslots) t = 0.0 for k in range(self.num_tslots): phase = 2*np.pi*self.freq*t + self.start_phase + np.pi/2.0 x = phase/(2*np.pi) y = 2*np.abs(2*(x - np.floor(0.5 + x))) - 1 pulse[k] = self.scaling*y t = t + self.tau[k] return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenGaussian(PulseGen): """ Generates pulses with a Gaussian profile """
[docs] def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self._uses_time = True self.mean = 0.5*self.pulse_time self.variance = 0.5*self.pulse_time self.apply_params()
[docs] def gen_pulse(self, mean=None, variance=None): """ Generate a pulse with Gaussian shape. The peak is centre around the mean and the variance determines the breadth The scaling and offset attributes are applied as an amplitude and fixed linear offset. Note that the maximum amplitude will be scaling + offset. """ if not self._pulse_initialised: self.init_pulse() if mean: Tm = mean else: Tm = self.mean if variance: Tv = variance else: Tv = self.variance t = self.time T = self.pulse_time pulse = self.scaling*np.exp(-(t-Tm)**2/(2*Tv)) return self._apply_bounds_and_offset(pulse)
[docs]class PulseGenGaussianEdge(PulseGen): """ Generate pulses with inverted Gaussian ramping in and out It's intended use for a ramping modulation, which is often required in experimental setups. Attributes ---------- decay_time : float Determines the ramping rate. It is approximately the time required to bring the pulse to full amplitude It is set to 1/10 of the pulse time by default """
[docs] def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self._uses_time = True self.decay_time = self.pulse_time / 10.0 self.apply_params()
[docs] def gen_pulse(self, decay_time=None): """ Generate a pulse that starts and ends at zero and 1.0 in between then apply scaling and offset The tailing in and out is an inverted Gaussian shape """ if not self._pulse_initialised: self.init_pulse() t = self.time if decay_time: Td = decay_time else: Td = self.decay_time T = self.pulse_time pulse = 1.0 - np.exp(-t**2/Td) - np.exp(-(t-T)**2/Td) pulse = pulse*self.scaling return self._apply_bounds_and_offset(pulse)
### The following are pulse generators for the CRAB algorithm ### # AJGP 2015-05-14: # The intention is to have a more general base class that allows # setting of general basis functions
[docs]class PulseGenCrab(PulseGen): """ Base class for all CRAB pulse generators Note these are more involved in the optimisation process as they are used to produce piecewise control amplitudes each time new optimisation parameters are tried Attributes ---------- num_coeffs : integer Number of coefficients used for each basis function num_basis_funcs : integer Number of basis functions In this case set at 2 and should not be changed coeffs : float array[num_coeffs, num_basis_funcs] The basis coefficient values randomize_coeffs : bool If True (default) then the coefficients are set to some random values when initialised, otherwise they will all be equal to self.scaling """ def __init__(self, dyn=None, num_coeffs=None, params=None): self.parent = dyn self.num_coeffs = num_coeffs self.params = params self.reset()
[docs] def reset(self): """ reset attributes to default values """ PulseGen.reset(self) self.NUM_COEFFS_WARN_LVL = 20 self.DEF_NUM_COEFFS = 4 self._BSC_ALL = 1 self._BSC_GT_MEAN = 2 self._BSC_LT_MEAN = 3 self._uses_time = True self.time = None self.num_basis_funcs = 2 self.num_optim_vars = 0 self.coeffs = None self.randomize_coeffs = True self._num_coeffs_estimated = False self.guess_pulse_action = 'MODULATE' self.guess_pulse = None self.guess_pulse_func = None self.apply_params()
[docs] def init_pulse(self, num_coeffs=None): """ Set the initial freq and coefficient values """ PulseGen.init_pulse(self) self.init_coeffs(num_coeffs=num_coeffs) if self.guess_pulse is not None: self.init_guess_pulse() self._init_bounds() if self.log_level <= logging.DEBUG and not self._num_coeffs_estimated: logger.debug( "CRAB pulse initialised with {} coefficients per basis " "function, which means a total of {} " "optimisation variables for this pulse".format( self.num_coeffs, self.num_optim_vars))
# def generate_guess_pulse(self) # if isinstance(self.guess_pulsegen, PulseGen): # self.guess_pulse = self.guess_pulsegen.gen_pulse() # return self.guess_pulse
[docs] def init_coeffs(self, num_coeffs=None): """ Generate the initial ceofficent values. Parameters ---------- num_coeffs : integer Number of coefficients used for each basis function If given this overides the default and sets the attribute of the same name. """ if num_coeffs: self.num_coeffs = num_coeffs self._num_coeffs_estimated = False if not self.num_coeffs: if isinstance(self.parent, dynamics.Dynamics): dim = self.parent.get_drift_dim() self.num_coeffs = self.estimate_num_coeffs(dim) self._num_coeffs_estimated = True else: self.num_coeffs = self.DEF_NUM_COEFFS self.num_optim_vars = self.num_coeffs*self.num_basis_funcs if self._num_coeffs_estimated: if self.log_level <= logging.INFO: logger.info( "The number of CRAB coefficients per basis function " "has been estimated as {}, which means a total of {} " "optimisation variables for this pulse. Based on the " "dimension ({}) of the system".format( self.num_coeffs, self.num_optim_vars, dim)) # Issue warning if beyond the recommended level if self.log_level <= logging.WARN: if self.num_coeffs > self.NUM_COEFFS_WARN_LVL: logger.warn( "The estimated number of coefficients {} exceeds " "the amount ({}) recommended for efficient " "optimisation. You can set this level explicitly " "to suppress this message.".format( self.num_coeffs, self.NUM_COEFFS_WARN_LVL)) if self.randomize_coeffs: r = np.random.random([self.num_coeffs, self.num_basis_funcs]) self.coeffs = (2*r - 1.0) * self.scaling else: self.coeffs = np.ones([self.num_coeffs, self.num_basis_funcs])*self.scaling
[docs] def estimate_num_coeffs(self, dim): """ Estimate the number coefficients based on the dimensionality of the system. Returns ------- num_coeffs : int estimated number of coefficients """ num_coeffs = max(2, dim - 1) return num_coeffs
[docs] def get_optim_var_vals(self): """ Get the parameter values to be optimised Returns ------- list (or 1d array) of floats """ return self.coeffs.ravel().tolist()
[docs] def set_optim_var_vals(self, param_vals): """ Set the values of the any of the pulse generation parameters based on new values from the optimisation method Typically this will be the basis coefficients """ # Type and size checking avoided here as this is in the # main optmisation call sequence self.set_coeffs(param_vals)
def set_coeffs(self, param_vals): self.coeffs = param_vals.reshape( [self.num_coeffs, self.num_basis_funcs]) def init_guess_pulse(self): self.guess_pulse_func = None if not self.guess_pulse_action: logger.WARN("No guess pulse action given, hence ignored.") elif self.guess_pulse_action.upper() == 'MODULATE': self.guess_pulse_func = self.guess_pulse_modulate elif self.guess_pulse_action.upper() == 'ADD': self.guess_pulse_func = self.guess_pulse_add else: logger.WARN("No option for guess pulse action '{}' " ", hence ignored.".format(self.guess_pulse_action)) def guess_pulse_add(self, pulse): pulse = pulse + self.guess_pulse return pulse def guess_pulse_modulate(self, pulse): pulse = (1.0 + pulse)*self.guess_pulse return pulse def _init_bounds(self): add_guess_pulse_scale = False if self.lbound is None and self.ubound is None: # no bounds to apply self._bound_scale_cond = None elif self.lbound is None: # only upper bound if self.ubound > 0: self._bound_mean = 0.0 self._bound_scale = self.ubound else: add_guess_pulse_scale = True self._bound_scale = self.scaling*self.num_coeffs + \ self.get_guess_pulse_scale() self._bound_mean = -abs(self._bound_scale) + self.ubound self._bound_scale_cond = self._BSC_GT_MEAN elif self.ubound is None: # only lower bound if self.lbound < 0: self._bound_mean = 0.0 self._bound_scale = abs(self.lbound) else: self._bound_scale = self.scaling*self.num_coeffs + \ self.get_guess_pulse_scale() self._bound_mean = abs(self._bound_scale) + self.lbound self._bound_scale_cond = self._BSC_LT_MEAN else: # lower and upper bounds self._bound_mean = 0.5*(self.ubound + self.lbound) self._bound_scale = 0.5*(self.ubound - self.lbound) self._bound_scale_cond = self._BSC_ALL def get_guess_pulse_scale(self): scale = 0.0 if self.guess_pulse is not None: scale = max(np.amax(self.guess_pulse) - np.amin(self.guess_pulse), np.amax(self.guess_pulse)) return scale def _apply_bounds(self, pulse): """ Scaling the amplitudes using the tanh function if there are bounds """ if self._bound_scale_cond == self._BSC_ALL: pulse = np.tanh(pulse)*self._bound_scale + self._bound_mean return pulse elif self._bound_scale_cond == self._BSC_GT_MEAN: scale_where = pulse > self._bound_mean pulse[scale_where] = (np.tanh(pulse[scale_where])*self._bound_scale + self._bound_mean) return pulse elif self._bound_scale_cond == self._BSC_LT_MEAN: scale_where = pulse < self._bound_mean pulse[scale_where] = (np.tanh(pulse[scale_where])*self._bound_scale + self._bound_mean) return pulse else: return pulse
[docs]class PulseGenCrabFourier(PulseGenCrab): """ Generates a pulse using the Fourier basis functions, i.e. sin and cos Attributes ---------- freqs : float array[num_coeffs] Frequencies for the basis functions randomize_freqs : bool If True (default) the some random offset is applied to the frequencies """
[docs] def reset(self): """ reset attributes to default values """ PulseGenCrab.reset(self) self.freqs = None self.randomize_freqs = True
[docs] def init_pulse(self, num_coeffs=None): """ Set the initial freq and coefficient values """ PulseGenCrab.init_pulse(self) self.init_freqs()
[docs] def init_freqs(self): """ Generate the frequencies These are the Fourier harmonics with a uniformly distributed random offset """ self.freqs = np.empty(self.num_coeffs) ff = 2*np.pi / self.pulse_time for i in range(self.num_coeffs): self.freqs[i] = ff*(i + 1) if self.randomize_freqs: self.freqs += np.random.random(self.num_coeffs) - 0.5
[docs] def gen_pulse(self, coeffs=None): """ Generate a pulse using the Fourier basis with the freqs and coeffs attributes. Parameters ---------- coeffs : float array[num_coeffs, num_basis_funcs] The basis coefficient values If given this overides the default and sets the attribute of the same name. """ if coeffs: self.coeffs = coeffs if not self._pulse_initialised: self.init_pulse() pulse = np.zeros(self.num_tslots) for i in range(self.num_coeffs): phase = self.freqs[i]*self.time # basis1comp = self.coeffs[i, 0]*np.sin(phase) # basis2comp = self.coeffs[i, 1]*np.cos(phase) # pulse += basis1comp + basis2comp pulse += self.coeffs[i, 0]*np.sin(phase) + \ self.coeffs[i, 1]*np.cos(phase) if self.guess_pulse_func: pulse = self.guess_pulse_func(pulse) if self.ramping_pulse is not None: pulse = self._apply_ramping_pulse(pulse) return self._apply_bounds(pulse)