Source code for qutip.simdiag

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################

__all__ = ['simdiag']

import numpy as np
import scipy.linalg as la
from qutip.qobj import Qobj


[docs]def simdiag(ops, evals=True): """Simultaneous diagonalization of commuting Hermitian matrices. Parameters ---------- ops : list/array ``list`` or ``array`` of qobjs representing commuting Hermitian operators. Returns -------- eigs : tuple Tuple of arrays representing eigvecs and eigvals of quantum objects corresponding to simultaneous eigenvectors and eigenvalues for each operator. """ tol = 1e-14 start_flag = 0 if not any(ops): raise ValueError('Need at least one input operator.') if not isinstance(ops, (list, np.ndarray)): ops = np.array([ops]) num_ops = len(ops) for jj in range(num_ops): A = ops[jj] shape = A.shape if shape[0] != shape[1]: raise TypeError('Matricies must be square.') if start_flag == 0: s = shape[0] if s != shape[0]: raise TypeError('All matrices. must be the same shape') if not A.isherm: raise TypeError('Matricies must be Hermitian') for kk in range(jj): B = ops[kk] if (A * B - B * A).norm() / (A * B).norm() > tol: raise TypeError('Matricies must commute.') A = ops[0] eigvals, eigvecs = la.eig(A.full()) zipped = list(zip(-eigvals, range(len(eigvals)))) zipped.sort() ds, perm = zip(*zipped) ds = -np.real(np.array(ds)) perm = np.array(perm) eigvecs_array = np.array( [np.zeros((A.shape[0], 1), dtype=complex) for k in range(A.shape[0])]) for kk in range(len(perm)): # matrix with sorted eigvecs in columns eigvecs_array[kk][:, 0] = eigvecs[:, perm[kk]] k = 0 rng = np.arange(len(eigvals)) while k < len(ds): # find degenerate eigenvalues, get indicies of degenerate eigvals inds = np.array(abs(ds - ds[k]) < max(tol, tol * abs(ds[k]))) inds = rng[inds] if len(inds) > 1: # if at least 2 eigvals are degenerate eigvecs_array[inds] = degen( tol, eigvecs_array[inds], np.array([ops[kk] for kk in range(1, num_ops)], dtype=object)) k = max(inds) + 1 eigvals_out = np.zeros((num_ops, len(ds)), dtype=float) kets_out = np.array([Qobj(eigvecs_array[j] / la.norm(eigvecs_array[j]), dims=[ops[0].dims[0], [1]], shape=[ops[0].shape[0], 1]) for j in range(len(ds))], dtype=object) if not evals: return kets_out else: for kk in range(num_ops): for j in range(len(ds)): eigvals_out[kk, j] = np.real(np.dot( eigvecs_array[j].conj().T, ops[kk].data * eigvecs_array[j])) return eigvals_out, kets_out
def degen(tol, in_vecs, ops): """ Private function that finds eigen vals and vecs for degenerate matrices.. """ n = len(ops) if n == 0: return in_vecs A = ops[0] vecs = np.column_stack(in_vecs) eigvals, eigvecs = la.eig(np.dot(vecs.conj().T, A.data.dot(vecs))) zipped = list(zip(-eigvals, range(len(eigvals)))) zipped.sort() ds, perm = zip(*zipped) ds = -np.real(np.array(ds)) perm = np.array(perm) vecsperm = np.zeros(eigvecs.shape, dtype=complex) for kk in range(len(perm)): # matrix with sorted eigvecs in columns vecsperm[:, kk] = eigvecs[:, perm[kk]] vecs_new = np.dot(vecs, vecsperm) vecs_out = np.array( [np.zeros((A.shape[0], 1), dtype=complex) for k in range(len(ds))]) for kk in range(len(perm)): # matrix with sorted eigvecs in columns vecs_out[kk][:, 0] = vecs_new[:, kk] k = 0 rng = np.arange(len(ds)) while k < len(ds): inds = np.array(abs(ds - ds[k]) < max( tol, tol * abs(ds[k]))) # get indicies of degenerate eigvals inds = rng[inds] if len(inds) > 1: # if at least 2 eigvals are degenerate vecs_out[inds] = degen(tol, vecs_out[inds], np.array([ops[jj] for jj in range(1, n)], dtype=object)) k = max(inds) + 1 return vecs_out