Source code for qutip.qip.algorithms.qft

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module provides the circuit implementation for Quantum Fourier Transform.
"""


import numpy as np
import scipy.sparse as sp
from qutip.qip.operations.gates import snot, cphase, swap
from qutip.qip.circuit import QubitCircuit
from qutip.qobj import Qobj


__all__ = ['qft', 'qft_steps', 'qft_gate_sequence']


[docs]def qft(N=1): """ Quantum Fourier Transform operator on N qubits. Parameters ---------- N : int Number of qubits. Returns ------- QFT: qobj Quantum Fourier transform operator. """ if N < 1: raise ValueError("Minimum value of N can be 1") N2 = 2 ** N phase = 2.0j * np.pi / N2 arr = np.arange(N2) L, M = np.meshgrid(arr, arr) L = phase * (L * M) L = np.exp(L) dims = [[2] * N, [2] * N] return Qobj(1.0 / np.sqrt(N2) * L, dims=dims)
[docs]def qft_steps(N=1, swapping=True): """ Quantum Fourier Transform operator on N qubits returning the individual steps as unitary matrices operating from left to right. Parameters ---------- N: int Number of qubits. swap: boolean Flag indicating sequence of swap gates to be applied at the end or not. Returns ------- U_step_list: list of qobj List of Hadamard and controlled rotation gates implementing QFT. """ if N < 1: raise ValueError("Minimum value of N can be 1") U_step_list = [] if N == 1: U_step_list.append(snot()) else: for i in range(N): for j in range(i): U_step_list.append(cphase(np.pi / (2 ** (i - j)), N, control=i, target=j)) U_step_list.append(snot(N, i)) if swapping: for i in range(N // 2): U_step_list.append(swap(N, [N - i - 1, i])) return U_step_list
[docs]def qft_gate_sequence(N=1, swapping=True): """ Quantum Fourier Transform operator on N qubits returning the gate sequence. Parameters ---------- N: int Number of qubits. swap: boolean Flag indicating sequence of swap gates to be applied at the end or not. Returns ------- qc: instance of QubitCircuit Gate sequence of Hadamard and controlled rotation gates implementing QFT. """ if N < 1: raise ValueError("Minimum value of N can be 1") qc = QubitCircuit(N) if N == 1: qc.add_gate("SNOT", targets=[0]) else: for i in range(N): for j in range(i): qc.add_gate("CPHASE", targets=[j], controls=[i], arg_label=r"{\pi/2^{%d}}" % (i - j), arg_value=np.pi / (2 ** (i - j))) qc.add_gate("SNOT", targets=[i]) if swapping: for i in range(N // 2): qc.add_gate("SWAP", targets=[N - i - 1, i]) return qc