# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
__all__ = ['propagator', 'propagator_steadystate']
import types
import numpy as np
import scipy.linalg as la
import functools
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.tensor import tensor
from qutip.operators import qeye
from qutip.rhs_generate import (rhs_generate, rhs_clear, _td_format_check)
from qutip.superoperator import (vec2mat, mat2vec,
                                 vector_to_operator, operator_to_vector)
from qutip.sparse import sp_reshape
from qutip.cy.sparse_utils import unit_row_norm
from qutip.mesolve import mesolve
from qutip.sesolve import sesolve
from qutip.states import basis
from qutip.solver import Options, _solver_safety_check, config
from qutip.parallel import parallel_map, _default_kwargs
from qutip.ui.progressbar import BaseProgressBar, TextProgressBar
[docs]def propagator(H, t, c_op_list=[], args={}, options=None,
               unitary_mode='batch', parallel=False,
               progress_bar=None, _safe_mode=True,
               **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.
    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).
    t : float or array-like
        Time or list of times for which to evaluate the propagator.
    c_op_list : list
        List of qobj collapse operators.
    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.
    options : :class:`qutip.Options`
        with options for the ODE solver.
    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually
        ('single').
    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the
        unitary_mode settings if set to True.
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.
    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.
    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()
    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()
    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t
    if _safe_mode:
        _solver_safety_check(H, None, c_ops=c_op_list, e_ops=[], args=args)
    td_type = _td_format_check(H, c_op_list, solver='me')
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
        if unitary_mode =='batch':
            # batch don't work with function Hamiltonian
            unitary_mode = 'single'
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H
    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function
        N = H0.shape[0]
        dims = H0.dims
        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve, range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            if unitary_mode == 'single':
                output = sesolve(H, qeye(dims[0]), tlist, [], args, options,
                                 _safe_mode=False)
                if len(tlist) == 2:
                    return output.states[-1]
                else:
                    return output.states
            elif unitary_mode =='batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N+1)*m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows, dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data, (_rows, _cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                options.normalize_output = False
                output = sesolve(H2, psi0, tlist, [],
                                 args=args, options=options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()
            else:
                raise Exception('Invalid unitary mode.')
    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                                  task_args=(
                                      sqrt_N, H, tlist, c_op_list, args,
                                      options),
                                  progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            rho0 = qeye(N,N)
            rho0.dims = [[sqrt_N, sqrt_N], [sqrt_N, sqrt_N]]
            output = mesolve(H, psi0, tlist, [], args, options,
                             _safe_mode=False)
            if len(tlist) == 2:
                return output.states[-1]
            else:
                return output.states
    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]
        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        if parallel:
            output = parallel_map(_parallel_mesolve, range(N * N),
                                  task_args=(
                                      N, H, tlist, c_op_list, args, options),
                                  progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                          shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()
    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims)
                             for k in range(len(tlist))], dtype=object)
        else:
            return np.array([Qobj(u[:, :, k], dims=dims)
                             for k in range(len(tlist))], dtype=object) 
def _get_min_and_index(lst):
    """
    Private function for obtaining min and max indicies.
    """
    minval, minidx = lst[0], 0
    for i, v in enumerate(lst[1:]):
        if v < minval:
            minval, minidx = v, i + 1
    return minval, minidx
[docs]def propagator_steadystate(U):
    """Find the steady state for successive applications of the propagator
    :math:`U`.
    Parameters
    ----------
    U : qobj
        Operator representing the propagator.
    Returns
    -------
    a : qobj
        Instance representing the steady-state density matrix.
    """
    evals, evecs = la.eig(U.full())
    shifted_vals = np.abs(evals - 1.0)
    ev_idx = np.argmin(shifted_vals)
    ev_min = shifted_vals[ev_idx]
    evecs = evecs.T
    rho = Qobj(vec2mat(evecs[ev_idx]), dims=U.dims[0])
    rho = rho * (1.0 / rho.tr())
    rho = 0.5 * (rho + rho.dag())  # make sure rho is herm
    rho.isherm = True
    return rho 
def _parallel_sesolve(n, N, H, tlist, args, options):
    psi0 = basis(N, n)
    output = sesolve(H, psi0, tlist, [], args, options, _safe_mode=False)
    return output
def _parallel_mesolve(n, N, H, tlist, c_op_list, args, options):
    col_idx, row_idx = np.unravel_index(n, (N, N))
    rho0 = Qobj(sp.csr_matrix(([1], ([row_idx], [col_idx])),
                              shape=(N,N), dtype=complex))
    output = mesolve(H, rho0, tlist, c_op_list, [], args, options,
                     _safe_mode=False)
    return output