Source code for qutip.qip.gates

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
import numbers
from collections.abc import Iterable
from itertools import product
from functools import partial, reduce
from operator import mul

import numpy as np
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.operators import identity, qeye, sigmax
from qutip.tensor import tensor
from qutip.states import fock_dm


__all__ = ['rx', 'ry', 'rz', 'sqrtnot', 'snot', 'phasegate', 'qrot',
           'cphase', 'cnot',
           'csign', 'berkeley', 'swapalpha', 'swap', 'iswap', 'sqrtswap',
           'sqrtiswap', 'fredkin', 'molmer_sorensen',
           'toffoli', 'rotation', 'controlled_gate',
           'globalphase', 'hadamard_transform', 'gate_sequence_product',
           'gate_expand_1toN', 'gate_expand_2toN', 'gate_expand_3toN',
           'qubit_clifford_group', 'expand_oper']

#
# Single Qubit Gates
#


[docs]def rx(phi, N=None, target=0): """Single-qubit rotation for operator sigmax with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rx(phi), N, target) else: return Qobj([[np.cos(phi / 2), -1j * np.sin(phi / 2)], [-1j * np.sin(phi / 2), np.cos(phi / 2)]])
[docs]def ry(phi, N=None, target=0): """Single-qubit rotation for operator sigmay with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(ry(phi), N, target) else: return Qobj([[np.cos(phi / 2), -np.sin(phi / 2)], [np.sin(phi / 2), np.cos(phi / 2)]])
[docs]def rz(phi, N=None, target=0): """Single-qubit rotation for operator sigmaz with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rz(phi), N, target) else: return Qobj([[np.exp(-1j * phi / 2), 0], [0, np.exp(1j * phi / 2)]])
[docs]def sqrtnot(N=None, target=0): """Single-qubit square root NOT gate. Returns ------- result : qobj Quantum object for operator describing the square root NOT gate. """ if N is not None: return gate_expand_1toN(sqrtnot(), N, target) else: return Qobj([[0.5 + 0.5j, 0.5 - 0.5j], [0.5 - 0.5j, 0.5 + 0.5j]])
[docs]def snot(N=None, target=0): """Quantum object representing the SNOT (Hadamard) gate. Returns ------- snot_gate : qobj Quantum object representation of SNOT gate. Examples -------- >>> snot() Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.70710678+0.j 0.70710678+0.j] [ 0.70710678+0.j -0.70710678+0.j]] """ if N is not None: return gate_expand_1toN(snot(), N, target) else: return 1 / np.sqrt(2.0) * Qobj([[1, 1], [1, -1]])
[docs]def phasegate(theta, N=None, target=0): """ Returns quantum object representing the phase shift gate. Parameters ---------- theta : float Phase rotation angle. Returns ------- phase_gate : qobj Quantum object representation of phase shift gate. Examples -------- >>> phasegate(pi/4) Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 1.00000000+0.j 0.00000000+0.j ] [ 0.00000000+0.j 0.70710678+0.70710678j]] """ if N is not None: return gate_expand_1toN(phasegate(theta), N, target) else: return Qobj([[1, 0], [0, np.exp(1.0j * theta)]], dims=[[2], [2]])
def qrot(theta, phi, N=None, target=0): """ Single qubit rotation driving by Rabi oscillation with 0 detune. Parameters ---------- phi : float The inital phase of the rabi pulse. theta : float The duration of the rabi pulse. N : int Number of qubits in the system. target : int The index of the target qubit. Returns ------- qrot_gate : :class:`qutip.Qobj` Quantum object representation of physical qubit rotation under a rabi pulse. """ if N is not None: return expand_oper(qrot(theta, phi), N=N, targets=target) else: return Qobj( [ [np.cos(theta/2.), -1.j*np.exp(-1.j*phi)*np.sin(theta/2.)], [-1.j*np.exp(1.j*phi)*np.sin(theta/2.), np.cos(theta/2.)] ]) # # 2 Qubit Gates #
[docs]def cphase(theta, N=2, control=0, target=1): """ Returns quantum object representing the controlled phase shift gate. Parameters ---------- theta : float Phase rotation angle. N : integer The number of qubits in the target space. control : integer The index of the control qubit. target : integer The index of the target qubit. Returns ------- U : qobj Quantum object representation of controlled phase gate. """ if N < 1 or target < 0 or control < 0: raise ValueError("Minimum value: N=1, control=0 and target=0") if control >= N or target >= N: raise ValueError("control and target need to be smaller than N") U_list1 = [identity(2)] * N U_list2 = [identity(2)] * N U_list1[control] = fock_dm(2, 1) U_list1[target] = phasegate(theta) U_list2[control] = fock_dm(2, 0) U = tensor(U_list1) + tensor(U_list2) return U
[docs]def cnot(N=None, control=0, target=1): """ Quantum object representing the CNOT gate. Returns ------- cnot_gate : qobj Quantum object representation of CNOT gate Examples -------- >>> cnot() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]] """ if (control == 1 and target == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(cnot(), N, control, target) else: return Qobj([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]], dims=[[2, 2], [2, 2]])
[docs]def csign(N=None, control=0, target=1): """ Quantum object representing the CSIGN gate. Returns ------- csign_gate : qobj Quantum object representation of CSIGN gate Examples -------- >>> csign() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j -1.+0.j]] """ if (control == 1 and target == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(csign(), N, control, target) else: return Qobj([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]], dims=[[2, 2], [2, 2]])
[docs]def berkeley(N=None, targets=[0, 1]): """ Quantum object representing the Berkeley gate. Returns ------- berkeley_gate : qobj Quantum object representation of Berkeley gate Examples -------- >>> berkeley() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j] [ 0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j] [ 0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j] [ 0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]] """ if (targets[0] == 1 and targets[1] == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(cnot(), N, targets=targets) else: return Qobj([[np.cos(np.pi / 8), 0, 0, 1.0j * np.sin(np.pi / 8)], [0, np.cos(3 * np.pi / 8), 1.0j * np.sin(3 * np.pi / 8), 0], [0, 1.0j * np.sin(3 * np.pi / 8), np.cos(3 * np.pi / 8), 0], [1.0j * np.sin(np.pi / 8), 0, 0, np.cos(np.pi / 8)]], dims=[[2, 2], [2, 2]])
[docs]def swapalpha(alpha, N=None, targets=[0, 1]): """ Quantum object representing the SWAPalpha gate. Returns ------- swapalpha_gate : qobj Quantum object representation of SWAPalpha gate Examples -------- >>> swapalpha(alpha) Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j] [ 0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if (targets[0] == 1 and targets[1] == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(cnot(), N, targets=targets) else: return Qobj([[1, 0, 0, 0], [0, 0.5 * (1 + np.exp(1.0j * np.pi * alpha)), 0.5 * (1 - np.exp(1.0j * np.pi * alpha)), 0], [0, 0.5 * (1 - np.exp(1.0j * np.pi * alpha)), 0.5 * (1 + np.exp(1.0j * np.pi * alpha)), 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def swap(N=None, targets=[0, 1]): """Quantum object representing the SWAP gate. Returns ------- swap_gate : qobj Quantum object representation of SWAP gate Examples -------- >>> swap() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(swap(), N, targets=targets) else: return Qobj([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def iswap(N=None, targets=[0, 1]): """Quantum object representing the iSWAP gate. Returns ------- iswap_gate : qobj Quantum object representation of iSWAP gate Examples -------- >>> iswap() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+1.j 0.+0.j] [ 0.+0.j 0.+1.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(iswap(), N, targets=targets) else: return Qobj([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]], dims=[[2, 2], [2, 2]])
[docs]def sqrtswap(N=None, targets=[0, 1]): """Quantum object representing the square root SWAP gate. Returns ------- sqrtswap_gate : qobj Quantum object representation of square root SWAP gate """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(sqrtswap(), N, targets=targets) else: return Qobj(np.array([[1, 0, 0, 0], [0, 0.5 + 0.5j, 0.5 - 0.5j, 0], [0, 0.5 - 0.5j, 0.5 + 0.5j, 0], [0, 0, 0, 1]]), dims=[[2, 2], [2, 2]])
[docs]def sqrtiswap(N=None, targets=[0, 1]): """Quantum object representing the square root iSWAP gate. Returns ------- sqrtiswap_gate : qobj Quantum object representation of square root iSWAP gate Examples -------- >>> sqrtiswap() Quantum object: dims = [[2, 2], [2, 2]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 1.00000000+0.j 0.00000000+0.j \ 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.70710678+0.j \ 0.00000000-0.70710678j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000-0.70710678j\ 0.70710678+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j \ 0.00000000+0.j 1.00000000+0.j]] """ if targets != [0, 1] and N is None: N = 2 if N is not None: return gate_expand_2toN(sqrtiswap(), N, targets=targets) else: return Qobj(np.array([[1, 0, 0, 0], [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], [0, 0, 0, 1]]), dims=[[2, 2], [2, 2]])
def molmer_sorensen(theta, N=None, targets=[0, 1]): """ Quantum object of a Mølmer–Sørensen gate. Parameters ---------- theta: float The duration of the interaction pulse. N: int Number of qubits in the system. target: int The indices of the target qubits. Returns ------- molmer_sorensen_gate: :class:`qutip.Qobj` Quantum object representation of the Mølmer–Sørensen gate. """ if targets != [0, 1] and N is None: N = 2 if N is not None: return expand_oper(molmer_sorensen(theta), N, targets=targets) else: return Qobj( [ [np.cos(theta/2.), 0, 0, -1.j*np.sin(theta/2.)], [0, np.cos(theta/2.), -1.j*np.sin(theta/2.), 0], [0, -1.j*np.sin(theta/2.), np.cos(theta/2.), 0], [-1.j*np.sin(theta/2.), 0, 0, np.cos(theta/2.)] ], dims=[[2, 2], [2, 2]]) # # 3 Qubit Gates #
[docs]def fredkin(N=None, control=0, targets=[1, 2]): """Quantum object representing the Fredkin gate. Returns ------- fredkin_gate : qobj Quantum object representation of Fredkin gate. Examples -------- >>> fredkin() Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \ shape = [8, 8], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]] """ if [control, targets[0], targets[1]] != [0, 1, 2] and N is None: N = 3 if N is not None: return gate_expand_3toN(fredkin(), N, [control, targets[0]], targets[1]) else: return Qobj([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]], dims=[[2, 2, 2], [2, 2, 2]])
[docs]def toffoli(N=None, controls=[0, 1], target=2): """Quantum object representing the Toffoli gate. Returns ------- toff_gate : qobj Quantum object representation of Toffoli gate. Examples -------- >>> toffoli() Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \ shape = [8, 8], type = oper, isHerm = True Qobj data = [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]] """ if [controls[0], controls[1], target] != [0, 1, 2] and N is None: N = 3 if N is not None: return gate_expand_3toN(toffoli(), N, controls, target) else: return Qobj([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]], dims=[[2, 2, 2], [2, 2, 2]])
# # Miscellaneous Gates #
[docs]def rotation(op, phi, N=None, target=0): """Single-qubit rotation for operator op with angle phi. Returns ------- result : qobj Quantum object for operator describing the rotation. """ if N is not None: return gate_expand_1toN(rotation(op, phi), N, target) else: return (-1j * op * phi / 2).expm()
[docs]def controlled_gate(U, N=2, control=0, target=1, control_value=1): """ Create an N-qubit controlled gate from a single-qubit gate U with the given control and target qubits. Parameters ---------- U : Qobj Arbitrary single-qubit gate. N : integer The number of qubits in the target space. control : integer The index of the first control qubit. target : integer The index of the target qubit. control_value : integer (1) The state of the control qubit that activates the gate U. Returns ------- result : qobj Quantum object representing the controlled-U gate. """ if [N, control, target] == [2, 0, 1]: return (tensor(fock_dm(2, control_value), U) + tensor(fock_dm(2, 1 - control_value), identity(2))) else: U2 = controlled_gate(U, control_value=control_value) return gate_expand_2toN(U2, N=N, control=control, target=target)
[docs]def globalphase(theta, N=1): """ Returns quantum object representing the global phase shift gate. Parameters ---------- theta : float Phase rotation angle. Returns ------- phase_gate : qobj Quantum object representation of global phase shift gate. Examples -------- >>> phasegate(pi/4) Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0.70710678+0.70710678j 0.00000000+0.j] [ 0.00000000+0.j 0.70710678+0.70710678j]] """ data = (np.exp(1.0j * theta) * sp.eye(2 ** N, 2 ** N, dtype=complex, format="csr")) return Qobj(data, dims=[[2] * N, [2] * N])
# # Operation on Gates # def _hamming_distance(x, bits=32): """ Calculate the bit-wise Hamming distance of x from 0: That is, the number 1s in the integer x. """ tot = 0 while x: tot += 1 x &= x - 1 return tot
[docs]def hadamard_transform(N=1): """Quantum object representing the N-qubit Hadamard gate. Returns ------- q : qobj Quantum object representation of the N-qubit Hadamard gate. """ data = 2 ** (-N / 2) * np.array([[(-1) ** _hamming_distance(i & j) for i in range(2 ** N)] for j in range(2 ** N)]) return Qobj(data, dims=[[2] * N, [2] * N])
[docs]def gate_sequence_product(U_list, left_to_right=True): """ Calculate the overall unitary matrix for a given list of unitary operations Parameters ---------- U_list : list List of gates implementing the quantum circuit. left_to_right : Boolean Check if multiplication is to be done from left to right. Returns ------- U_overall : qobj Overall unitary matrix of a given quantum circuit. """ U_overall = 1 for U in U_list: if left_to_right: U_overall = U * U_overall else: U_overall = U_overall * U return U_overall
def _powers(op, N): """ Generator that yields powers of an operator `op`, through to `N`. """ acc = qeye(op.dims[0]) yield acc for _ in range(N - 1): acc *= op yield acc def qubit_clifford_group(N=None, target=0): """ Generates the Clifford group on a single qubit, using the presentation of the group given by Ross and Selinger (http://www.mathstat.dal.ca/~selinger/newsynth/). Parameters ----------- N : int or None Number of qubits on which each operator is to be defined (default: 1). target : int Index of the target qubit on which the single-qubit Clifford operators are to act. Yields ------ op : Qobj Clifford operators, represented as Qobj instances. """ # The Ross-Selinger presentation of the single-qubit Clifford # group expresses each element in the form C_{ijk} = E^i X^j S^k # for gates E, X and S, and for i in range(3), j in range(2) and # k in range(4). # # We start by defining these gates. E is defined in terms of H, # \omega and S, so we define \omega and H first. w = np.exp(1j * 2 * np.pi / 8) H = snot() X = sigmax() S = phasegate(np.pi / 2) E = H * (S ** 3) * w ** 3 for op in map(partial(reduce, mul), product(_powers(E, 3), _powers(X, 2), _powers(S, 4))): # partial(reduce, mul) returns a function that takes products # of its argument, by analogy to sum. Note that by analogy, # sum can be written as partial(reduce, add). # product(...) yields the Cartesian product of its arguments. # Here, each element is a tuple (E**i, X**j, S**k) such that # partial(reduce, mul) acting on the tuple yields E**i * X**j * S**k. # Finally, we optionally expand the gate. if N is not None: yield gate_expand_1toN(op, N, target) else: yield op # # Gate Expand #
[docs]def gate_expand_1toN(U, N, target): """ Create a Qobj representing a one-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The one-qubit gate N : integer The number of qubits in the target space. target : integer The index of the target qubit. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if N < 1: raise ValueError("integer N must be larger or equal to 1") if target >= N: raise ValueError("target must be integer < integer N") return tensor([identity(2)] * (target) + [U] + [identity(2)] * (N - target - 1))
[docs]def gate_expand_2toN(U, N, control=None, target=None, targets=None): """ Create a Qobj representing a two-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The two-qubit gate N : integer The number of qubits in the target space. control : integer The index of the control qubit. target : integer The index of the target qubit. targets : list List of target qubits. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if targets is not None: control, target = targets if control is None or target is None: raise ValueError("Specify value of control and target") if N < 2: raise ValueError("integer N must be larger or equal to 2") if control >= N or target >= N: raise ValueError("control and not target must be integer < integer N") if control == target: raise ValueError("target and not control cannot be equal") p = list(range(N)) if target == 0 and control == 1: p[control], p[target] = p[target], p[control] elif target == 0: p[1], p[target] = p[target], p[1] p[1], p[control] = p[control], p[1] else: p[1], p[target] = p[target], p[1] p[0], p[control] = p[control], p[0] return tensor([U] + [identity(2)] * (N - 2)).permute(p)
[docs]def gate_expand_3toN(U, N, controls=[0, 1], target=2): """ Create a Qobj representing a three-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The three-qubit gate N : integer The number of qubits in the target space. controls : list The list of the control qubits. target : integer The index of the target qubit. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if N < 3: raise ValueError("integer N must be larger or equal to 3") if controls[0] >= N or controls[1] >= N or target >= N: raise ValueError("control and not target is None." " Must be integer < integer N") if (controls[0] == target or controls[1] == target or controls[0] == controls[1]): raise ValueError("controls[0], controls[1], and target" " cannot be equal") p = list(range(N)) p1 = list(range(N)) p2 = list(range(N)) if controls[0] <= 2 and controls[1] <= 2 and target <= 2: p[controls[0]] = 0 p[controls[1]] = 1 p[target] = 2 # # N > 3 cases # elif controls[0] == 0 and controls[1] == 1: p[2], p[target] = p[target], p[2] elif controls[0] == 0 and target == 2: p[1], p[controls[1]] = p[controls[1]], p[1] elif controls[1] == 1 and target == 2: p[0], p[controls[0]] = p[controls[0]], p[0] elif controls[0] == 1 and controls[1] == 0: p[controls[1]], p[controls[0]] = p[controls[0]], p[controls[1]] p2[2], p2[target] = p2[target], p2[2] p = [p2[p[k]] for k in range(N)] elif controls[0] == 2 and target == 0: p[target], p[controls[0]] = p[controls[0]], p[target] p1[1], p1[controls[1]] = p1[controls[1]], p1[1] p = [p1[p[k]] for k in range(N)] elif controls[1] == 2 and target == 1: p[target], p[controls[1]] = p[controls[1]], p[target] p1[0], p1[controls[0]] = p1[controls[0]], p1[0] p = [p1[p[k]] for k in range(N)] elif controls[0] == 1 and controls[1] == 2: # controls[0] -> controls[1] -> target -> outside p[0], p[1] = p[1], p[0] p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] elif controls[0] == 2 and target == 1: # controls[0] -> target -> controls[1] -> outside p[0], p[2] = p[2], p[0] p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] elif controls[1] == 0 and controls[0] == 2: # controls[1] -> controls[0] -> target -> outside p[1], p[0] = p[0], p[1] p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] elif controls[1] == 2 and target == 0: # controls[1] -> target -> controls[0] -> outside p[1], p[2] = p[2], p[1] p[1], p[0] = p[0], p[1] p[1], p[controls[0]] = p[controls[0]], p[1] elif target == 1 and controls[1] == 0: # target -> controls[1] -> controls[0] -> outside p[2], p[1] = p[1], p[2] p[2], p[0] = p[0], p[2] p[2], p[controls[0]] = p[controls[0]], p[2] elif target == 0 and controls[0] == 1: # target -> controls[0] -> controls[1] -> outside p[2], p[0] = p[0], p[2] p[2], p[1] = p[1], p[2] p[2], p[controls[1]] = p[controls[1]], p[2] elif controls[0] == 0 and controls[1] == 2: # controls[0] -> self, controls[1] -> target -> outside p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] elif controls[1] == 1 and controls[0] == 2: # controls[1] -> self, controls[0] -> target -> outside p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] elif target == 2 and controls[0] == 1: # target -> self, controls[0] -> controls[1] -> outside p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] # # N > 4 cases # elif controls[0] == 1 and controls[1] > 2 and target > 2: # controls[0] -> controls[1] -> outside, target -> outside p[0], p[1] = p[1], p[0] p[0], p[controls[1]] = p[controls[1]], p[0] p[2], p[target] = p[target], p[2] elif controls[0] == 2 and controls[1] > 2 and target > 2: # controls[0] -> target -> outside, controls[1] -> outside p[0], p[2] = p[2], p[0] p[0], p[target] = p[target], p[0] p[1], p[controls[1]] = p[controls[1]], p[1] elif controls[1] == 2 and controls[0] > 2 and target > 2: # controls[1] -> target -> outside, controls[0] -> outside p[1], p[2] = p[2], p[1] p[1], p[target] = p[target], p[1] p[0], p[controls[0]] = p[controls[0]], p[0] else: p[0], p[controls[0]] = p[controls[0]], p[0] p1[1], p1[controls[1]] = p1[controls[1]], p1[1] p2[2], p2[target] = p2[target], p2[2] p = [p[p1[p2[k]]] for k in range(N)] return tensor([U] + [identity(2)] * (N - 3)).permute(p)
def _check_qubits_oper(oper): """ Check if it is an operator acting on a qubit system. Parameters ---------- oper : :class:`qutip.Qboj` The quantum object to be checked. """ check = True if oper.dims[0] != oper.dims[1]: check = False if oper.dims[0] != len(oper.dims[0]) * [2]: check = False if not check: raise ValueError( "The following operator is not an " "operator on a qubits system:\n{}".format(oper)) def expand_oper(oper, N, targets): """ Expand a qubits operator to one that acts on a N-qutbis system. Parameters ---------- oper : :class:`qutip.Qobj` An operator acts on qubits, the type of the `Qobj` has to be an operator and the dimension matches the tensored qubit Hilbertspace e.g. dims = [[2,2,2],[2,2,2]] N : int The number of qubits in the system. targets : int or list of int The indices of qubits that are acted on. Returns ------- expanded_oper : :class:`qutip.Qobj` The expanded qubits operator acting on a system with N qubits Note ---- This is equivalent to gate_expand_1toN, gate_expand_2toN, gate_expand_3toN in `qutip.qip.gate.py`, but works for any dimension. """ _check_qubits_oper(oper) req_num = len(oper.dims[0]) if req_num > N: raise ValueError( "The dimension of the operator " "cannot be larger than the system dimension " "N={}.".format(N)) # Check validity of targets if targets is None: targets = list(range(len(oper.dims[0]))) elif isinstance(targets, numbers.Integral): targets = [targets] elif isinstance(targets, Iterable): # correct type if not all([isinstance(t, numbers.Integral) for t in targets]): raise ValueError( "targets should be " "an integer or a list of integer, but {} " "was given.".format(targets)) if len(targets) != req_num: # correct number of targets raise ValueError( "The given operator needs {} " "target qutbis, " "but {} given.".format( req_num, len(targets))) else: raise ValueError( "targets should be " "an integer or a list of integer, but {} " "was given.".format(targets)) # Generate the correct order for qubits permutation, # eg. if N = 5, targets = [3,0], the order is [1,x,x,0,x]. # If the operator is cnot, # this order means that the 3rd qubit control the 0th qubit. new_order = list(range(N)) old_ind = range(len(targets)) for i in old_ind: new_order[targets[i]] = i old_ind_set = set(old_ind) targets_set = set(targets) mod_value = targets_set.difference(old_ind_set) mod_ind = old_ind_set.difference(targets_set) for ind, value in zip(mod_ind, mod_value): new_order[ind] = value return tensor([oper] + [identity(2)]*(N-len(targets))).permute(new_order)