Source code for qutip.nonmarkov.heom

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson,
#                      Neill Lambert, Anubhav Vardhan, Alexander Pitchford.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module provides exact solvers for a system-bath setup using the
hierarchy equations of motion (HEOM).
"""

# Authors: Neill Lambert, Anubhav Vardhan, Alexander Pitchford
# Contact: nwlambert@gmail.com

import timeit
import numpy as np
#from scipy.misc import factorial
import scipy.sparse as sp
import scipy.integrate
from copy import copy
from qutip import Qobj, qeye
from qutip.states import enr_state_dictionaries
from qutip.superoperator import liouvillian, spre, spost
from qutip.cy.spmatfuncs import cy_ode_rhs
from qutip.solver import Options, Result, Stats
from qutip.ui.progressbar import BaseProgressBar, TextProgressBar
from qutip.cy.heom import cy_pad_csr
from qutip.cy.spmath import zcsr_kron
from qutip.fastsparse import fast_csr_matrix, fast_identity


[docs]class HEOMSolver(object): """ This is superclass for all solvers that use the HEOM method for calculating the dynamics evolution. There are many references for this. A good introduction, and perhaps closest to the notation used here is: DOI:10.1103/PhysRevLett.104.250401 A more canonical reference, with full derivation is: DOI: 10.1103/PhysRevA.41.6676 The method can compute open system dynamics without using any Markovian or rotating wave approximation (RWA) for systems where the bath correlations can be approximated to a sum of complex eponentials. The method builds a matrix of linked differential equations, which are then solved used the same ODE solvers as other qutip solvers (e.g. mesolve) This class should be treated as abstract. Currently the only subclass implemented is that for the Drude-Lorentz spectral density. This covers the majority of the work that has been done using this model, and there are some performance advantages to assuming this model where it is appropriate. There are opportunities to develop a more general spectral density code. Attributes ---------- H_sys : Qobj System Hamiltonian coup_op : Qobj Operator describing the coupling between system and bath. coup_strength : float Coupling strength. temperature : float Bath temperature, in units corresponding to planck N_cut : int Cutoff parameter for the bath N_exp : int Number of exponential terms used to approximate the bath correlation functions planck : float reduced Planck constant boltzmann : float Boltzmann's constant options : :class:`qutip.solver.Options` Generic solver options. If set to None the default options will be used progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. stats : :class:`qutip.solver.Stats` optional container for holding performance statitics If None is set, then statistics are not collected There may be an overhead in collecting statistics exp_coeff : list of complex Coefficients for the exponential series terms exp_freq : list of complex Frequencies for the exponential series terms """ def __init__(self): raise NotImplementedError("This is a abstract class only. " "Use a subclass, for example HSolverDL")
[docs] def reset(self): """ Reset any attributes to default values """ self.planck = 1.0 self.boltzmann = 1.0 self.H_sys = None self.coup_op = None self.coup_strength = 0.0 self.temperature = 1.0 self.N_cut = 10 self.N_exp = 2 self.N_he = 0 self.exp_coeff = None self.exp_freq = None self.options = None self.progress_bar = None self.stats = None self.ode = None self.configured = False
[docs] def configure(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, planck=None, boltzmann=None, renorm=None, bnd_cut_approx=None, options=None, progress_bar=None, stats=None): """ Configure the solver using the passed parameters The parameters are described in the class attributes, unless there is some specific behaviour Parameters ---------- options : :class:`qutip.solver.Options` Generic solver options. If set to None the default options will be used progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. If set to None, then the default progress bar will be used Set to False for no progress bar stats: :class:`qutip.solver.Stats` Optional instance of solver.Stats, or a subclass thereof, for storing performance statistics for the solver If set to True, then the default Stats for this class will be used Set to False for no stats """ self.H_sys = H_sys self.coup_op = coup_op self.coup_strength = coup_strength self.temperature = temperature self.N_cut = N_cut self.N_exp = N_exp if planck: self.planck = planck if boltzmann: self.boltzmann = boltzmann if isinstance(options, Options): self.options = options if isinstance(progress_bar, BaseProgressBar): self.progress_bar = progress_bar elif progress_bar == True: self.progress_bar = TextProgressBar() elif progress_bar == False: self.progress_bar = None if isinstance(stats, Stats): self.stats = stats elif stats == True: self.stats = self.create_new_stats() elif stats == False: self.stats = None
[docs] def create_new_stats(self): """ Creates a new stats object suitable for use with this solver Note: this solver expects the stats object to have sections config integrate """ stats = Stats(['config', 'run']) stats.header = "Hierarchy Solver Stats" return stats
[docs]class HSolverDL(HEOMSolver): """ HEOM solver based on the Drude-Lorentz model for spectral density. Drude-Lorentz bath the correlation functions can be exactly analytically expressed as an infinite sum of exponentials which depend on the temperature, these are called the Matsubara terms or Matsubara frequencies For practical computation purposes an approximation must be used based on a small number of Matsubara terms (typically < 4). Attributes ---------- cut_freq : float Bath spectral density cutoff frequency. renorm : bool Apply renormalisation to coupling terms Can be useful if using SI units for planck and boltzmann bnd_cut_approx : bool Use boundary cut off approximation Can be """ def __init__(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq, planck=1.0, boltzmann=1.0, renorm=True, bnd_cut_approx=True, options=None, progress_bar=None, stats=None): self.reset() if options is None: self.options = Options() else: self.options = options self.progress_bar = False if progress_bar is None: self.progress_bar = BaseProgressBar() elif progress_bar == True: self.progress_bar = TextProgressBar() # the other attributes will be set in the configure method self.configure(H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq, planck=planck, boltzmann=boltzmann, renorm=renorm, bnd_cut_approx=bnd_cut_approx, stats=stats)
[docs] def reset(self): """ Reset any attributes to default values """ HEOMSolver.reset(self) self.cut_freq = 1.0 self.renorm = False self.bnd_cut_approx = False
[docs] def configure(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq, planck=None, boltzmann=None, renorm=None, bnd_cut_approx=None, options=None, progress_bar=None, stats=None): """ Calls configure from :class:`HEOMSolver` and sets any attributes that are specific to this subclass """ start_config = timeit.default_timer() HEOMSolver.configure(self, H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, planck=planck, boltzmann=boltzmann, options=options, progress_bar=progress_bar, stats=stats) self.cut_freq = cut_freq if renorm is not None: self.renorm = renorm if bnd_cut_approx is not None: self.bnd_cut_approx = bnd_cut_approx # Load local values for optional parameters # Constants and Hamiltonian. hbar = self.planck options = self.options progress_bar = self.progress_bar stats = self.stats if stats: ss_conf = stats.sections.get('config') if ss_conf is None: ss_conf = stats.add_section('config') c, nu = self._calc_matsubara_params() if renorm: norm_plus, norm_minus = self._calc_renorm_factors() if stats: stats.add_message('options', 'renormalisation', ss_conf) # Dimensions et by system N_temp = 1 for i in H_sys.dims[0]: N_temp *= i sup_dim = N_temp**2 unit_sys = qeye(N_temp) # Use shorthands (mainly as in referenced PRL) lam0 = self.coup_strength gam = self.cut_freq N_c = self.N_cut N_m = self.N_exp Q = coup_op # Q as shorthand for coupling operator beta = 1.0/(self.boltzmann*self.temperature) # Ntot is the total number of ancillary elements in the hierarchy # Ntot = factorial(N_c + N_m) / (factorial(N_c)*factorial(N_m)) # Turns out to be the same as nstates from state_number_enumerate N_he, he2idx, idx2he = enr_state_dictionaries([N_c + 1]*N_m , N_c) unit_helems = fast_identity(N_he) if self.bnd_cut_approx: # the Tanimura boundary cut off operator if stats: stats.add_message('options', 'boundary cutoff approx', ss_conf) op = -2*spre(Q)*spost(Q.dag()) + spre(Q.dag()*Q) + spost(Q.dag()*Q) approx_factr = ((2*lam0 / (beta*gam*hbar)) - 1j*lam0) / hbar for k in range(N_m): approx_factr -= (c[k] / nu[k]) L_bnd = -approx_factr*op.data L_helems = zcsr_kron(unit_helems, L_bnd) else: L_helems = fast_csr_matrix(shape=(N_he*sup_dim, N_he*sup_dim)) # Build the hierarchy element interaction matrix if stats: start_helem_constr = timeit.default_timer() unit_sup = spre(unit_sys).data spreQ = spre(Q).data spostQ = spost(Q).data commQ = (spre(Q) - spost(Q)).data N_he_interact = 0 for he_idx in range(N_he): he_state = list(idx2he[he_idx]) n_excite = sum(he_state) # The diagonal elements for the hierarchy operator # coeff for diagonal elements sum_n_m_freq = 0.0 for k in range(N_m): sum_n_m_freq += he_state[k]*nu[k] op = -sum_n_m_freq*unit_sup L_he = cy_pad_csr(op, N_he, N_he, he_idx, he_idx) L_helems += L_he # Add the neighour interations he_state_neigh = copy(he_state) for k in range(N_m): n_k = he_state[k] if n_k >= 1: # find the hierarchy element index of the neighbour before # this element, for this Matsubara term he_state_neigh[k] = n_k - 1 he_idx_neigh = he2idx[tuple(he_state_neigh)] op = c[k]*spreQ - np.conj(c[k])*spostQ if renorm: op = -1j*norm_minus[n_k, k]*op else: op = -1j*n_k*op L_he = cy_pad_csr(op, N_he, N_he, he_idx, he_idx_neigh) L_helems += L_he N_he_interact += 1 he_state_neigh[k] = n_k if n_excite <= N_c - 1: # find the hierarchy element index of the neighbour after # this element, for this Matsubara term he_state_neigh[k] = n_k + 1 he_idx_neigh = he2idx[tuple(he_state_neigh)] op = commQ if renorm: op = -1j*norm_plus[n_k, k]*op else: op = -1j*op L_he = cy_pad_csr(op, N_he, N_he, he_idx, he_idx_neigh) L_helems += L_he N_he_interact += 1 he_state_neigh[k] = n_k if stats: stats.add_timing('hierarchy contruct', timeit.default_timer() - start_helem_constr, ss_conf) stats.add_count('Num hierarchy elements', N_he, ss_conf) stats.add_count('Num he interactions', N_he_interact, ss_conf) # Setup Liouvillian if stats: start_louvillian = timeit.default_timer() H_he = zcsr_kron(unit_helems, liouvillian(H_sys).data) L_helems += H_he if stats: stats.add_timing('Liouvillian contruct', timeit.default_timer() - start_louvillian, ss_conf) if stats: start_integ_conf = timeit.default_timer() r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(L_helems.data, L_helems.indices, L_helems.indptr) r.set_integrator('zvode', method=options.method, order=options.order, atol=options.atol, rtol=options.rtol, nsteps=options.nsteps, first_step=options.first_step, min_step=options.min_step, max_step=options.max_step) if stats: time_now = timeit.default_timer() stats.add_timing('Liouvillian contruct', time_now - start_integ_conf, ss_conf) if ss_conf.total_time is None: ss_conf.total_time = time_now - start_config else: ss_conf.total_time += time_now - start_config self._ode = r self._N_he = N_he self._sup_dim = sup_dim self._configured = True
[docs] def run(self, rho0, tlist): """ Function to solve for an open quantum system using the HEOM model. Parameters ---------- rho0 : Qobj Initial state (density matrix) of the system. tlist : list Time over which system evolves. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. """ start_run = timeit.default_timer() sup_dim = self._sup_dim stats = self.stats r = self._ode if not self._configured: raise RuntimeError("Solver must be configured before it is run") if stats: ss_conf = stats.sections.get('config') if ss_conf is None: raise RuntimeError("No config section for solver stats") ss_run = stats.sections.get('run') if ss_run is None: ss_run = stats.add_section('run') # Set up terms of the matsubara and tanimura boundaries output = Result() output.solver = "hsolve" output.times = tlist output.states = [] if stats: start_init = timeit.default_timer() output.states.append(Qobj(rho0)) rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex) rho0_he[:sup_dim] = rho0_flat r.set_initial_value(rho0_he, tlist[0]) if stats: stats.add_timing('initialize', timeit.default_timer() - start_init, ss_run) start_integ = timeit.default_timer() dt = np.diff(tlist) n_tsteps = len(tlist) for t_idx, t in enumerate(tlist): if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims) output.states.append(rho) if stats: time_now = timeit.default_timer() stats.add_timing('integrate', time_now - start_integ, ss_run) if ss_run.total_time is None: ss_run.total_time = time_now - start_run else: ss_run.total_time += time_now - start_run stats.total_time = ss_conf.total_time + ss_run.total_time return output
def _calc_matsubara_params(self): """ Calculate the Matsubara coefficents and frequencies Returns ------- c, nu: both list(float) """ c = [] nu = [] lam0 = self.coup_strength gam = self.cut_freq hbar = self.planck beta = 1.0/(self.boltzmann*self.temperature) N_m = self.N_exp g = 2*np.pi / (beta*hbar) for k in range(N_m): if k == 0: nu.append(gam) c.append(lam0*gam* (1.0/np.tan(gam*hbar*beta/2.0) - 1j) / hbar) else: nu.append(k*g) c.append(4*lam0*gam*nu[k] / ((nu[k]**2 - gam**2)*beta*hbar**2)) self.exp_coeff = c self.exp_freq = nu return c, nu def _calc_renorm_factors(self): """ Calculate the renormalisation factors Returns ------- norm_plus, norm_minus : array[N_c, N_m] of float """ c = self.exp_coeff N_m = self.N_exp N_c = self.N_cut norm_plus = np.empty((N_c+1, N_m)) norm_minus = np.empty((N_c+1, N_m)) for k in range(N_m): for n in range(N_c+1): norm_plus[n, k] = np.sqrt(abs(c[k])*(n + 1)) norm_minus[n, k] = np.sqrt(float(n)/abs(c[k])) return norm_plus, norm_minus
def _pad_csr(A, row_scale, col_scale, insertrow=0, insertcol=0): """ Expand the input csr_matrix to a greater space as given by the scale. Effectively inserting A into a larger matrix zeros([A.shape[0]*row_scale, A.shape[1]*col_scale] at the position [A.shape[0]*insertrow, A.shape[1]*insertcol] The same could be achieved through using a kron with a matrix with one element set to 1. However, this is more efficient """ # ajgpitch 2016-03-08: # Clearly this is a very simple operation in dense matrices # It seems strange that there is nothing equivalent in sparse however, # after much searching most threads suggest directly addressing # the underlying arrays, as done here. # This certainly proved more efficient than other methods such as stacking #TODO: Perhaps cythonize and move to spmatfuncs if not isinstance(A, sp.csr_matrix): raise TypeError("First parameter must be a csr matrix") nrowin = A.shape[0] ncolin = A.shape[1] nrowout = nrowin*row_scale ncolout = ncolin*col_scale A._shape = (nrowout, ncolout) if insertcol == 0: pass elif insertcol > 0 and insertcol < col_scale: A.indices = A.indices + insertcol*ncolin else: raise ValueError("insertcol must be >= 0 and < col_scale") if insertrow == 0: A.indptr = np.concatenate((A.indptr, np.array([A.indptr[-1]]*(row_scale-1)*nrowin))) elif insertrow == row_scale-1: A.indptr = np.concatenate((np.array([0]*(row_scale - 1)*nrowin), A.indptr)) elif insertrow > 0 and insertrow < row_scale - 1: A.indptr = np.concatenate((np.array([0]*insertrow*nrowin), A.indptr, np.array([A.indptr[-1]]*(row_scale - insertrow - 1)*nrowin))) else: raise ValueError("insertrow must be >= 0 and < row_scale") return A