# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
import numpy as np
from qutip.operators import sigmax, sigmay, sigmaz, identity
from qutip.tensor import tensor
from qutip.qip.circuit import QubitCircuit
from qutip.qip.models.circuitprocessor import CircuitProcessor
[docs]class SpinChain(CircuitProcessor):
    """
    Representation of the physical implementation of a quantum
    program/algorithm on a spin chain qubit system.
    """
    def __init__(self, N, correct_global_phase=True,
                 sx=None, sz=None, sxsy=None):
        """
        Parameters
        ----------
        sx: Integer/List
            The delta for each of the qubits in the system.
        sz: Integer/List
            The epsilon for each of the qubits in the system.
        sxsy: Integer/List
            The interaction strength for each of the qubit pair in the system.
        """
        super(SpinChain, self).__init__(N, correct_global_phase)
        self.sx_ops = [tensor([sigmax() if m == n else identity(2)
                               for n in range(N)])
                       for m in range(N)]
        self.sz_ops = [tensor([sigmaz() if m == n else identity(2)
                               for n in range(N)])
                       for m in range(N)]
        self.sxsy_ops = []
        for n in range(N - 1):
            x = [identity(2)] * N
            x[n] = x[n + 1] = sigmax()
            y = [identity(2)] * N
            y[n] = y[n + 1] = sigmay()
            self.sxsy_ops.append(tensor(x) + tensor(y))
        if sx is None:
            self.sx_coeff = [0.25 * 2 * np.pi] * N
        elif not isinstance(sx, list):
            self.sx_coeff = [sx * 2 * np.pi] * N
        else:
            self.sx_coeff = sx
        if sz is None:
            self.sz_coeff = [1.0 * 2 * np.pi] * N
        elif not isinstance(sz, list):
            self.sz_coeff = [sz * 2 * np.pi] * N
        else:
            self.sz_coeff = sz
        if sxsy is None:
            self.sxsy_coeff = [0.1 * 2 * np.pi] * (N - 1)
        elif not isinstance(sxsy, list):
            self.sxsy_coeff = [sxsy * 2 * np.pi] * (N - 1)
        else:
            self.sxsy_coeff = sxsy
    def get_ops_and_u(self):
        return (self.sx_ops + self.sz_ops + self.sxsy_ops,
                np.hstack((self.sx_u, self.sz_u, self.sxsy_u)))
    def load_circuit(self, qc):
        gates = self.optimize_circuit(qc).gates
        self.global_phase = 0
        self.sx_u = np.zeros((len(gates), len(self.sx_ops)))
        self.sz_u = np.zeros((len(gates), len(self.sz_ops)))
        self.sxsy_u = np.zeros((len(gates), len(self.sxsy_ops)))
        self.T_list = []
        n = 0
        for gate in gates:
            if gate.name == "ISWAP":
                g = self.sxsy_coeff[min(gate.targets)]
                if min(gate.targets) == 0 and max(gate.targets) == self.N - 1:
                    self.sxsy_u[n, self.N - 1] = -g
                else:
                    self.sxsy_u[n, min(gate.targets)] = -g
                T = np.pi / (4 * g)
                self.T_list.append(T)
                n += 1
            elif gate.name == "SQRTISWAP":
                g = self.sxsy_coeff[min(gate.targets)]
                if min(gate.targets) == 0 and max(gate.targets) == self.N - 1:
                    self.sxsy_u[n, self.N - 1] = -g
                else:
                    self.sxsy_u[n, min(gate.targets)] = -g
                T = np.pi / (8 * g)
                self.T_list.append(T)
                n += 1
            elif gate.name == "RZ":
                g = self.sz_coeff[gate.targets[0]]
                self.sz_u[n, gate.targets[0]] = np.sign(gate.arg_value) * g
                T = abs(gate.arg_value) / (2 * g)
                self.T_list.append(T)
                n += 1
            elif gate.name == "RX":
                g = self.sx_coeff[gate.targets[0]]
                self.sx_u[n, gate.targets[0]] = np.sign(gate.arg_value) * g
                T = abs(gate.arg_value) / (2 * g)
                self.T_list.append(T)
                n += 1
            elif gate.name == "GLOBALPHASE":
                self.global_phase += gate.arg_value
            else:
                raise ValueError("Unsupported gate %s" % gate.name)
[docs]    def adjacent_gates(self, qc, setup="linear"):
        """
        Method to resolve 2 qubit gates with non-adjacent control/s or target/s
        in terms of gates with adjacent interactions for linear/circular spin
        chain system.
        Parameters
        ----------
        qc: QubitCircuit
            The circular spin chain circuit to be resolved
        setup: Boolean
            Linear of Circular spin chain setup
        Returns
        ----------
        qc: QubitCircuit
            Returns QubitCircuit of resolved gates for the qubit circuit in the
            desired basis.
        """
        qc_t = QubitCircuit(qc.N, qc.reverse_states)
        swap_gates = ["SWAP", "ISWAP", "SQRTISWAP", "SQRTSWAP", "BERKELEY",
                      "SWAPalpha"]
        N = qc.N
        for gate in qc.gates:
            if gate.name == "CNOT" or gate.name == "CSIGN":
                start = min([gate.targets[0], gate.controls[0]])
                end = max([gate.targets[0], gate.controls[0]])
                if (setup == "linear" or
                        (setup == "circular" and (end - start) <= N // 2)):
                    i = start
                    while i < end:
                        if (start + end - i - i == 1 and
                                (end - start + 1) % 2 == 0):
                            # Apply required gate if control and target are
                            # adjacent to each other, provided |control-target|
                            # is even.
                            if end == gate.controls[0]:
                                qc_t.add_gate(gate.name, targets=[i],
                                              controls=[i + 1])
                            else:
                                qc_t.add_gate(gate.name, targets=[i + 1],
                                              controls=[i])
                        elif (start + end - i - i == 2 and
                              (end - start + 1) % 2 == 1):
                            # Apply a swap between i and its adjacent gate,
                            # then the required gate if and then another swap
                            # if control and target have one qubit between
                            # them, provided |control-target| is odd.
                            qc_t.add_gate("SWAP", targets=[i, i + 1])
                            if end == gate.controls[0]:
                                qc_t.add_gate(gate.name, targets=[i + 1],
                                              controls=[i + 2])
                            else:
                                qc_t.add_gate(gate.name, targets=[i + 2],
                                              controls=[i + 1])
                            qc_t.add_gate("SWAP", [i, i + 1])
                            i += 1
                        else:
                            # Swap the target/s and/or control with their
                            # adjacent qubit to bring them closer.
                            qc_t.add_gate("SWAP", [i, i + 1])
                            qc_t.add_gate("SWAP", [start + end - i - 1,
                                                   start + end - i])
                        i += 1
                elif (end - start) < N - 1:
                    """
                    If the resolving has to go backwards, the path is first
                    mapped to a separate circuit and then copied back to the
                    original circuit.
                    """
                    temp = QubitCircuit(N - end + start)
                    i = 0
                    while i < (N - end + start):
                        if (N + start - end - i - i == 1 and
                                (N - end + start + 1) % 2 == 0):
                            if end == gate.controls[0]:
                                temp.add_gate(gate.name, targets=[i],
                                              controls=[i + 1])
                            else:
                                temp.add_gate(gate.name, targets=[i + 1],
                                              controls=[i])
                        elif (N + start - end - i - i == 2 and
                              (N - end + start + 1) % 2 == 1):
                            temp.add_gate("SWAP", targets=[i, i + 1])
                            if end == gate.controls[0]:
                                temp.add_gate(gate.name, targets=[i + 2],
                                              controls=[i + 1])
                            else:
                                temp.add_gate(gate.name, targets=[i + 1],
                                              controls=[i + 2])
                            temp.add_gate("SWAP", [i, i + 1])
                            i += 1
                        else:
                            temp.add_gate("SWAP", [i, i + 1])
                            temp.add_gate("SWAP",
                                          [N + start - end - i - 1,
                                           N + start - end - i])
                        i += 1
                    j = 0
                    for gate in temp.gates:
                        if (j < N - end - 2):
                            if gate.name in ["CNOT", "CSIGN"]:
                                qc_t.add_gate(gate.name, end + gate.targets[0],
                                              end + gate.controls[0])
                            else:
                                qc_t.add_gate(gate.name,
                                              [end + gate.targets[0],
                                               end + gate.targets[1]])
                        elif (j == N - end - 2):
                            if gate.name in ["CNOT", "CSIGN"]:
                                qc_t.add_gate(gate.name, end + gate.targets[0],
                                              (end + gate.controls[0]) % N)
                            else:
                                qc_t.add_gate(gate.name,
                                              [end + gate.targets[0],
                                               (end + gate.targets[1]) % N])
                        else:
                            if gate.name in ["CNOT", "CSIGN"]:
                                qc_t.add_gate(gate.name,
                                              (end + gate.targets[0]) % N,
                                              (end + gate.controls[0]) % N)
                            else:
                                qc_t.add_gate(gate.name,
                                              [(end + gate.targets[0]) % N,
                                               (end + gate.targets[1]) % N])
                        j = j + 1
                elif (end - start) == N - 1:
                    qc_t.add_gate(gate.name, gate.targets, gate.controls)
            elif gate.name in swap_gates:
                start = min([gate.targets[0], gate.targets[1]])
                end = max([gate.targets[0], gate.targets[1]])
                if (setup == "linear" or
                        (setup == "circular" and (end - start) <= N // 2)):
                    i = start
                    while i < end:
                        if (start + end - i - i == 1 and
                                (end - start + 1) % 2 == 0):
                            qc_t.add_gate(gate.name, [i, i + 1])
                        elif ((start + end - i - i) == 2 and
                              (end - start + 1) % 2 == 1):
                            qc_t.add_gate("SWAP", [i, i + 1])
                            qc_t.add_gate(gate.name, [i + 1, i + 2])
                            qc_t.add_gate("SWAP", [i, i + 1])
                            i += 1
                        else:
                            qc_t.add_gate("SWAP", [i, i + 1])
                            qc_t.add_gate("SWAP", [start + end - i - 1,
                                                   start + end - i])
                        i += 1
                else:
                    temp = QubitCircuit(N - end + start)
                    i = 0
                    while i < (N - end + start):
                        if (N + start - end - i - i == 1 and
                                (N - end + start + 1) % 2 == 0):
                            temp.add_gate(gate.name, [i, i + 1])
                        elif (N + start - end - i - i == 2 and
                              (N - end + start + 1) % 2 == 1):
                            temp.add_gate("SWAP", [i, i + 1])
                            temp.add_gate(gate.name, [i + 1, i + 2])
                            temp.add_gate("SWAP", [i, i + 1])
                            i += 1
                        else:
                            temp.add_gate("SWAP", [i, i + 1])
                            temp.add_gate("SWAP", [N + start - end - i - 1,
                                                   N + start - end - i])
                        i += 1
                    j = 0
                    for gate in temp.gates:
                        if(j < N - end - 2):
                            qc_t.add_gate(gate.name, [end + gate.targets[0],
                                                      end + gate.targets[1]])
                        elif(j == N - end - 2):
                            qc_t.add_gate(gate.name,
                                          [end + gate.targets[0],
                                           (end + gate.targets[1]) % N])
                        else:
                            qc_t.add_gate(gate.name,
                                          [(end + gate.targets[0]) % N,
                                           (end + gate.targets[1]) % N])
                        j = j + 1
            else:
                qc_t.add_gate(gate.name, gate.targets, gate.controls,
                              gate.arg_value, gate.arg_label)
        return qc_t  
[docs]class LinearSpinChain(SpinChain):
    """
    Representation of the physical implementation of a quantum
    program/algorithm on a spin chain qubit system arranged in a linear
    formation. It is a sub-class of SpinChain.
    """
    def __init__(self, N, correct_global_phase=True,
                 sx=None, sz=None, sxsy=None):
        super(LinearSpinChain, self).__init__(N, correct_global_phase,
                                              sx, sz, sxsy)
    def get_ops_labels(self):
        return ([r"$\sigma_x^%d$" % n for n in range(self.N)] +
                [r"$\sigma_z^%d$" % n for n in range(self.N)] +
                [r"$\sigma_x^%d\sigma_x^{%d} + \sigma_y^%d\sigma_y^{%d}$"
                 % (n, n, n + 1, n + 1) for n in range(self.N - 1)])
    def optimize_circuit(self, qc):
        self.qc0 = qc
        self.qc1 = self.adjacent_gates(self.qc0, "linear")
        self.qc2 = self.qc1.resolve_gates(basis=["ISWAP", "RX", "RZ"])
        return self.qc2 
[docs]class CircularSpinChain(SpinChain):
    """
    Representation of the physical implementation of a quantum
    program/algorithm on a spin chain qubit system arranged in a circular
    formation. It is a sub-class of SpinChain.
    """
    def __init__(self, N, correct_global_phase=True,
                 sx=None, sz=None, sxsy=None):
        super(CircularSpinChain, self).__init__(N, correct_global_phase,
                                                sx, sz, sxsy)
        x = [identity(2)] * N
        x[0] = x[N - 1] = sigmax()
        y = [identity(2)] * N
        y[0] = y[N - 1] = sigmay()
        self.sxsy_ops.append(tensor(x) + tensor(y))
        if sxsy is None:
            self.sxsy_coeff = [0.1 * 2 * np.pi] * N
        elif not isinstance(sxsy, list):
            self.sxsy_coeff = [sxsy * 2 * np.pi] * N
        else:
            self.sxsy_coeff = sxsy
    def get_ops_labels(self):
        return ([r"$\sigma_x^%d$" % n for n in range(self.N)] +
                [r"$\sigma_z^%d$" % n for n in range(self.N)] +
                [r"$\sigma_x^%d\sigma_x^{%d} + \sigma_y^%d\sigma_y^{%d}$"
                 % (n, n, (n + 1) % self.N, (n + 1) % self.N)
                 for n in range(self.N)])
    def optimize_circuit(self, qc):
        self.qc0 = qc
        self.qc1 = self.adjacent_gates(self.qc0, "circular")
        self.qc2 = self.qc1.resolve_gates(basis=["ISWAP", "RX", "RZ"])
        return self.qc2