# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
from __future__ import division
import numpy as np
import scipy.sparse as sp
from qutip.qobj import Qobj
from qutip.operators import identity, qeye, sigmax
from qutip.tensor import tensor
from qutip.states import fock_dm
from itertools import product
from functools import partial, reduce
from operator import mul
__all__ = ['rx', 'ry', 'rz', 'sqrtnot', 'snot', 'phasegate', 'cphase', 'cnot',
           'csign', 'berkeley', 'swapalpha', 'swap', 'iswap', 'sqrtswap',
           'sqrtiswap', 'fredkin', 'toffoli', 'rotation', 'controlled_gate',
           'globalphase', 'hadamard_transform', 'gate_sequence_product',
           'gate_expand_1toN', 'gate_expand_2toN', 'gate_expand_3toN',
           'qubit_clifford_group']
#
# Single Qubit Gates
#
[docs]def rx(phi, N=None, target=0):
    """Single-qubit rotation for operator sigmax with angle phi.
    Returns
    -------
    result : qobj
        Quantum object for operator describing the rotation.
    """
    if N is not None:
        return gate_expand_1toN(rx(phi), N, target)
    else:
        return Qobj([[np.cos(phi / 2), -1j * np.sin(phi / 2)],
                     [-1j * np.sin(phi / 2), np.cos(phi / 2)]]) 
[docs]def ry(phi, N=None, target=0):
    """Single-qubit rotation for operator sigmay with angle phi.
    Returns
    -------
    result : qobj
        Quantum object for operator describing the rotation.
    """
    if N is not None:
        return gate_expand_1toN(ry(phi), N, target)
    else:
        return Qobj([[np.cos(phi / 2), -np.sin(phi / 2)],
                     [np.sin(phi / 2), np.cos(phi / 2)]]) 
[docs]def rz(phi, N=None, target=0):
    """Single-qubit rotation for operator sigmaz with angle phi.
    Returns
    -------
    result : qobj
        Quantum object for operator describing the rotation.
    """
    if N is not None:
        return gate_expand_1toN(rz(phi), N, target)
    else:
        return Qobj([[np.exp(-1j * phi / 2), 0],
                     [0, np.exp(1j * phi / 2)]]) 
[docs]def sqrtnot(N=None, target=0):
    """Single-qubit square root NOT gate.
    Returns
    -------
    result : qobj
        Quantum object for operator describing the square root NOT gate.
    """
    if N is not None:
        return gate_expand_1toN(sqrtnot(), N, target)
    else:
        return Qobj([[0.5 + 0.5j, 0.5 - 0.5j],
                     [0.5 - 0.5j, 0.5 + 0.5j]]) 
[docs]def snot(N=None, target=0):
    """Quantum object representing the SNOT (Hadamard) gate.
    Returns
    -------
    snot_gate : qobj
        Quantum object representation of SNOT gate.
    Examples
    --------
    >>> snot()
    Quantum object: dims = [[2], [2]], \
shape = [2, 2], type = oper, isHerm = True
    Qobj data =
    [[ 0.70710678+0.j  0.70710678+0.j]
     [ 0.70710678+0.j -0.70710678+0.j]]
    """
    if N is not None:
        return gate_expand_1toN(snot(), N, target)
    else:
        return 1 / np.sqrt(2.0) * Qobj([[1, 1],
                                        [1, -1]]) 
[docs]def phasegate(theta, N=None, target=0):
    """
    Returns quantum object representing the phase shift gate.
    Parameters
    ----------
    theta : float
        Phase rotation angle.
    Returns
    -------
    phase_gate : qobj
        Quantum object representation of phase shift gate.
    Examples
    --------
    >>> phasegate(pi/4)
    Quantum object: dims = [[2], [2]], \
shape = [2, 2], type = oper, isHerm = False
    Qobj data =
    [[ 1.00000000+0.j          0.00000000+0.j        ]
     [ 0.00000000+0.j          0.70710678+0.70710678j]]
    """
    if N is not None:
        return gate_expand_1toN(phasegate(theta), N, target)
    else:
        return Qobj([[1, 0],
                     [0, np.exp(1.0j * theta)]],
                    dims=[[2], [2]]) 
#
# 2 Qubit Gates
#
[docs]def cphase(theta, N=2, control=0, target=1):
    """
    Returns quantum object representing the controlled phase shift gate.
    Parameters
    ----------
    theta : float
        Phase rotation angle.
    N : integer
        The number of qubits in the target space.
    control : integer
        The index of the control qubit.
    target : integer
        The index of the target qubit.
    Returns
    -------
    U : qobj
        Quantum object representation of controlled phase gate.
    """
    if N < 1 or target < 0 or control < 0:
        raise ValueError("Minimum value: N=1, control=0 and target=0")
    if control >= N or target >= N:
        raise ValueError("control and target need to be smaller than N")
    U_list1 = [identity(2)] * N
    U_list2 = [identity(2)] * N
    U_list1[control] = fock_dm(2, 1)
    U_list1[target] = phasegate(theta)
    U_list2[control] = fock_dm(2, 0)
    U = tensor(U_list1) + tensor(U_list2)
    return U 
[docs]def cnot(N=None, control=0, target=1):
    """
    Quantum object representing the CNOT gate.
    Returns
    -------
    cnot_gate : qobj
        Quantum object representation of CNOT gate
    Examples
    --------
    >>> cnot()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
        [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]
         [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]]
    """
    if (control == 1 and target == 0) and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(cnot(), N, control, target)
    else:
        return Qobj([[1, 0, 0, 0],
                     [0, 1, 0, 0],
                     [0, 0, 0, 1],
                     [0, 0, 1, 0]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def csign(N=None, control=0, target=1):
    """
    Quantum object representing the CSIGN gate.
    Returns
    -------
    csign_gate : qobj
        Quantum object representation of CSIGN gate
    Examples
    --------
    >>> csign()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
        [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  -1.+0.j]]
    """
    if (control == 1 and target == 0) and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(csign(), N, control, target)
    else:
        return Qobj([[1, 0, 0, 0],
                     [0, 1, 0, 0],
                     [0, 0, 1, 0],
                     [0, 0, 0, -1]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def berkeley(N=None, targets=[0, 1]):
    """
    Quantum object representing the Berkeley gate.
    Returns
    -------
    berkeley_gate : qobj
        Quantum object representation of Berkeley gate
    Examples
    --------
    >>> berkeley()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
        [[ cos(pi/8).+0.j  0.+0.j           0.+0.j           0.+sin(pi/8).j]
         [ 0.+0.j          cos(3pi/8).+0.j  0.+sin(3pi/8).j  0.+0.j]
         [ 0.+0.j          0.+sin(3pi/8).j  cos(3pi/8).+0.j  0.+0.j]
         [ 0.+sin(pi/8).j  0.+0.j           0.+0.j           cos(pi/8).+0.j]]
    """
    if (targets[0] == 1 and targets[1] == 0) and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(cnot(), N, targets=targets)
    else:
        return Qobj([[np.cos(np.pi / 8), 0, 0, 1.0j * np.sin(np.pi / 8)],
                     [0, np.cos(3 * np.pi / 8), 1.0j *
                      np.sin(3 * np.pi / 8), 0],
                     [0, 1.0j * np.sin(3 * np.pi / 8),
                      np.cos(3 * np.pi / 8), 0],
                     [1.0j * np.sin(np.pi / 8), 0, 0, np.cos(np.pi / 8)]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def swapalpha(alpha, N=None, targets=[0, 1]):
    """
    Quantum object representing the SWAPalpha gate.
    Returns
    -------
    swapalpha_gate : qobj
        Quantum object representation of SWAPalpha gate
    Examples
    --------
    >>> swapalpha(alpha)
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 1.+0.j  0.+0.j                    0.+0.j                    0.+0.j]
     [ 0.+0.j  0.5*(1 + exp(j*pi*alpha)  0.5*(1 - exp(j*pi*alpha)  0.+0.j]
     [ 0.+0.j  0.5*(1 - exp(j*pi*alpha)  0.5*(1 + exp(j*pi*alpha)  0.+0.j]
     [ 0.+0.j  0.+0.j                    0.+0.j                    1.+0.j]]
    """
    if (targets[0] == 1 and targets[1] == 0) and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(cnot(), N, targets=targets)
    else:
        return Qobj([[1, 0, 0, 0],
                     [0, 0.5 * (1 + np.exp(1.0j * np.pi * alpha)),
                      0.5 * (1 - np.exp(1.0j * np.pi * alpha)), 0],
                     [0, 0.5 * (1 - np.exp(1.0j * np.pi * alpha)),
                      0.5 * (1 + np.exp(1.0j * np.pi * alpha)), 0],
                     [0, 0, 0, 1]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def swap(N=None, targets=[0, 1]):
    """Quantum object representing the SWAP gate.
    Returns
    -------
    swap_gate : qobj
        Quantum object representation of SWAP gate
    Examples
    --------
    >>> swap()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]
     [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
     [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
     [ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]]
    """
    if targets != [0, 1] and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(swap(), N, targets=targets)
    else:
        return Qobj([[1, 0, 0, 0],
                     [0, 0, 1, 0],
                     [0, 1, 0, 0],
                     [0, 0, 0, 1]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def iswap(N=None, targets=[0, 1]):
    """Quantum object representing the iSWAP gate.
    Returns
    -------
    iswap_gate : qobj
        Quantum object representation of iSWAP gate
    Examples
    --------
    >>> iswap()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = False
    Qobj data =
    [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]
     [ 0.+0.j  0.+0.j  0.+1.j  0.+0.j]
     [ 0.+0.j  0.+1.j  0.+0.j  0.+0.j]
     [ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]]
    """
    if targets != [0, 1] and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(iswap(), N, targets=targets)
    else:
        return Qobj([[1, 0, 0, 0],
                     [0, 0, 1j, 0],
                     [0, 1j, 0, 0],
                     [0, 0, 0, 1]],
                    dims=[[2, 2], [2, 2]]) 
[docs]def sqrtswap(N=None, targets=[0, 1]):
    """Quantum object representing the square root SWAP gate.
    Returns
    -------
    sqrtswap_gate : qobj
        Quantum object representation of square root SWAP gate
    """
    if targets != [0, 1] and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(sqrtswap(), N, targets=targets)
    else:
        return Qobj(np.array([[1, 0, 0, 0],
                              [0, 0.5 + 0.5j, 0.5 - 0.5j, 0],
                              [0, 0.5 - 0.5j, 0.5 + 0.5j, 0],
                              [0, 0, 0, 1]]),
                    dims=[[2, 2], [2, 2]]) 
[docs]def sqrtiswap(N=None, targets=[0, 1]):
    """Quantum object representing the square root iSWAP gate.
    Returns
    -------
    sqrtiswap_gate : qobj
        Quantum object representation of square root iSWAP gate
    Examples
    --------
    >>> sqrtiswap()
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = False
    Qobj data =
    [[ 1.00000000+0.j   0.00000000+0.j   \
       0.00000000+0.j          0.00000000+0.j]
     [ 0.00000000+0.j   0.70710678+0.j   \
       0.00000000-0.70710678j  0.00000000+0.j]
     [ 0.00000000+0.j   0.00000000-0.70710678j\
       0.70710678+0.j          0.00000000+0.j]
     [ 0.00000000+0.j   0.00000000+0.j   \
       0.00000000+0.j          1.00000000+0.j]]
    """
    if targets != [0, 1] and N is None:
        N = 2
    if N is not None:
        return gate_expand_2toN(sqrtiswap(), N, targets=targets)
    else:
        return Qobj(np.array([[1, 0, 0, 0],
                              [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0],
                              [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0],
                              [0, 0, 0, 1]]), dims=[[2, 2], [2, 2]]) 
#
# 3 Qubit Gates
#
[docs]def fredkin(N=None, control=0, targets=[1, 2]):
    """Quantum object representing the Fredkin gate.
    Returns
    -------
    fredkin_gate : qobj
        Quantum object representation of Fredkin gate.
    Examples
    --------
    >>> fredkin()
    Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \
shape = [8, 8], type = oper, isHerm = True
    Qobj data =
        [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j]]
    """
    if [control, targets[0], targets[1]] != [0, 1, 2] and N is None:
        N = 3
    if N is not None:
        return gate_expand_3toN(fredkin(), N,
                                [control, targets[0]], targets[1])
    else:
        return Qobj([[1, 0, 0, 0, 0, 0, 0, 0],
                     [0, 1, 0, 0, 0, 0, 0, 0],
                     [0, 0, 1, 0, 0, 0, 0, 0],
                     [0, 0, 0, 1, 0, 0, 0, 0],
                     [0, 0, 0, 0, 1, 0, 0, 0],
                     [0, 0, 0, 0, 0, 0, 1, 0],
                     [0, 0, 0, 0, 0, 1, 0, 0],
                     [0, 0, 0, 0, 0, 0, 0, 1]],
                    dims=[[2, 2, 2], [2, 2, 2]]) 
[docs]def toffoli(N=None, controls=[0, 1], target=2):
    """Quantum object representing the Toffoli gate.
    Returns
    -------
    toff_gate : qobj
        Quantum object representation of Toffoli gate.
    Examples
    --------
    >>> toffoli()
    Quantum object: dims = [[2, 2, 2], [2, 2, 2]], \
shape = [8, 8], type = oper, isHerm = True
    Qobj data =
        [[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j]
         [ 0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j]]
    """
    if [controls[0], controls[1], target] != [0, 1, 2] and N is None:
        N = 3
    if N is not None:
        return gate_expand_3toN(toffoli(), N, controls, target)
    else:
        return Qobj([[1, 0, 0, 0, 0, 0, 0, 0],
                     [0, 1, 0, 0, 0, 0, 0, 0],
                     [0, 0, 1, 0, 0, 0, 0, 0],
                     [0, 0, 0, 1, 0, 0, 0, 0],
                     [0, 0, 0, 0, 1, 0, 0, 0],
                     [0, 0, 0, 0, 0, 1, 0, 0],
                     [0, 0, 0, 0, 0, 0, 0, 1],
                     [0, 0, 0, 0, 0, 0, 1, 0]],
                    dims=[[2, 2, 2], [2, 2, 2]]) 
#
# Miscellaneous Gates
#
[docs]def rotation(op, phi, N=None, target=0):
    """Single-qubit rotation for operator op with angle phi.
    Returns
    -------
    result : qobj
        Quantum object for operator describing the rotation.
    """
    if N is not None:
        return gate_expand_1toN(rotation(op, phi), N, target)
    else:
        return (-1j * op * phi / 2).expm() 
[docs]def controlled_gate(U, N=2, control=0, target=1, control_value=1):
    """
    Create an N-qubit controlled gate from a single-qubit gate U with the given
    control and target qubits.
    Parameters
    ----------
    U : Qobj
        Arbitrary single-qubit gate.
    N : integer
        The number of qubits in the target space.
    control : integer
        The index of the first control qubit.
    target : integer
        The index of the target qubit.
    control_value : integer (1)
        The state of the control qubit that activates the gate U.
    Returns
    -------
    result : qobj
        Quantum object representing the controlled-U gate.
    """
    if [N, control, target] == [2, 0, 1]:
        return (tensor(fock_dm(2, control_value), U) +
                tensor(fock_dm(2, 1 - control_value), identity(2)))
    else:
        U2 = controlled_gate(U, control_value=control_value)
        return gate_expand_2toN(U2, N=N, control=control, target=target) 
[docs]def globalphase(theta, N=1):
    """
    Returns quantum object representing the global phase shift gate.
    Parameters
    ----------
    theta : float
        Phase rotation angle.
    Returns
    -------
    phase_gate : qobj
        Quantum object representation of global phase shift gate.
    Examples
    --------
    >>> phasegate(pi/4)
    Quantum object: dims = [[2], [2]], \
shape = [2, 2], type = oper, isHerm = False
    Qobj data =
    [[ 0.70710678+0.70710678j          0.00000000+0.j]
     [ 0.00000000+0.j          0.70710678+0.70710678j]]
    """
    data = (np.exp(1.0j * theta) * sp.eye(2 ** N, 2 ** N,
                                          dtype=complex, format="csr"))
    return Qobj(data, dims=[[2] * N, [2] * N]) 
#
# Operation on Gates
#
def _hamming_distance(x, bits=32):
    """
    Calculate the bit-wise Hamming distance of x from 0: That is, the number
    1s in the integer x.
    """
    tot = 0
    while x:
        tot += 1
        x &= x - 1
    return tot
[docs]def gate_sequence_product(U_list, left_to_right=True):
    """
    Calculate the overall unitary matrix for a given list of unitary operations
    Parameters
    ----------
    U_list : list
        List of gates implementing the quantum circuit.
    left_to_right : Boolean
        Check if multiplication is to be done from left to right.
    Returns
    -------
    U_overall : qobj
        Overall unitary matrix of a given quantum circuit.
    """
    U_overall = 1
    for U in U_list:
        if left_to_right:
            U_overall = U * U_overall
        else:
            U_overall = U_overall * U
    return U_overall 
def _powers(op, N):
    """
    Generator that yields powers of an operator `op`,
    through to `N`.
    """
    acc = qeye(op.dims[0])
    yield acc
    for _ in range(N - 1):
        acc *= op
        yield acc
def qubit_clifford_group(N=None, target=0):
    """
    Generates the Clifford group on a single qubit,
    using the presentation of the group given by Ross and Selinger
    (http://www.mathstat.dal.ca/~selinger/newsynth/).
    Parameters
    -----------
    N : int or None
        Number of qubits on which each operator is to be defined
        (default: 1).
    target : int
        Index of the target qubit on which the single-qubit
        Clifford operators are to act.
    Yields
    ------
    op : Qobj
        Clifford operators, represented as Qobj instances.
    """
    # The Ross-Selinger presentation of the single-qubit Clifford
    # group expresses each element in the form C_{ijk} = E^i X^j S^k
    # for gates E, X and S, and for i in range(3), j in range(2) and
    # k in range(4).
    #
    # We start by defining these gates. E is defined in terms of H,
    # \omega and S, so we define \omega and H first.
    w = np.exp(1j * 2 * np.pi / 8)
    H = snot()
    X = sigmax()
    S = phasegate(np.pi / 2)
    E = H * (S ** 3) * w ** 3
    for op in map(partial(reduce, mul), product(_powers(E, 3),
                  _powers(X, 2), _powers(S, 4))):
        # partial(reduce, mul) returns a function that takes products
        # of its argument, by analogy to sum. Note that by analogy,
        # sum can be written as partial(reduce, add).
        # product(...) yields the Cartesian product of its arguments.
        # Here, each element is a tuple (E**i, X**j, S**k) such that
        # partial(reduce, mul) acting on the tuple yields E**i * X**j * S**k.
        # Finally, we optionally expand the gate.
        if N is not None:
            yield gate_expand_1toN(op, N, target)
        else:
            yield op
#
# Gate Expand
#
[docs]def gate_expand_1toN(U, N, target):
    """
    Create a Qobj representing a one-qubit gate that act on a system with N
    qubits.
    Parameters
    ----------
    U : Qobj
        The one-qubit gate
    N : integer
        The number of qubits in the target space.
    target : integer
        The index of the target qubit.
    Returns
    -------
    gate : qobj
        Quantum object representation of N-qubit gate.
    """
    if N < 1:
        raise ValueError("integer N must be larger or equal to 1")
    if target >= N:
        raise ValueError("target must be integer < integer N")
    return tensor([identity(2)] * (target) + [U] +
                  [identity(2)] * (N - target - 1)) 
[docs]def gate_expand_2toN(U, N, control=None, target=None, targets=None):
    """
    Create a Qobj representing a two-qubit gate that act on a system with N
    qubits.
    Parameters
    ----------
    U : Qobj
        The two-qubit gate
    N : integer
        The number of qubits in the target space.
    control : integer
        The index of the control qubit.
    target : integer
        The index of the target qubit.
    targets : list
        List of target qubits.
    Returns
    -------
    gate : qobj
        Quantum object representation of N-qubit gate.
    """
    if targets is not None:
        control, target = targets
    if control is None or target is None:
        raise ValueError("Specify value of control and target")
    if N < 2:
        raise ValueError("integer N must be larger or equal to 2")
    if control >= N or target >= N:
        raise ValueError("control and not target must be integer < integer N")
    if control == target:
        raise ValueError("target and not control cannot be equal")
    p = list(range(N))
    if target == 0 and control == 1:
        p[control], p[target] = p[target], p[control]
    elif target == 0:
        p[1], p[target] = p[target], p[1]
        p[1], p[control] = p[control], p[1]
    else:
        p[1], p[target] = p[target], p[1]
        p[0], p[control] = p[control], p[0]
    return tensor([U] + [identity(2)] * (N - 2)).permute(p) 
[docs]def gate_expand_3toN(U, N, controls=[0, 1], target=2):
    """
    Create a Qobj representing a three-qubit gate that act on a system with N
    qubits.
    Parameters
    ----------
    U : Qobj
        The three-qubit gate
    N : integer
        The number of qubits in the target space.
    controls : list
        The list of the control qubits.
    target : integer
        The index of the target qubit.
    Returns
    -------
    gate : qobj
        Quantum object representation of N-qubit gate.
    """
    if N < 3:
        raise ValueError("integer N must be larger or equal to 3")
    if controls[0] >= N or controls[1] >= N or target >= N:
        raise ValueError("control and not target is None."
                         " Must be integer < integer N")
    if (controls[0] == target or
        controls[1] == target or
        controls[0] == controls[1]):
        raise ValueError("controls[0], controls[1], and target"
                         " cannot be equal")
    p = list(range(N))
    p1 = list(range(N))
    p2 = list(range(N))
    if controls[0] <= 2 and controls[1] <= 2 and target <= 2:
        p[controls[0]] = 0
        p[controls[1]] = 1
        p[target] = 2
    #
    # N > 3 cases
    #
    elif controls[0] == 0 and controls[1] == 1:
        p[2], p[target] = p[target], p[2]
    elif controls[0] == 0 and target == 2:
        p[1], p[controls[1]] = p[controls[1]], p[1]
    elif controls[1] == 1 and target == 2:
        p[0], p[controls[0]] = p[controls[0]], p[0]
    elif controls[0] == 1 and controls[1] == 0:
        p[controls[1]], p[controls[0]] = p[controls[0]], p[controls[1]]
        p2[2], p2[target] = p2[target], p2[2]
        p = [p2[p[k]] for k in range(N)]
    elif controls[0] == 2 and target == 0:
        p[target], p[controls[0]] = p[controls[0]], p[target]
        p1[1], p1[controls[1]] = p1[controls[1]], p1[1]
        p = [p1[p[k]] for k in range(N)]
    elif controls[1] == 2 and target == 1:
        p[target], p[controls[1]] = p[controls[1]], p[target]
        p1[0], p1[controls[0]] = p1[controls[0]], p1[0]
        p = [p1[p[k]] for k in range(N)]
    elif controls[0] == 1 and controls[1] == 2:
        #  controls[0] -> controls[1] -> target -> outside
        p[0], p[1] = p[1], p[0]
        p[0], p[2] = p[2], p[0]
        p[0], p[target] = p[target], p[0]
    elif controls[0] == 2 and target == 1:
        #  controls[0] -> target -> controls[1] -> outside
        p[0], p[2] = p[2], p[0]
        p[0], p[1] = p[1], p[0]
        p[0], p[controls[1]] = p[controls[1]], p[0]
    elif controls[1] == 0 and controls[0] == 2:
        #  controls[1] -> controls[0] -> target -> outside
        p[1], p[0] = p[0], p[1]
        p[1], p[2] = p[2], p[1]
        p[1], p[target] = p[target], p[1]
    elif controls[1] == 2 and target == 0:
        #  controls[1] -> target -> controls[0] -> outside
        p[1], p[2] = p[2], p[1]
        p[1], p[0] = p[0], p[1]
        p[1], p[controls[0]] = p[controls[0]], p[1]
    elif target == 1 and controls[1] == 0:
        #  target -> controls[1] -> controls[0] -> outside
        p[2], p[1] = p[1], p[2]
        p[2], p[0] = p[0], p[2]
        p[2], p[controls[0]] = p[controls[0]], p[2]
    elif target == 0 and controls[0] == 1:
        #  target -> controls[0] -> controls[1] -> outside
        p[2], p[0] = p[0], p[2]
        p[2], p[1] = p[1], p[2]
        p[2], p[controls[1]] = p[controls[1]], p[2]
    elif controls[0] == 0 and controls[1] == 2:
        #  controls[0] -> self, controls[1] -> target -> outside
        p[1], p[2] = p[2], p[1]
        p[1], p[target] = p[target], p[1]
    elif controls[1] == 1 and controls[0] == 2:
        #  controls[1] -> self, controls[0] -> target -> outside
        p[0], p[2] = p[2], p[0]
        p[0], p[target] = p[target], p[0]
    elif target == 2 and controls[0] == 1:
        #  target -> self, controls[0] -> controls[1] -> outside
        p[0], p[1] = p[1], p[0]
        p[0], p[controls[1]] = p[controls[1]], p[0]
    #
    # N > 4 cases
    #
    elif controls[0] == 1 and controls[1] > 2 and target > 2:
        #  controls[0] -> controls[1] -> outside, target -> outside
        p[0], p[1] = p[1], p[0]
        p[0], p[controls[1]] = p[controls[1]], p[0]
        p[2], p[target] = p[target], p[2]
    elif controls[0] == 2 and controls[1] > 2 and target > 2:
        #  controls[0] -> target -> outside, controls[1] -> outside
        p[0], p[2] = p[2], p[0]
        p[0], p[target] = p[target], p[0]
        p[1], p[controls[1]] = p[controls[1]], p[1]
    elif controls[1] == 2 and controls[0] > 2 and target > 2:
        #  controls[1] -> target -> outside, controls[0] -> outside
        p[1], p[2] = p[2], p[1]
        p[1], p[target] = p[target], p[1]
        p[0], p[controls[0]] = p[controls[0]], p[0]
    else:
        p[0], p[controls[0]] = p[controls[0]], p[0]
        p1[1], p1[controls[1]] = p1[controls[1]], p1[1]
        p2[2], p2[target] = p2[target], p2[2]
        p = [p[p1[p2[k]]] for k in range(N)]
    return tensor([U] + [identity(2)] * (N - 3)).permute(p)