# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
__all__ = ['mcsolve']
import os
from types import FunctionType
import numpy as np
from numpy.random import RandomState, randint
from scipy.integrate import ode
import scipy.sparse as sp
from scipy.integrate._ode import zvode
from scipy.linalg.blas import get_blas_funcs
from qutip.qobj import Qobj
from qutip.parallel import parfor, parallel_map, serial_map
from qutip.cy.spmatfuncs import cy_ode_rhs, cy_expect_psi_csr, spmv, spmv_csr
from qutip.cy.codegen import Codegen
from qutip.cy.utilities import _cython_build_cleanup
from qutip.cy.spconvert import dense2D_to_fastcsr_cmode
from qutip.solver import Options, Result, config, _solver_safety_check
from qutip.rhs_generate import _td_format_check, _td_wrap_array_str
from qutip.interpolate import Cubic_Spline
from qutip.settings import debug
from qutip.ui.progressbar import TextProgressBar, BaseProgressBar
from qutip.fastsparse import csr2fast
import qutip.settings
dznrm2 = get_blas_funcs("znrm2", dtype=np.float64)
if debug:
    import inspect
#
# Internal, global variables for storing references to dynamically loaded
# cython functions
#
_cy_col_spmv_func = None
_cy_col_expect_func = None
_cy_col_spmv_call_func = None
_cy_col_expect_call_func = None
_cy_rhs_func = None
class qutip_zvode(zvode):
    def step(self, *args):
        itask = self.call_args[2]
        self.rwork[0] = args[4]
        self.call_args[2] = 5
        r = self.run(*args)
        self.call_args[2] = itask
        return r
[docs]def mcsolve(H, psi0, tlist, c_ops=[], e_ops=[], ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None,
            _safe_mode=True):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.
    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.
    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.
    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::
        def H1_coeff(t,args):
            return sin(args['w']*t)
        def C1_coeff(t,args):
            return exp(-args['a']*t)
        H = [H0, [H1, H1_coeff]]
        c_ops = [C0, [C1, C1_coeff]]
        args={'a': A, 'w': W}
    or in String (Cython) format we could write::
        H = [H0, [H1, 'sin(w*t)']]
        c_ops = [C0, [C1, 'exp(-a*t)']]
        args={'a': A, 'w': W}
    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.
    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.
    psi0 : :class:`qutip.Qobj`
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.
    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Options
        Instance of ODE solver options.
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.
    map_func: function
        A map function for managing the calls to the single-trajactory solver.
    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.
    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.
    .. note::
        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """
    if debug:
        print(inspect.stack()[0][3])
    
    if _safe_mode:
        _solver_safety_check(H, psi0, c_ops, e_ops, args)
    
    if options is None:
        options = Options()
    if ntraj is None:
        ntraj = options.ntraj
    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}
    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")
    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]
    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]
    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None
    config.options = options
    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()
    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps
    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)
    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()
        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type
        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)
        # compile and load cython functions if necessary
        _mc_func_load(config)
    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args
    # load monte carlo class
    mc = _MC(config)
    # Run the simulation
    mc.run()
    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)
    # AFTER MCSOLVER IS DONE
    # ----------------------
    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out
    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out
    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}
    return output 
# -----------------------------------------------------------------------------
# MONTE CARLO CLASS
# -----------------------------------------------------------------------------
class _MC():
    """
    Private class for solving Monte Carlo evolution from mcsolve
    """
    def __init__(self, config):
        self.config = config
        # set output variables, even if they are not used to simplify output
        # code.
        self.psi_out = None
        self.expect_out = []
        self.collapse_times_out = None
        self.which_op_out = None
        # FOR EVOLUTION WITH COLLAPSE OPERATORS
        if config.c_num:
            # preallocate ntraj arrays for state vectors, collapse times, and
            # which operator
            self.collapse_times_out = np.zeros(config.ntraj, dtype=np.ndarray)
            self.which_op_out = np.zeros(config.ntraj, dtype=np.ndarray)
            if config.e_num == 0 or config.options.store_states:
                self.psi_out = [None] * config.ntraj
            if config.e_num > 0:
                self.expect_out = [None] * config.ntraj
            # setup seeds array
            if self.config.options.seeds is None:
                self.config.options.seeds = \
                    randint(1, 100000000.0 + 1, size=config.ntraj)
            else:
                # if ntraj was reduced but reusing seeds
                seed_length = len(config.options.seeds)
                if seed_length > config.ntraj:
                    self.config.options.seeds = \
                        config.options.seeds[0:config.ntraj]
                # if ntraj was increased but reusing seeds
                elif seed_length < config.ntraj:
                    newseeds = randint(1, 100000000.0 + 1, 
                                size=(config.ntraj - seed_length))
                    self.config.options.seeds = np.hstack(
                        (config.options.seeds, newseeds))
    def run(self):
        if debug:
            print(inspect.stack()[0][3])
        if self.config.c_num == 0:
            self.config.ntraj = 1
            if self.config.e_num == 0 or self.config.options.store_states:
                self.expect_out, self.psi_out = \
                    _evolve_no_collapse_psi_out(self.config)
            else:
                self.expect_out = _evolve_no_collapse_expect_out(self.config)
        else:
            # set arguments for input to monte carlo
            map_kwargs = {'progress_bar': self.config.progress_bar,
                          'num_cpus': self.config.options.num_cpus}
            map_kwargs.update(self.config.map_kwargs)
            task_args = (self.config, self.config.options,
                         self.config.options.seeds)
            task_kwargs = {}
            results = config.map_func(_mc_alg_evolve,
                                      list(range(config.ntraj)),
                                      task_args, task_kwargs,
                                      **map_kwargs)
            for n, result in enumerate(results):
                state_out, expect_out, collapse_times, which_oper = result
                if self.config.e_num == 0 or self.config.options.store_states:
                    self.psi_out[n] = state_out
                if self.config.e_num > 0:
                    self.expect_out[n] = expect_out
                self.collapse_times_out[n] = collapse_times
                self.which_op_out[n] = which_oper
            self.psi_out = np.asarray(self.psi_out, dtype=object)
# -----------------------------------------------------------------------------
# CODES FOR PYTHON FUNCTION BASED TIME-DEPENDENT RHS
# -----------------------------------------------------------------------------
# RHS of ODE for time-dependent systems with no collapse operators
def _tdRHS(t, psi, config):
    h_data = config.h_func(t, config.h_func_args).data
    return spmv(h_data, psi)
# RHS of ODE for constant Hamiltonian and at least one function based
# collapse operator
def _cRHStd(t, psi, config):
    sys = cy_ode_rhs(t, psi, config.h_data,
                     config.h_ind, config.h_ptr)
    col = np.array([np.abs(config.c_funcs[j](t, config.c_func_args)) ** 2 *
                    spmv_csr(config.n_ops_data[j],
                             config.n_ops_ind[j],
                             config.n_ops_ptr[j], psi)
                    for j in config.c_td_inds])
    return sys - 0.5 * np.sum(col, 0)
# RHS of ODE for list-function based Hamiltonian
def _tdRHStd(t, psi, config):
    const_term = spmv_csr(config.h_data,
                          config.h_ind,
                          config.h_ptr, psi)
    h_func_term = np.array([config.h_funcs[j](t, config.h_func_args) *
                            spmv_csr(config.h_td_data[j],
                                     config.h_td_ind[j],
                                     config.h_td_ptr[j], psi)
                            for j in config.h_td_inds])
    col_func_terms = np.array([np.abs(
        config.c_funcs[j](t, config.c_func_args)) ** 2 *
        spmv_csr(config.n_ops_data[j],
                 config.n_ops_ind[j],
                 config.n_ops_ptr[j],
                 psi)
        for j in config.c_td_inds])
    return (const_term + np.sum(h_func_term, 0)
            - 0.5 * np.sum(col_func_terms, 0))
def _tdRHStd_with_state(t, psi, config):
    const_term = spmv_csr(config.h_data,
                          config.h_ind,
                          config.h_ptr, psi)
    h_func_term = np.array([
        config.h_funcs[j](t, psi, config.h_func_args) *
        spmv_csr(config.h_td_data[j],
                 config.h_td_ind[j],
                 config.h_td_ptr[j], psi)
        for j in config.h_td_inds])
    col_func_terms = np.array([
        np.abs(config.c_funcs[j](t, config.c_func_args)) ** 2 *
        spmv_csr(config.n_ops_data[j],
                 config.n_ops_ind[j],
                 config.n_ops_ptr[j], psi)
        for j in config.c_td_inds])
    return (const_term + np.sum(h_func_term, 0)
            - 0.5 * np.sum(col_func_terms, 0))
# RHS of ODE for python function Hamiltonian
def _pyRHSc(t, psi, config):
    h_func_data = - 1.0j * config.h_funcs(t, config.h_func_args)
    h_func_term = spmv(h_func_data, psi)
    const_col_term = 0
    if len(config.c_const_inds) > 0:
        const_col_term = spmv_csr(config.h_data, config.h_ind,
                                  config.h_ptr, psi)
    return h_func_term + const_col_term
def _pyRHSc_with_state(t, psi, config):
    h_func_data = - 1.0j * config.h_funcs(t, psi, config.h_func_args)
    h_func_term = spmv(h_func_data, psi)
    const_col_term = 0
    if len(config.c_const_inds) > 0:
        const_col_term = spmv_csr(config.h_data, config.h_ind,
                                  config.h_ptr, psi)
    return h_func_term + const_col_term
# -----------------------------------------------------------------------------
# evolution solver: return psi at requested times for no collapse operators
# -----------------------------------------------------------------------------
def _evolve_no_collapse_psi_out(config):
    """
    Calculates state vectors at times tlist if no collapse AND no
    expectation values are given.
    """
    global _cy_rhs_func
    global _cy_col_spmv_func, _cy_col_expect_func
    global _cy_col_spmv_call_func, _cy_col_expect_call_func
    num_times = len(config.tlist)
    psi_out = np.array([None] * num_times)
    expect_out = []
    for i in range(config.e_num):
        if config.e_ops_isherm[i]:
            # preallocate real array of zeros
            expect_out.append(np.zeros(num_times, dtype=float))
        else:
            # preallocate complex array of zeros
            expect_out.append(np.zeros(num_times, dtype=complex))
        expect_out[i][0] = \
            cy_expect_psi_csr(config.e_ops_data[i],
                              config.e_ops_ind[i],
                              config.e_ops_ptr[i],
                              config.psi0,
                              config.e_ops_isherm[i])
    if debug:
        print(inspect.stack()[0][3])
    if not _cy_rhs_func:
        _mc_func_load(config)
    opt = config.options
    if config.tflag in [1, 10, 11]:
        ODE = ode(_cy_rhs_func)
        code = compile('ODE.set_f_params(' + config.string + ')',
                       '<string>', 'exec')
        exec(code)
    elif config.tflag == 2:
        ODE = ode(_cRHStd)
        ODE.set_f_params(config)
    elif config.tflag in [20, 22]:
        if config.options.rhs_with_state:
            ODE = ode(_tdRHStd_with_state)
        else:
            ODE = ode(_tdRHStd)
        ODE.set_f_params(config)
    elif config.tflag == 3:
        if config.options.rhs_with_state:
            ODE = ode(_pyRHSc_with_state)
        else:
            ODE = ode(_pyRHSc)
        ODE.set_f_params(config)
    else:
        ODE = ode(cy_ode_rhs)
        ODE.set_f_params(config.h_data, config.h_ind, config.h_ptr)
    # initialize ODE solver for RHS
    ODE.set_integrator('zvode', method=opt.method, order=opt.order,
                       atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                       first_step=opt.first_step, min_step=opt.min_step,
                       max_step=opt.max_step)
    # set initial conditions
    ODE.set_initial_value(config.psi0, config.tlist[0])
    psi_out[0] = Qobj(config.psi0, config.psi0_dims,
                      config.psi0_shape)
    for k in range(1, num_times):
        ODE.integrate(config.tlist[k], step=0)  # integrate up to tlist[k]
        if ODE.successful():
            state = ODE.y / dznrm2(ODE.y)
            psi_out[k] = Qobj(state, config.psi0_dims, config.psi0_shape)
            for jj in range(config.e_num):
                expect_out[jj][k] = cy_expect_psi_csr(
                    config.e_ops_data[jj], config.e_ops_ind[jj],
                    config.e_ops_ptr[jj], state,
                    config.e_ops_isherm[jj])
        else:
            raise ValueError('Error in ODE solver')
    return expect_out, psi_out
# -----------------------------------------------------------------------------
# evolution solver: return expectation values at requested times for no
# collapse oper
# -----------------------------------------------------------------------------
def _evolve_no_collapse_expect_out(config):
    """
    Calculates expect.values at times tlist if no collapse ops. given
    """
    global _cy_rhs_func
    global _cy_col_spmv_func, _cy_col_expect_func
    global _cy_col_spmv_call_func, _cy_col_expect_call_func
    if debug:
        print(inspect.stack()[0][3])
    num_times = len(config.tlist)
    expect_out = []
    for i in range(config.e_num):
        if config.e_ops_isherm[i]:
            # preallocate real array of zeros
            expect_out.append(np.zeros(num_times, dtype=float))
        else:
            # preallocate complex array of zeros
            expect_out.append(np.zeros(num_times, dtype=complex))
        expect_out[i][0] = \
            cy_expect_psi_csr(config.e_ops_data[i],
                              config.e_ops_ind[i],
                              config.e_ops_ptr[i],
                              config.psi0,
                              config.e_ops_isherm[i])
    if not _cy_rhs_func:
        _mc_func_load(config)
    opt = config.options
    if config.tflag in [1, 10, 11]:
        ODE = ode(_cy_rhs_func)
        code = compile('ODE.set_f_params(' + config.string + ')',
                       '<string>', 'exec')
        exec(code)
    elif config.tflag == 2:
        ODE = ode(_cRHStd)
        ODE.set_f_params(config)
    elif config.tflag in [20, 22]:
        if config.options.rhs_with_state:
            ODE = ode(_tdRHStd_with_state)
        else:
            ODE = ode(_tdRHStd)
        ODE.set_f_params(config)
    elif config.tflag == 3:
        if config.options.rhs_with_state:
            ODE = ode(_pyRHSc_with_state)
        else:
            ODE = ode(_pyRHSc)
        ODE.set_f_params(config)
    else:
        ODE = ode(cy_ode_rhs)
        ODE.set_f_params(config.h_data, config.h_ind, config.h_ptr)
    ODE.set_integrator('zvode', method=opt.method, order=opt.order,
                       atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                       first_step=opt.first_step, min_step=opt.min_step,
                       max_step=opt.max_step)
    ODE.set_initial_value(config.psi0, config.tlist[0])
    for jj in range(config.e_num):
        expect_out[jj][0] = cy_expect_psi_csr(
            config.e_ops_data[jj], config.e_ops_ind[jj],
            config.e_ops_ptr[jj], config.psi0,
            config.e_ops_isherm[jj])
    for k in range(1, num_times):
        ODE.integrate(config.tlist[k], step=0)  # integrate up to tlist[k]
        if ODE.successful():
            state = ODE.y / dznrm2(ODE.y)
            for jj in range(config.e_num):
                expect_out[jj][k] = cy_expect_psi_csr(
                    config.e_ops_data[jj], config.e_ops_ind[jj],
                    config.e_ops_ptr[jj], state,
                    config.e_ops_isherm[jj])
        else:
            raise ValueError('Error in ODE solver')
    return expect_out
# -----------------------------------------------------------------------------
# single-trajectory for monte carlo
# -----------------------------------------------------------------------------
def _mc_alg_evolve(nt, config, opt, seeds):
    """
    Monte Carlo algorithm returning state-vector or expectation values
    at times tlist for a single trajectory.
    """
    global _cy_rhs_func
    global _cy_col_spmv_func, _cy_col_expect_func
    global _cy_col_spmv_call_func, _cy_col_expect_call_func
    tlist = config.tlist
    num_times = len(tlist)
    if not _cy_rhs_func:
        _mc_func_load(config)
    if config.options.steady_state_average:
        states_out = np.zeros((1), dtype=object)
    else:
        states_out = np.zeros((num_times), dtype=object)
    temp = sp.csr_matrix(
        np.reshape(config.psi0, (config.psi0.shape[0], 1)),
        dtype=complex)
    temp = csr2fast(temp)
    if (config.options.average_states and
            not config.options.steady_state_average):
        # output is averaged states, so use dm
        states_out[0] = Qobj(temp*temp.H,
                             [config.psi0_dims[0],
                              config.psi0_dims[0]],
                             [config.psi0_shape[0],
                              config.psi0_shape[0]],
                             fast='mc-dm')
    elif (not config.options.average_states and
          not config.options.steady_state_average):
        # output is not averaged, so write state vectors
        states_out[0] = Qobj(temp, config.psi0_dims,
                             config.psi0_shape, fast='mc')
    elif config.options.steady_state_average:
        states_out[0] = temp * temp.H
    # PRE-GENERATE LIST FOR EXPECTATION VALUES
    expect_out = []
    for i in range(config.e_num):
        if config.e_ops_isherm[i]:
            # preallocate real array of zeros
            expect_out.append(np.zeros(num_times, dtype=float))
        else:
            # preallocate complex array of zeros
            expect_out.append(np.zeros(num_times, dtype=complex))
        expect_out[i][0] = \
            cy_expect_psi_csr(config.e_ops_data[i],
                              config.e_ops_ind[i],
                              config.e_ops_ptr[i],
                              config.psi0,
                              config.e_ops_isherm[i])
    collapse_times = []
    which_oper = []
    # SEED AND RNG AND GENERATE
    prng = RandomState(seeds[nt])
    # first rand is collapse norm, second is which operator
    rand_vals = prng.rand(2)
    # CREATE ODE OBJECT CORRESPONDING TO DESIRED TIME-DEPENDENCE
    if config.tflag in [1, 10, 11]:
        ODE = ode(_cy_rhs_func)
        code = compile('ODE.set_f_params(' + config.string + ')',
                       '<string>', 'exec')
        exec(code)
    elif config.tflag == 2:
        ODE = ode(_cRHStd)
        ODE.set_f_params(config)
    elif config.tflag in [20, 22]:
        if config.options.rhs_with_state:
            ODE = ode(_tdRHStd_with_state)
        else:
            ODE = ode(_tdRHStd)
        ODE.set_f_params(config)
    elif config.tflag == 3:
        if config.options.rhs_with_state:
            ODE = ode(_pyRHSc_with_state)
        else:
            ODE = ode(_pyRHSc)
        ODE.set_f_params(config)
    else:
        ODE = ode(_cy_rhs_func)
        ODE.set_f_params(config.h_data, config.h_ind,
                         config.h_ptr)
    # initialize ODE solver for RHS
    ODE._integrator = qutip_zvode(
        method=opt.method, order=opt.order, atol=opt.atol,
        rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step,
        min_step=opt.min_step, max_step=opt.max_step)
    if not len(ODE._y):
        ODE.t = 0.0
        ODE._y = np.array([0.0], complex)
    ODE._integrator.reset(len(ODE._y), ODE.jac is not None)
    # set initial conditions
    ODE.set_initial_value(config.psi0, tlist[0])
    # make array for collapse operator inds
    cinds = np.arange(config.c_num)
    # RUN ODE UNTIL EACH TIME IN TLIST
    for k in range(1, num_times):
        # ODE WHILE LOOP FOR INTEGRATE UP TO TIME TLIST[k]
        while ODE.t < tlist[k]:
            t_prev = ODE.t
            y_prev = ODE.y
            norm2_prev = dznrm2(ODE._y) ** 2
            # integrate up to tlist[k], one step at a time.
            ODE.integrate(tlist[k], step=1)
            if not ODE.successful():
                raise Exception("ZVODE failed!")
            norm2_psi = dznrm2(ODE._y) ** 2
            if norm2_psi <= rand_vals[0]:
                # collapse has occured:
                # find collapse time to within specified tolerance
                # ------------------------------------------------
                ii = 0
                t_final = ODE.t
                while ii < config.norm_steps:
                    ii += 1
                    t_guess = t_prev + \
                        np.log(norm2_prev / rand_vals[0]) / \
                        np.log(norm2_prev / norm2_psi) * (t_final - t_prev)
                    ODE._y = y_prev
                    ODE.t = t_prev
                    ODE._integrator.call_args[3] = 1
                    ODE.integrate(t_guess, step=0)
                    if not ODE.successful():
                        raise Exception(
                            "ZVODE failed after adjusting step size!")
                    norm2_guess = dznrm2(ODE._y)**2
                    if (np.abs(rand_vals[0] - norm2_guess) <
                            config.norm_tol * rand_vals[0]):
                        break
                    elif (norm2_guess < rand_vals[0]):
                        # t_guess is still > t_jump
                        t_final = t_guess
                        norm2_psi = norm2_guess
                    else:
                        # t_guess < t_jump
                        t_prev = t_guess
                        y_prev = ODE.y
                        norm2_prev = norm2_guess
                if ii > config.norm_steps:
                    raise Exception("Norm tolerance not reached. " +
                                    "Increase accuracy of ODE solver or " +
                                    "Options.norm_steps.")
                collapse_times.append(ODE.t)
                # some string based collapse operators
                if config.tflag in [1, 11]:
                    n_dp = [cy_expect_psi_csr(config.n_ops_data[i],
                                              config.n_ops_ind[i],
                                              config.n_ops_ptr[i],
                                              ODE._y, 1)
                            for i in config.c_const_inds]
                    _locals = locals()
                    # calculates the expectation values for time-dependent
                    # norm collapse operators
                    exec(_cy_col_expect_call_func, globals(), _locals)
                    n_dp = np.array(_locals['n_dp'])
                elif config.tflag in [2, 20, 22]:
                    # some Python function based collapse operators
                    n_dp = [cy_expect_psi_csr(config.n_ops_data[i],
                                              config.n_ops_ind[i],
                                              config.n_ops_ptr[i],
                                              ODE._y, 1)
                            for i in config.c_const_inds]
                    n_dp += [abs(config.c_funcs[i](
                                 ODE.t, config.c_func_args)) ** 2 *
                             cy_expect_psi_csr(config.n_ops_data[i],
                                               config.n_ops_ind[i],
                                               config.n_ops_ptr[i],
                                               ODE._y, 1)
                             for i in config.c_td_inds]
                    n_dp = np.array(n_dp)
                else:
                    # all constant collapse operators.
                    n_dp = np.array(
                        [cy_expect_psi_csr(config.n_ops_data[i],
                                           config.n_ops_ind[i],
                                           config.n_ops_ptr[i],
                                           ODE._y, 1)
                         for i in range(config.c_num)])
                # determine which operator does collapse and store it
                kk = np.cumsum(n_dp / np.sum(n_dp))
                j = cinds[kk >= rand_vals[1]][0]
                which_oper.append(j)
                if j in config.c_const_inds:
                    state = spmv_csr(config.c_ops_data[j],
                                     config.c_ops_ind[j],
                                     config.c_ops_ptr[j], ODE._y)
                else:
                    if config.tflag in [1, 11]:
                        _locals = locals()
                        # calculates the state vector for collapse by a
                        # time-dependent collapse operator
                        exec(_cy_col_spmv_call_func, globals(), _locals)
                        state = _locals['state']
                    else:
                        state = \
                            config.c_funcs[j](ODE.t,
                                              config.c_func_args) * \
                            spmv_csr(config.c_ops_data[j],
                                     config.c_ops_ind[j],
                                     config.c_ops_ptr[j], ODE._y)
                state = state / dznrm2(state)
                ODE._y = state
                ODE._integrator.call_args[3] = 1
                rand_vals = prng.rand(2)
        # after while loop
        # ----------------
        out_psi = ODE._y / dznrm2(ODE._y)
        if config.e_num == 0 or config.options.store_states:
            out_psi_csr = dense2D_to_fastcsr_cmode(np.reshape(out_psi,
                                                   (out_psi.shape[0], 1)),
                                                   out_psi.shape[0], 1)
            if (config.options.average_states and
                    not config.options.steady_state_average):
                states_out[k] = Qobj(
                    out_psi_csr * out_psi_csr.H,
                    [config.psi0_dims[0], config.psi0_dims[0]],
                    [config.psi0_shape[0], config.psi0_shape[0]],
                    fast='mc-dm')
            elif config.options.steady_state_average:
                states_out[0] = (
                    states_out[0] +
                    (out_psi_csr * out_psi_csr.H))
            else:
                states_out[k] = Qobj(out_psi_csr, config.psi0_dims,
                                     config.psi0_shape, fast='mc')
        for jj in range(config.e_num):
            expect_out[jj][k] = cy_expect_psi_csr(
                config.e_ops_data[jj], config.e_ops_ind[jj],
                config.e_ops_ptr[jj], out_psi,
                config.e_ops_isherm[jj])
    # Run at end of mc_alg function
    # -----------------------------
    if config.options.steady_state_average:
        states_out = np.array([Qobj(states_out[0] / float(len(tlist)),
                              [config.psi0_dims[0],
                               config.psi0_dims[0]],
                              [config.psi0_shape[0],
                               config.psi0_shape[0]],
                              fast='mc-dm')])
    return (states_out, expect_out,
            np.array(collapse_times, dtype=float),
            np.array(which_oper, dtype=int))
def _mc_func_load(config):
    """Load cython functions"""
    global _cy_rhs_func
    global _cy_col_spmv_func, _cy_col_expect_func
    global _cy_col_spmv_call_func, _cy_col_expect_call_func
    if debug:
        print(inspect.stack()[0][3] + " in " + str(os.getpid()))
    if config.tflag in [1, 10, 11]:
        # compile time-depdendent RHS code
        if config.tflag in [1, 11]:
            code = compile('from ' + config.tdname +
                           ' import cy_td_ode_rhs, col_spmv, col_expect',
                           '<string>', 'exec')
            exec(code, globals())
            _cy_rhs_func = cy_td_ode_rhs
            _cy_col_spmv_func = col_spmv
            _cy_col_expect_func = col_expect
        else:
            code = compile('from ' + config.tdname +
                           ' import cy_td_ode_rhs', '<string>', 'exec')
            exec(code, globals())
            _cy_rhs_func = cy_td_ode_rhs
        # compile wrapper functions for calling cython spmv and expect
        if config.col_spmv_code:
            _cy_col_spmv_call_func = compile(
                config.col_spmv_code, '<string>', 'exec')
        if config.col_expect_code:
            _cy_col_expect_call_func = compile(
                config.col_expect_code, '<string>', 'exec')
    elif config.tflag == 0:
        _cy_rhs_func = cy_ode_rhs
def _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                    options, config):
    """Creates the appropriate data structures for the monte carlo solver
    based on the given time-dependent, or indepdendent, format.
    """
    if debug:
        print(inspect.stack()[0][3])
    config.soft_reset()
    # take care of expectation values, if any
    if any(e_ops):
        config.e_num = len(e_ops)
        for op in e_ops:
            if isinstance(op, list):
                op = op[0]
            config.e_ops_data.append(op.data.data)
            config.e_ops_ind.append(op.data.indices)
            config.e_ops_ptr.append(op.data.indptr)
            config.e_ops_isherm.append(op.isherm)
        config.e_ops_data = np.array(config.e_ops_data)
        config.e_ops_ind = np.array(config.e_ops_ind)
        config.e_ops_ptr = np.array(config.e_ops_ptr)
        config.e_ops_isherm = np.array(config.e_ops_isherm)
    # take care of collapse operators, if any
    if any(c_ops):
        config.c_num = len(c_ops)
        for c_op in c_ops:
            if isinstance(c_op, list):
                c_op = c_op[0]
            n_op = c_op.dag() * c_op
            config.c_ops_data.append(c_op.data.data)
            config.c_ops_ind.append(c_op.data.indices)
            config.c_ops_ptr.append(c_op.data.indptr)
            # norm ops
            config.n_ops_data.append(n_op.data.data)
            config.n_ops_ind.append(n_op.data.indices)
            config.n_ops_ptr.append(n_op.data.indptr)
        # to array
        config.c_ops_data = np.array(config.c_ops_data)
        config.c_ops_ind = np.array(config.c_ops_ind)
        config.c_ops_ptr = np.array(config.c_ops_ptr)
        config.n_ops_data = np.array(config.n_ops_data)
        config.n_ops_ind = np.array(config.n_ops_ind)
        config.n_ops_ptr = np.array(config.n_ops_ptr)
    if config.tflag == 0:
        # CONSTANT H & C_OPS CODE
        # -----------------------
        if config.cflag:
            config.c_const_inds = np.arange(len(c_ops))
            # combine Hamiltonian and constant collapse terms into one
            for c_op in c_ops:
                n_op = c_op.dag() * c_op
                H -= 0.5j * \
                    n_op 
        # construct Hamiltonian data structures
        if options.tidy:
            H = H.tidyup(options.atol)
        config.h_data = -1.0j * H.data.data
        config.h_ind = H.data.indices
        config.h_ptr = H.data.indptr
    elif config.tflag in [1, 10, 11]:
        # STRING BASED TIME-DEPENDENCE
        # ----------------------------
        # take care of arguments for collapse operators, if any
        if any(args):
            for item in args.items():
                config.c_args.append(item[1])
        # constant Hamiltonian / string-type collapse operators
        if config.tflag == 1:
            H_inds = np.arange(1)
            H_tdterms = 0
            len_h = 1
            C_inds = np.arange(config.c_num)
            # find inds of time-dependent terms
            C_td_inds = np.array(c_stuff[2])
            # find inds of constant terms
            C_const_inds = np.setdiff1d(C_inds, C_td_inds)
            # extract time-dependent coefficients (strings)
            C_tdterms = [c_ops[k][1] for k in C_td_inds]
            # store indicies of constant collapse terms
            config.c_const_inds = C_const_inds
            # store indicies of time-dependent collapse terms
            config.c_td_inds = C_td_inds
            for k in config.c_const_inds:
                H -= 0.5j * (c_ops[k].dag() * c_ops[k])
            if options.tidy:
                H = H.tidyup(options.atol)
            config.h_data = [H.data.data]
            config.h_ind = [H.data.indices]
            config.h_ptr = [H.data.indptr]
            for k in config.c_td_inds:
                op = c_ops[k][0].dag() * c_ops[k][0]
                config.h_data.append(-0.5j * op.data.data)
                config.h_ind.append(op.data.indices)
                config.h_ptr.append(op.data.indptr)
            config.h_data = -1.0j * np.array(config.h_data)
            config.h_ind = np.array(config.h_ind)
            config.h_ptr = np.array(config.h_ptr)
        else:
            # string-type Hamiltonian & at least one string-type
            # collapse operator
            # -----------------
            H_inds = np.arange(len(H))
            # find inds of time-dependent terms
            H_td_inds = np.array(h_stuff[2])
            # find inds of constant terms
            H_const_inds = np.setdiff1d(H_inds, H_td_inds)
            # extract time-dependent coefficients (strings or functions)
            config.h_tdterms = [H[k][1] for k in H_td_inds]
            # combine time-INDEPENDENT terms into one.
            H = np.array([np.sum(H[k] for k in H_const_inds)] +
                         [H[k][0] for k in H_td_inds], dtype=object)
            len_h = len(H)
            H_inds = np.arange(len_h)
            # store indicies of time-dependent Hamiltonian terms
            config.h_td_inds = np.arange(1, len_h)
            # if there are any collapse operators
            if config.c_num > 0:
                if config.tflag == 10:
                    # constant collapse operators
                    config.c_const_inds = np.arange(config.c_num)
                    for k in config.c_const_inds:
                        H[0] -= 0.5j * (c_ops[k].dag() * c_ops[k])
                    C_inds = np.arange(config.c_num)
                    C_tdterms = np.array([])
                else:
                    # some time-dependent collapse terms
                    C_inds = np.arange(config.c_num)
                    # find inds of time-dependent terms
                    C_td_inds = np.array(c_stuff[2])
                    # find inds of constant terms
                    C_const_inds = np.setdiff1d(C_inds, C_td_inds)
                    C_tdterms = [c_ops[k][1] for k in C_td_inds]
                    # extract time-dependent coefficients (strings)
                    # store indicies of constant collapse terms
                    config.c_const_inds = C_const_inds
                    # store indicies of time-dependent collapse terms
                    config.c_td_inds = C_td_inds
                    for k in config.c_const_inds:
                        H[0] -= 0.5j * (c_ops[k].dag() * c_ops[k])
            else:
                # set empty objects if no collapse operators
                C_const_inds = np.arange(config.c_num)
                config.c_const_inds = np.arange(config.c_num)
                config.c_td_inds = np.array([])
                C_tdterms = np.array([])
                C_inds = np.array([])
            # tidyup
            if options.tidy:
                H = np.array([H[k].tidyup(options.atol)
                              for k in range(len_h)], dtype=object)
            # construct data sets
            config.h_data = [H[k].data.data for k in range(len_h)]
            config.h_ind = [H[k].data.indices for k in range(len_h)]
            config.h_ptr = [H[k].data.indptr for k in range(len_h)]
            for k in config.c_td_inds:
                config.h_data.append(-0.5j * config.n_ops_data[k])
                config.h_ind.append(config.n_ops_ind[k])
                config.h_ptr.append(config.n_ops_ptr[k])
            config.h_data = -1.0j * np.array(config.h_data)
            config.h_ind = np.array(config.h_ind)
            config.h_ptr = np.array(config.h_ptr)
        # set execuatble code for collapse expectation values and spmv
        col_spmv_code = ("state = _cy_col_spmv_func(j, ODE.t, " +
                         "config.c_ops_data[j], config.c_ops_ind[j], " +
                         "config.c_ops_ptr[j], ODE.y")
        col_expect_code = ("for i in config.c_td_inds: " +
                           "n_dp.append(_cy_col_expect_func(i, ODE.t, " +
                           "config.n_ops_data[i], " +
                           "config.n_ops_ind[i], " +
                           "config.n_ops_ptr[i], ODE.y")
        for kk in range(len(config.c_args)):
            col_spmv_code += ",config.c_args[" + str(kk) + "]"
            col_expect_code += ",config.c_args[" + str(kk) + "]"
        col_spmv_code += ")"
        col_expect_code += "))"
        config.col_spmv_code = col_spmv_code
        config.col_expect_code = col_expect_code
        # setup ode args string
        config.string = ""
        data_range = range(len(config.h_data))
        for k in data_range:
            config.string += ("config.h_data[" + str(k) +
                              "], config.h_ind[" + str(k) +
                              "], config.h_ptr[" + str(k) + "]")
            if k != data_range[-1]:
                config.string += ","
        
        # Add objects to ode args string
        for k in range(len(config.h_tdterms)):
            if isinstance(config.h_tdterms[k], Cubic_Spline):
                config.string += ", config.h_tdterms["+str(k)+"].coeffs"
        
        # attach args to ode args string
        if len(config.c_args) > 0:
            for kk in range(len(config.c_args)):
                config.string += "," + "config.c_args[" + str(kk) + "]"
        name = "rhs" + str(os.getpid()) + str(config.cgen_num)
        config.tdname = name
        cgen = Codegen(H_inds, config.h_tdterms, config.h_td_inds, args,
                       C_inds, C_tdterms, config.c_td_inds, type='mc',
                       config=config)
        cgen.generate(name + ".pyx")
    elif config.tflag in [2, 20, 22]:
        # PYTHON LIST-FUNCTION BASED TIME-DEPENDENCE
        # ------------------------------------------
        # take care of Hamiltonian
        if config.tflag == 2:
            # constant Hamiltonian, at least one function based collapse
            # operators
            H_inds = np.array([0])
            H_tdterms = 0
            len_h = 1
        else:
            # function based Hamiltonian
            H_inds = np.arange(len(H))
            H_td_inds = np.array(h_stuff[1])
            H_const_inds = np.setdiff1d(H_inds, H_td_inds)
            config.h_funcs = np.array([H[k][1] for k in H_td_inds])
            config.h_func_args = args
            Htd = np.array([H[k][0] for k in H_td_inds], dtype=object)
            config.h_td_inds = np.arange(len(Htd))
            H = np.sum(H[k] for k in H_const_inds)
        # take care of collapse operators
        C_inds = np.arange(config.c_num)
        # find inds of time-dependent terms
        C_td_inds = np.array(c_stuff[1])
        # find inds of constant terms
        C_const_inds = np.setdiff1d(C_inds, C_td_inds)
        # store indicies of constant collapse terms
        config.c_const_inds = C_const_inds
        # store indicies of time-dependent collapse terms
        config.c_td_inds = C_td_inds
        config.c_funcs = np.zeros(config.c_num, dtype=FunctionType)
        for k in config.c_td_inds:
            config.c_funcs[k] = c_ops[k][1]
        config.c_func_args = args
        # combine constant collapse terms with constant H and construct data
        for k in config.c_const_inds:
            H -= 0.5j * (c_ops[k].dag() * c_ops[k])
        if options.tidy:
            H = H.tidyup(options.atol)
            Htd = np.array([Htd[j].tidyup(options.atol)
                            for j in config.h_td_inds], dtype=object)
        # setup constant H terms data
        config.h_data = -1.0j * H.data.data
        config.h_ind = H.data.indices
        config.h_ptr = H.data.indptr
        # setup td H terms data
        config.h_td_data = np.array(
            [-1.0j * Htd[k].data.data for k in config.h_td_inds])
        config.h_td_ind = np.array(
            [Htd[k].data.indices for k in config.h_td_inds])
        config.h_td_ptr = np.array(
            [Htd[k].data.indptr for k in config.h_td_inds])
    elif config.tflag == 3:
        # PYTHON FUNCTION BASED HAMILTONIAN
        # ---------------------------------
        # take care of Hamiltonian
        config.h_funcs = H
        config.h_func_args = args
        # take care of collapse operators
        config.c_const_inds = np.arange(config.c_num)
        config.c_td_inds = np.array([])
        if len(config.c_const_inds) > 0:
            H = 0
            for k in config.c_const_inds:
                H -= 0.5j * (c_ops[k].dag() * c_ops[k])
            if options.tidy:
                H = H.tidyup(options.atol)
            config.h_data = -1.0j * H.data.data
            config.h_ind = H.data.indices
            config.h_ptr = H.data.indptr
def _mc_dm_avg(psi_list):
    """
    Private function that averages density matrices in parallel
    over all trajectories for a single time using parfor.
    """
    ln = len(psi_list)
    dims = psi_list[0].dims
    shape = psi_list[0].shape
    out_data = np.sum([psi.data for psi in psi_list]) / ln
    return Qobj(out_data, dims=dims, shape=shape, fast='mc-dm')