# -*- coding: utf-8 -*-
# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2014 and later, Alexander J G Pitchford
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
# @author: Alexander Pitchford
# @email1: agp1@aber.ac.uk
# @email2: alex.pitchford@gmail.com
# @organization: Aberystwyth University
# @supervisor: Daniel Burgarth
"""
Timeslot Computer
These classes determine which dynamics generators, propagators and evolutions
are recalculated when there is a control amplitude update.
The timeslot computer processes the lists held by the dynamics object
The default (UpdateAll) updates all of these each amp update, on the
assumption that all amplitudes are changed each iteration. This is typical
when using optimisation methods like BFGS in the GRAPE algorithm
The alternative (DynUpdate) assumes that only a subset of amplitudes
are updated each iteration and attempts to minimise the number of expensive
calculations accordingly. This would be the appropriate class for Krotov type
methods. Note that the Stats_DynTsUpdate class must be used for stats
in conjunction with this class.
NOTE: AJGP 2011-10-2014: This _DynUpdate class currently has some bug,
no pressing need to fix it presently
If all amplitudes change at each update, then the behavior of the classes is
equivalent. _UpdateAll is easier to understand and potentially slightly faster
in this situation.
Note the methods in the _DynUpdate class were inspired by:
DYNAMO - Dynamic Framework for Quantum Optimal Control
See Machnes et.al., arXiv.1011.4874
"""
import os
import warnings
import numpy as np
import timeit
# QuTiP
from qutip import Qobj
# QuTiP control modules
import qutip.control.errors as errors
import qutip.control.dump as qtrldump
# QuTiP logging
import qutip.logging_utils as logging
logger = logging.get_logger()
def _func_deprecation(message, stacklevel=3):
    """
    Issue deprecation warning
    Using stacklevel=3 will ensure message refers the function
    calling with the deprecated parameter,
    """
    warnings.warn(message, DeprecationWarning, stacklevel=stacklevel)
[docs]class TimeslotComputer(object):
    """
    Base class for all Timeslot Computers
    Note: this must be instantiated with a Dynamics object, that is the
    container for the data that the methods operate on
    Attributes
    ----------
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
        
    evo_comp_summary : EvoCompSummary
        A summary of the most recent evolution computation
        Used in the stats and dump
        Will be set to None if neither stats or dump are set
    """
    def __init__(self, dynamics, params=None):
        from qutip.control.dynamics import Dynamics
        if not isinstance(dynamics, Dynamics):
            raise TypeError("Must instantiate with {} type".format(
                                        Dynamics))
        self.parent = dynamics
        self.params = params
        self.reset()
    def reset(self):
        self.log_level = self.parent.log_level
        self.id_text = 'TS_COMP_BASE'
        self.evo_comp_summary = None
[docs]    def apply_params(self, params=None):
        """
        Set object attributes based on the dictionary (if any) passed in the
        instantiation, or passed as a parameter
        This is called during the instantiation automatically.
        The key value pairs are the attribute name and value
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        """
        if not params:
            params = self.params
        if isinstance(params, dict):
            self.params = params
            for key in params:
                setattr(self, key, params[key]) 
    def flag_all_calc_now(self):
        pass
    def init_comp(self):
        pass
    @property
    def log_level(self):
        return logger.level
    @log_level.setter
    def log_level(self, lvl):
        """
        Set the log_level attribute and set the level of the logger
        that is call logger.setLevel(lvl)
        """
        logger.setLevel(lvl)
        
[docs]    def dump_current(self):
        """Store a copy of the current time evolution"""
        dyn = self.parent
        dump = dyn.dump
        if not isinstance(dump, qtrldump.DynamicsDump):
            raise RuntimeError("Cannot dump current evolution, "
                "as dynamics.dump is not set")
        
        anything_dumped = False
        item_idx = None
        if dump.dump_any:
            dump_item = dump.add_evo_dump()
            item_idx = dump_item.idx
            anything_dumped = True
        
        if dump.dump_summary:
            dump.add_evo_comp_summary(dump_item_idx=item_idx)
            anything_dumped = True
                
        if not anything_dumped:
            logger.warning("Dump set, but nothing dumped, check dump config")  
            
[docs]class TSlotCompUpdateAll(TimeslotComputer):
    """
    Timeslot Computer - Update All
    Updates all dynamics generators, propagators and evolutions when
    ctrl amplitudes are updated
    """
    def reset(self):
        TimeslotComputer.reset(self)
        self.id_text = 'ALL'
        self.apply_params()
[docs]    def compare_amps(self, new_amps):
        """
        Determine if any amplitudes have changed. If so, then mark the
        timeslots as needing recalculation
        Returns: True if amplitudes are the same, False if they have changed
        """
        changed = False
        dyn = self.parent
        
        if (dyn.stats or dyn.dump):
            if self.evo_comp_summary:
                self.evo_comp_summary.reset()
            else:
                self.evo_comp_summary = EvoCompSummary()
        ecs = self.evo_comp_summary
        
        if dyn.ctrl_amps is None:
            # Flag fidelity and gradients as needing recalculation
            changed = True
            if ecs:
                ecs.num_amps_changed = len(new_amps.flat)
                ecs.num_timeslots_changed = new_amps.shape[0]
        else:
            # create boolean array with same shape as ctrl_amps
            # True where value in new_amps differs, otherwise false
            changed_amps = dyn.ctrl_amps != new_amps
            if np.any(changed_amps):
                # Flag fidelity and gradients as needing recalculation
                changed = True
                if self.log_level <= logging.DEBUG:
                    logger.debug("{} amplitudes changed".format(
                        changed_amps.sum()))
                
                if ecs:
                    ecs.num_amps_changed = changed_amps.sum()
                    ecs.num_timeslots_changed = np.any(changed_amps, 1).sum()
            else:
                if self.log_level <= logging.DEBUG:
                    logger.debug("No amplitudes changed")
        # *** update stats ***
        if dyn.stats:
            dyn.stats.num_ctrl_amp_updates += bool(ecs.num_amps_changed)
            dyn.stats.num_ctrl_amp_changes += ecs.num_amps_changed
            dyn.stats.num_timeslot_changes += ecs.num_timeslots_changed
            
        if changed:
            dyn.ctrl_amps = new_amps
            dyn.flag_system_changed()
            return False
        else:
            return True 
[docs]    def recompute_evolution(self):
        """
        Recalculates the evolution operators.
        Dynamics generators (e.g. Hamiltonian) and
        prop (propagators) are calculated as necessary
        """
        dyn = self.parent
        prop_comp = dyn.prop_computer
        n_ts = dyn.num_tslots
        n_ctrls = dyn.num_ctrls
        # Clear the public lists
        # These are only set if (external) users access them
        dyn._dyn_gen_qobj = None
        dyn._prop_qobj = None
        dyn._prop_grad_qobj = None
        dyn._fwd_evo_qobj = None
        dyn._onwd_evo_qobj = None
        dyn._onto_evo_qobj = None
        
        if (dyn.stats or dyn.dump) and not self.evo_comp_summary:
            self.evo_comp_summary = EvoCompSummary()
        ecs = self.evo_comp_summary
        if dyn.stats is not None:
            dyn.stats.num_tslot_recompute += 1
            if self.log_level <= logging.DEBUG:
                logger.log(logging.DEBUG, "recomputing evolution {} "
                           "(UpdateAll)".format(
                               dyn.stats.num_tslot_recompute))
        # calculate the Hamiltonians
        if ecs: time_start = timeit.default_timer()
        for k in range(n_ts):
            dyn._combine_dyn_gen(k)
            if dyn._decomp_curr is not None:
                dyn._decomp_curr[k] = False
                
        if ecs:
            ecs.wall_time_dyn_gen_compute = \
                
timeit.default_timer() - time_start
        # calculate the propagators and the propagotor gradients
        if ecs: time_start = timeit.default_timer()
        for k in range(n_ts):
            if prop_comp.grad_exact and dyn.cache_prop_grad:
                for j in range(n_ctrls):
                    if j == 0:
                        dyn._prop[k], dyn._prop_grad[k, j] = \
                                    
prop_comp._compute_prop_grad(k, j)
                        if self.log_level <= logging.DEBUG_INTENSE:
                            logger.log(logging.DEBUG_INTENSE,
                                       "propagator {}:\n{:10.3g}".format(
                                           k, self._prop[k]))
                    else:
                        dyn._prop_grad[k, j] = \
                            
prop_comp._compute_prop_grad(k, j, 
                                                         compute_prop=False)
            else:
                dyn._prop[k] = prop_comp._compute_propagator(k)
        
        if ecs:
            ecs.wall_time_prop_compute = \
                
timeit.default_timer() - time_start
        if ecs: time_start = timeit.default_timer()
        # compute the forward propagation
        R = range(n_ts)
        for k in R:
            if dyn.oper_dtype == Qobj:
                dyn._fwd_evo[k+1] = dyn._prop[k]*dyn._fwd_evo[k]
            else:
                dyn._fwd_evo[k+1] = dyn._prop[k].dot(dyn._fwd_evo[k])
        if ecs:
            ecs.wall_time_fwd_prop_compute = \
                        
timeit.default_timer() - time_start
            time_start = timeit.default_timer()
        # compute the onward propagation
        if dyn.fid_computer.uses_onwd_evo:
            dyn._onwd_evo[n_ts-1] = dyn._prop[n_ts-1]
            R = range(n_ts-2, -1, -1)
            for k in R:
                if dyn.oper_dtype == Qobj:
                    dyn._onwd_evo[k] = dyn._onwd_evo[k+1]*dyn._prop[k]
                else:
                    dyn._onwd_evo[k] = dyn._onwd_evo[k+1].dot(dyn._prop[k])
        if dyn.fid_computer.uses_onto_evo:
            #R = range(n_ts-1, -1, -1)
            R = range(n_ts-1, -1, -1)
            for k in R:
                if dyn.oper_dtype == Qobj:
                    dyn._onto_evo[k] = dyn._onto_evo[k+1]*dyn._prop[k]
                else:
                    dyn._onto_evo[k] = dyn._onto_evo[k+1].dot(dyn._prop[k])
        if ecs:
            ecs.wall_time_onwd_prop_compute = \
                            
timeit.default_timer() - time_start
            
        if dyn.stats:
            dyn.stats.wall_time_dyn_gen_compute += \
                                    
ecs.wall_time_dyn_gen_compute
            dyn.stats.wall_time_prop_compute += \
                                    
ecs.wall_time_prop_compute
            dyn.stats.wall_time_fwd_prop_compute += \
                                    
ecs.wall_time_fwd_prop_compute
            dyn.stats.wall_time_onwd_prop_compute += \
                                    
ecs.wall_time_onwd_prop_compute
                
        if dyn.unitarity_check_level:
            dyn.check_unitarity()
            
        if dyn.dump:
            self.dump_current() 
[docs]    def get_timeslot_for_fidelity_calc(self):
        """
        Returns the timeslot index that will be used calculate current fidelity
        value.
        This (default) method simply returns the last timeslot
        """
        _func_deprecation("'get_timeslot_for_fidelity_calc' is deprecated. "
                        "Use '_get_timeslot_for_fidelity_calc'")
        return self._get_timeslot_for_fidelity_calc 
    def _get_timeslot_for_fidelity_calc(self):
        """
        Returns the timeslot index that will be used calculate current fidelity
        value.
        This (default) method simply returns the last timeslot
        """
        return self.parent.num_tslots 
class TSlotCompDynUpdate(TimeslotComputer):
    """
    Timeslot Computer - Dynamic Update
    ********************************
    ***** CURRENTLY HAS ISSUES *****
    ***** AJGP 2014-10-02
    ***** and is therefore not being maintained
    ***** i.e. changes made to _UpdateAll are not being implemented here
    ********************************
    Updates only the dynamics generators, propagators and evolutions as
    required when a subset of the ctrl amplitudes are updated.
    Will update all if all amps have changed.
    """
    def reset(self):
        self.dyn_gen_recalc = None
        self.prop_recalc = None
        self.evo_init2t_recalc = None
        self.evo_t2targ_recalc = None
        self.dyn_gen_calc_now = None
        self.prop_calc_now = None
        self.evo_init2t_calc_now = None
        self.evo_t2targ_calc_now = None
        TimeslotComputer.reset(self)
        self.id_text = 'DYNAMIC'
        self.apply_params()
    def init_comp(self):
        """
        Initialise the flags
        """
        ####
        # These maps are used to determine what needs to be updated
        ####
        # Note _recalc means the value needs updating at some point
        # e.g. here no values have been set, except the initial and final
        # evolution operator vals (which never change) and hence all other
        # values are set as requiring calculation.
        n_ts = self.parent.num_tslots
        self.dyn_gen_recalc = np.ones(n_ts, dtype=bool)
        # np.ones(n_ts, dtype=bool)
        self.prop_recalc = np.ones(n_ts, dtype=bool)
        self.evo_init2t_recalc = np.ones(n_ts + 1, dtype=bool)
        self.evo_init2t_recalc[0] = False
        self.evo_t2targ_recalc = np.ones(n_ts + 1, dtype=bool)
        self.evo_t2targ_recalc[-1] = False
        # The _calc_now map is used to during the calcs to specify
        # which values need updating immediately
        self.dyn_gen_calc_now = np.zeros(n_ts, dtype=bool)
        self.prop_calc_now = np.zeros(n_ts, dtype=bool)
        self.evo_init2t_calc_now = np.zeros(n_ts + 1, dtype=bool)
        self.evo_t2targ_calc_now = np.zeros(n_ts + 1, dtype=bool)
    def compare_amps(self, new_amps):
        """
        Determine which timeslots will have changed Hamiltonians
        i.e. any where control amplitudes have changed for that slot
        and mark (using masks) them and corresponding exponentiations and
        time evo operators for update
        Returns: True if amplitudes are the same, False if they have changed
        """
        dyn = self.parent
        n_ts = dyn.num_tslots
        # create boolean array with same shape as ctrl_amps
        # True where value in New_amps differs, otherwise false
        if self.parent.ctrl_amps is None:
            changed_amps = np.ones(new_amps.shape, dtype=bool)
        else:
            changed_amps = self.parent.ctrl_amps != new_amps
        if self.log_level <= logging.DEBUG_VERBOSE:
            logger.log(logging.DEBUG_VERBOSE, "changed_amps:\n{}".format(
                changed_amps))
        # create Boolean vector with same length as number of timeslots
        # True where any of the amplitudes have changed, otherwise false
        changed_ts_mask = np.any(changed_amps, 1)
        # if any of the amplidudes have changed then mark for recalc
        if np.any(changed_ts_mask):
            self.dyn_gen_recalc[changed_ts_mask] = True
            self.prop_recalc[changed_ts_mask] = True
            dyn.ctrl_amps = new_amps
            if self.log_level <= logging.DEBUG:
                logger.debug("Control amplitudes updated")
            # find first and last changed dynamics generators
            first_changed = None
            for i in range(n_ts):
                if changed_ts_mask[i]:
                    last_changed = i
                    if first_changed is None:
                        first_changed = i
            # set all fwd evo ops after first changed Ham to be recalculated
            self.evo_init2t_recalc[first_changed + 1:] = True
            # set all bkwd evo ops up to (incl) last changed Ham to be
            # recalculated
            self.evo_t2targ_recalc[:last_changed + 1] = True
            # Flag fidelity and gradients as needing recalculation
            dyn.flag_system_changed()
            # *** update stats ***
            if dyn.stats is not None:
                dyn.stats.num_ctrl_amp_updates += 1
                dyn.stats.num_ctrl_amp_changes += changed_amps.sum()
                dyn.stats.num_timeslot_changes += changed_ts_mask.sum()
            return False
        else:
            return True
    def flag_all_calc_now(self):
        """
        Flags all Hamiltonians, propagators and propagations to be
        calculated now
        """
        # set flags for calculations
        self.dyn_gen_calc_now[:] = True
        self.prop_calc_now[:] = True
        self.evo_init2t_calc_now[:-1] = True
        self.evo_t2targ_calc_now[1:] = True
    def recompute_evolution(self):
        """
        Recalculates the evo_init2t (forward) and evo_t2targ (onward) time
        evolution operators
        DynGen (Hamiltonians etc) and prop (propagator) are calculated
        as necessary
        """
        if self.log_level <= logging.DEBUG_VERBOSE:
            logger.log(logging.DEBUG_VERBOSE, "recomputing evolution "
                       "(DynUpdate)")
        dyn = self.parent
        n_ts = dyn.num_tslots
        # find the op slots that have been marked for update now
        # and need recalculation
        evo_init2t_recomp_now = self.evo_init2t_calc_now & \
            self.evo_init2t_recalc
        evo_t2targ_recomp_now = self.evo_t2targ_calc_now & \
            self.evo_t2targ_recalc
        # to recomupte evo_init2t, will need to start
        #  at a cell that has been computed
        if np.any(evo_init2t_recomp_now):
            for k in range(n_ts, 0, -1):
                if evo_init2t_recomp_now[k] and self.evo_init2t_recalc[k-1]:
                    evo_init2t_recomp_now[k-1] = True
        # for evo_t2targ, will also need to start
        #  at a cell that has been computed
        if np.any(evo_t2targ_recomp_now):
            for k in range(0, n_ts):
                if evo_t2targ_recomp_now[k] and self.evo_t2targ_recalc[k+1]:
                    evo_t2targ_recomp_now[k+1] = True
        # determine which dyn gen and prop need recalculating now in order to
        # calculate the forwrd and onward evolutions
        prop_recomp_now = (evo_init2t_recomp_now[1:]
                           | evo_t2targ_recomp_now[:-1]
                           | self.prop_calc_now[:]) & self.prop_recalc[:]
        dyn_gen_recomp_now = (prop_recomp_now[:] | self.dyn_gen_calc_now[:]) \
            & self.dyn_gen_recalc[:]
        if np.any(dyn_gen_recomp_now):
            time_start = timeit.default_timer()
            for k in range(n_ts):
                if dyn_gen_recomp_now[k]:
                    # calculate the dynamics generators
                    dyn.dyn_gen[k] = dyn.compute_dyn_gen(k)
                    self.dyn_gen_recalc[k] = False
            if dyn.stats is not None:
                dyn.stats.num_dyn_gen_computes += dyn_gen_recomp_now.sum()
                dyn.stats.wall_time_dyn_gen_compute += \
                    timeit.default_timer() - time_start
        if np.any(prop_recomp_now):
            time_start = timeit.default_timer()
            for k in range(n_ts):
                if prop_recomp_now[k]:
                    # calculate exp(H) and other per H computations needed for
                    # the gradient function
                    dyn.prop[k] = dyn._compute_propagator(k)
                    self.prop_recalc[k] = False
            if dyn.stats is not None:
                dyn.stats.num_prop_computes += prop_recomp_now.sum()
                dyn.stats.wall_time_prop_compute += \
                    timeit.default_timer() - time_start
        # compute the forward propagation
        if np.any(evo_init2t_recomp_now):
            time_start = timeit.default_timer()
            R = range(1, n_ts + 1)
            for k in R:
                if evo_init2t_recomp_now[k]:
                    dyn.evo_init2t[k] = \
                        dyn.prop[k-1].dot(dyn.evo_init2t[k-1])
                    self.evo_init2t_recalc[k] = False
            if dyn.stats is not None:
                dyn.stats.num_fwd_prop_step_computes += \
                    evo_init2t_recomp_now.sum()
                dyn.stats.wall_time_fwd_prop_compute += \
                    timeit.default_timer() - time_start
        if np.any(evo_t2targ_recomp_now):
            time_start = timeit.default_timer()
            # compute the onward propagation
            R = range(n_ts-1, -1, -1)
            for k in R:
                if evo_t2targ_recomp_now[k]:
                    dyn.evo_t2targ[k] = dyn.evo_t2targ[k+1].dot(dyn.prop[k])
                    self.evo_t2targ_recalc[k] = False
            if dyn.stats is not None:
                dyn.stats.num_onwd_prop_step_computes += \
                    evo_t2targ_recomp_now.sum()
                dyn.stats.wall_time_onwd_prop_compute += \
                    timeit.default_timer() - time_start
        # Clear calc now flags
        self.dyn_gen_calc_now[:] = False
        self.prop_calc_now[:] = False
        self.evo_init2t_calc_now[:] = False
        self.evo_t2targ_calc_now[:] = False
    def get_timeslot_for_fidelity_calc(self):
        """
        Returns the timeslot index that will be used calculate current fidelity
        value. Attempts to find a timeslot where the least number of propagator
        calculations will be required.
        Flags the associated evolution operators for calculation now
        """
        dyn = self.parent
        n_ts = dyn.num_tslots
        kBothEvoCurrent = -1
        kFwdEvoCurrent = -1
        kUse = -1
        # If no specific timeslot set in config, then determine dynamically
        if kUse < 0:
            for k in range(n_ts):
                # find first timeslot where both evo_init2t and
                # evo_t2targ are current
                if not self.evo_init2t_recalc[k]:
                    kFwdEvoCurrent = k
                    if not self.evo_t2targ_recalc[k]:
                        kBothEvoCurrent = k
                        break
            if kBothEvoCurrent >= 0:
                kUse = kBothEvoCurrent
            elif kFwdEvoCurrent >= 0:
                kUse = kFwdEvoCurrent
            else:
                raise errors.FunctionalError("No timeslot found matching "
                                             "criteria")
        self.evo_init2t_calc_now[kUse] = True
        self.evo_t2targ_calc_now[kUse] = True
        return kUse
class EvoCompSummary(qtrldump.DumpSummaryItem):
    """
    A summary of the most recent time evolution computation
    Used in stats calculations and for data dumping
    
    Attributes
    ----------
    evo_dump_idx : int
        Index of the linked :class:`dump.EvoCompDumpItem`
        None if no linked item
        
    iter_num : int
        Iteration number of the pulse optimisation
        None if evolution compute outside of a pulse optimisation
        
    fid_func_call_num : int
        Fidelity function call number of the pulse optimisation
        None if evolution compute outside of a pulse optimisation
        
    grad_func_call_num : int
        Gradient function call number of the pulse optimisation
        None if evolution compute outside of a pulse optimisation
        
    num_amps_changed : int
        Number of control timeslot amplitudes changed since previous
        evolution calculation
        
    num_timeslots_changed : int
        Number of timeslots in which any amplitudes changed since previous
        evolution calculation
        
    wall_time_dyn_gen_compute : float
        Time spent computing dynamics generators
        (in seconds of elapsed time)
        
    wall_time_prop_compute : float
        Time spent computing propagators (including and propagator gradients)
        (in seconds of elapsed time)
        
    wall_time_fwd_prop_compute : float
        Time spent computing the forward evolution of the system
        see :property:`dynamics.fwd_evo`  
        (in seconds of elapsed time)
        
    wall_time_onwd_prop_compute : float
        Time spent computing the 'backward' evolution of the system
        see :property:`dynamics.onwd_evo` and :property:`dynamics.onto_evo`
        (in seconds of elapsed time)
    """
    
    min_col_width = 11
    summary_property_names = (
        "idx", "evo_dump_idx", 
        "iter_num", "fid_func_call_num", "grad_func_call_num",
        "num_amps_changed", "num_timeslots_changed",
        "wall_time_dyn_gen_compute", "wall_time_prop_compute",
        "wall_time_fwd_prop_compute", "wall_time_onwd_prop_compute")
        
    summary_property_fmt_type = (
        'd', 'd',
        'd', 'd', 'd',
        'd', 'd',
        'g', 'g', 
        'g', 'g'
        )
        
    summary_property_fmt_prec = (
        0, 0, 
        0, 0, 0,
        0, 0, 
        3, 3,
        3, 3
        )
        
    def __init__(self):
        self.reset()
        
    def reset(self):
        qtrldump.DumpSummaryItem.reset(self)
        self.evo_dump_idx = None
        self.iter_num = None
        self.fid_func_call_num = None
        self.grad_func_call_num = None
        self.num_amps_changed = 0
        self.num_timeslots_changed = 0
        self.wall_time_dyn_gen_compute = 0.0
        self.wall_time_prop_compute = 0.0
        self.wall_time_fwd_prop_compute = 0.0
        self.wall_time_onwd_prop_compute = 0.0