# -*- coding: utf-8 -*-
# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2014 and later, Alexander J G Pitchford
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
# @author: Alexander Pitchford
# @email1: agp1@aber.ac.uk
# @email2: alex.pitchford@gmail.com
# @organization: Aberystwyth University
# @supervisor: Daniel Burgarth
"""
Wrapper functions that will manage the creation of the objects,
build the configuration, and execute the algorithm required to optimise
a set of ctrl pulses for a given (quantum) system.
The fidelity error is some measure of distance of the system evolution
from the given target evolution in the time allowed for the evolution.
The functions minimise this fidelity error wrt the piecewise control
amplitudes in the timeslots
There are currently two quantum control pulse optmisations algorithms
implemented in this library. There are accessible through the methods
in this module. Both the algorithms use the scipy.optimize methods
to minimise the fidelity error with respect to to variables that define
the pulse.
GRAPE
-----
The default algorithm (as it was implemented here first) is GRAPE
GRadient Ascent Pulse Engineering [1][2]. It uses a gradient based method such
as BFGS to minimise the fidelity error. This makes convergence very quick
when an exact gradient can be calculated, but this limits the factors that can
taken into account in the fidelity.
CRAB
----
The CRAB [3][4] algorithm was developed at the University of Ulm.
In full it is the Chopped RAndom Basis algorithm.
The main difference is that it reduces the number of optimisation variables 
by defining the control pulses by expansions of basis functions, 
where the variables are the coefficients. Typically a Fourier series is chosen, 
i.e. the variables are the Fourier coefficients. 
Therefore it does not need to compute an explicit gradient. 
By default it uses the Nelder-Mead method for fidelity error minimisation. 
References
----------
1.  N Khaneja et. al. 
    Optimal control of coupled spin dynamics: Design of NMR pulse sequences 
    by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).
2.  Shai Machnes et.al
    DYNAMO - Dynamic Framework for Quantum Optimal Control
    arXiv.1011.4874
3.  Doria, P., Calarco, T. & Montangero, S. 
    Optimal Control Technique for Many-Body Quantum Dynamics. 
    Phys. Rev. Lett. 106, 1–4 (2011).
4.  Caneva, T., Calarco, T. & Montangero, S. 
    Chopped random-basis quantum optimization. 
    Phys. Rev. A - At. Mol. Opt. Phys. 84, (2011).
"""
import numpy as np
import warnings
# QuTiP
from qutip import Qobj
import qutip.logging_utils as logging
logger = logging.get_logger()
# QuTiP control modules
import qutip.control.optimconfig as optimconfig
import qutip.control.dynamics as dynamics
import qutip.control.termcond as termcond
import qutip.control.optimizer as optimizer
import qutip.control.stats as stats
import qutip.control.errors as errors
import qutip.control.fidcomp as fidcomp
import qutip.control.propcomp as propcomp
import qutip.control.pulsegen as pulsegen
#import qutip.control.pulsegencrab as pulsegencrab
warnings.simplefilter('always', DeprecationWarning) #turn off filter 
def _param_deprecation(message, stacklevel=3):
    """
    Issue deprecation warning
    Using stacklevel=3 will ensure message refers the function
    calling with the deprecated parameter,
    """
    warnings.warn(message, DeprecationWarning, stacklevel=stacklevel)
    
def _upper_safe(s):
    try:
        s = s.upper()
    except:
        pass
    return s
            
[docs]def optimize_pulse(
        drift, ctrls, initial, target,
        num_tslots=None, evo_time=None, tau=None,
        amp_lbound=None, amp_ubound=None,
        fid_err_targ=1e-10, min_grad=1e-10,
        max_iter=500, max_wall_time=180,
        alg='GRAPE', alg_params=None,
        optim_params=None, optim_method='DEF', method_params=None,
        optim_alg=None, max_metric_corr=None, accuracy_factor=None,
        dyn_type='GEN_MAT', dyn_params=None,
        prop_type='DEF', prop_params=None,
        fid_type='DEF', fid_params=None,
        phase_option=None, fid_err_scale_factor=None,
        tslot_type='DEF', tslot_params=None,
        amp_update_mode=None,
        init_pulse_type='DEF', init_pulse_params=None,
        pulse_scaling=1.0, pulse_offset=0.0,
        ramping_pulse_type=None, ramping_pulse_params=None,
        log_level=logging.NOTSET, out_file_ext=None, gen_stats=False):
    """
    Optimise a control pulse to minimise the fidelity error.
    The dynamics of the system in any given timeslot are governed
    by the combined dynamics generator,
    i.e. the sum of the drift+ctrl_amp[j]*ctrls[j]
    The control pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes
    Starting from an intital (typically random) pulse,
    a multivariable optimisation algorithm attempts to determines the
    optimal values for the control pulse to minimise the fidelity error
    The fidelity error is some measure of distance of the system evolution
    from the given target evolution in the time allowed for the evolution.
    Parameters
    ----------
    drift : Qobj or list of Qobj
        the underlying dynamics generator of the system
        can provide list (of length num_tslots) for time dependent drift
    ctrls : List of Qobj
        a list of control dynamics generators. These are scaled by
        the amplitudes to alter the overall dynamics
    initial : Qobj
        starting point for the evolution.
        Typically the identity matrix
    target : Qobj
        target transformation, e.g. gate or state, for the time evolution
    num_tslots : integer or None
        number of timeslots.
        None implies that timeslots will be given in the tau array
    evo_time : float or None
        total time for the evolution
        None implies that timeslots will be given in the tau array
    tau : array[num_tslots] of floats or None
        durations for the timeslots.
        if this is given then num_tslots and evo_time are dervived
        from it
        None implies that timeslot durations will be equal and
        calculated as evo_time/num_tslots
    amp_lbound : float or list of floats
        lower boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    amp_ubound : float or list of floats
        upper boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    fid_err_targ : float
        Fidelity error target. Pulse optimisation will
        terminate when the fidelity error falls below this value
    mim_grad : float
        Minimum gradient. When the sum of the squares of the
        gradients wrt to the control amplitudes falls below this
        value, the optimisation terminates, assuming local minima
    max_iter : integer
        Maximum number of iterations of the optimisation algorithm
    max_wall_time : float
        Maximum allowed elapsed time for the  optimisation algorithm
    alg : string
        Algorithm to use in pulse optimisation.
        Options are:
            
            'GRAPE' (default) - GRadient Ascent Pulse Engineering
            'CRAB' - Chopped RAndom Basis
    alg_params : Dictionary
        options that are specific to the algorithm see above
        
    optim_params : Dictionary
        The key value pairs are the attribute name and value
        used to set attribute values
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        Note: method_params are applied afterwards and so may override these
        
    optim_method : string
        a scipy.optimize.minimize method that will be used to optimise
        the pulse for minimum fidelity error
        Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B will all result
        in calling these specific scipy.optimize methods
        Note the LBFGSB is equivalent to FMIN_L_BFGS_B for backwards 
        capatibility reasons.
        Supplying DEF will given alg dependent result:
            GRAPE - Default optim_method is FMIN_L_BFGS_B
            CRAB - Default optim_method is FMIN
        
    method_params : dict
        Parameters for the optim_method. 
        Note that where there is an attribute of the
        Optimizer object or the termination_conditions matching the key 
        that attribute. Otherwise, and in some case also, 
        they are assumed to be method_options
        for the scipy.optimize.minimize method.        
        
    optim_alg : string
        Deprecated. Use optim_method.
    max_metric_corr : integer
        Deprecated. Use method_params instead
    accuracy_factor : float
        Deprecated. Use method_params instead
    dyn_type : string
        Dynamics type, i.e. the type of matrix used to describe
        the dynamics. Options are UNIT, GEN_MAT, SYMPL
        (see Dynamics classes for details)
        
    dyn_params : dict
        Parameters for the Dynamics object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    prop_type : string
        Propagator type i.e. the method used to calculate the
        propagtors and propagtor gradient for each timeslot
        options are DEF, APPROX, DIAG, FRECHET, AUG_MAT
        DEF will use the default for the specific dyn_type
        (see PropagatorComputer classes for details)
    prop_params : dict
        Parameters for the PropagatorComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    fid_type : string
        Fidelity error (and fidelity error gradient) computation method
        Options are DEF, UNIT, TRACEDIFF, TD_APPROX
        DEF will use the default for the specific dyn_type
        (See FidelityComputer classes for details)
    fid_params : dict
        Parameters for the FidelityComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    phase_option : string
        Deprecated. Pass in fid_params instead.
    fid_err_scale_factor : float
        Deprecated. Use scale_factor key in fid_params instead.
    tslot_type : string
        Method for computing the dynamics generators, propagators and 
        evolution in the timeslots.
        Options: DEF, UPDATE_ALL, DYNAMIC
        UPDATE_ALL is the only one that currently works
        (See TimeslotComputer classes for details)
        
    tslot_params : dict
        Parameters for the TimeslotComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    amp_update_mode : string
        Deprecated. Use tslot_type instead.
        
    init_pulse_type : string
        type / shape of pulse(s) used to initialise the
        the control amplitudes. 
        Options (GRAPE) include:
            RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
        DEF is RND
        (see PulseGen classes for details)
        For the CRAB the this the guess_pulse_type. 
    init_pulse_params : dict
        Parameters for the initial / guess pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    pulse_scaling : float
        Linear scale factor for generated initial / guess pulses
        By default initial pulses are generated with amplitudes in the
        range (-1.0, 1.0). These will be scaled by this parameter
    pulse_offset : float
        Linear offset for the pulse. That is this value will be added
        to any initial / guess pulses generated.
        
    ramping_pulse_type : string
        Type of pulse used to modulate the control pulse.
        It's intended use for a ramping modulation, which is often required in 
        experimental setups.
        This is only currently implemented in CRAB.
        GAUSSIAN_EDGE was added for this purpose.
        
    ramping_pulse_params : dict
        Parameters for the ramping pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
    out_file_ext : string or None
        files containing the initial and final control pulse
        amplitudes are saved to the current directory.
        The default name will be postfixed with this extension
        Setting this to None will suppress the output of files
    gen_stats : boolean
        if set to True then statistics for the optimisation
        run will be generated - accessible through attributes
        of the stats object
    Returns
    -------
    opt : OptimResult     
        Returns instance of OptimResult, which has attributes giving the
        reason for termination, final fidelity error, final evolution
        final amplitudes, statistics etc
    
    """
    if log_level == logging.NOTSET:
        log_level = logger.getEffectiveLevel()
    else:
        logger.setLevel(log_level)
        
    # The parameters types are checked in create_pulse_optimizer
    # so no need to do so here
    # However, the deprecation management is repeated here
    # so that the stack level is correct
    if not optim_alg is None:
        optim_method = optim_alg
        _param_deprecation(
            "The 'optim_alg' parameter is deprecated. "
            "Use 'optim_method' instead")
            
    if not max_metric_corr is None:
        if isinstance(method_params, dict):
            if not 'max_metric_corr' in method_params:
                 method_params['max_metric_corr'] = max_metric_corr
        else:
            method_params = {'max_metric_corr':max_metric_corr}
        _param_deprecation(
            "The 'max_metric_corr' parameter is deprecated. "
            "Use 'max_metric_corr' in method_params instead")
            
    if not accuracy_factor is None:
        if isinstance(method_params, dict):
            if not 'accuracy_factor' in method_params:
                 method_params['accuracy_factor'] = accuracy_factor
        else:
            method_params = {'accuracy_factor':accuracy_factor}
        _param_deprecation(
            "The 'accuracy_factor' parameter is deprecated. "
            "Use 'accuracy_factor' in method_params instead")
    
    # phase_option
    if not phase_option is None:
        if isinstance(fid_params, dict):
            if not 'phase_option' in fid_params:
                 fid_params['phase_option'] = phase_option
        else:
            fid_params = {'phase_option':phase_option}
        _param_deprecation(
            "The 'phase_option' parameter is deprecated. "
            "Use 'phase_option' in fid_params instead")
            
    # fid_err_scale_factor
    if not fid_err_scale_factor is None:
        if isinstance(fid_params, dict):
            if not 'fid_err_scale_factor' in fid_params:
                 fid_params['scale_factor'] = fid_err_scale_factor
        else:
            fid_params = {'scale_factor':fid_err_scale_factor}
        _param_deprecation(
            "The 'fid_err_scale_factor' parameter is deprecated. "
            "Use 'scale_factor' in fid_params instead")
            
    # amp_update_mode
    if not amp_update_mode is None:
        amp_update_mode_up = _upper_safe(amp_update_mode)
        if amp_update_mode_up == 'ALL':
            tslot_type = 'UPDATE_ALL'
        else:
            tslot_type = amp_update_mode
        _param_deprecation(
            "The 'amp_update_mode' parameter is deprecated. "
            "Use 'tslot_type' instead")
    optim = create_pulse_optimizer(
        drift, ctrls, initial, target,
        num_tslots=num_tslots, evo_time=evo_time, tau=tau,
        amp_lbound=amp_lbound, amp_ubound=amp_ubound,
        fid_err_targ=fid_err_targ, min_grad=min_grad,
        max_iter=max_iter, max_wall_time=max_wall_time,
        alg=alg, alg_params=alg_params, optim_params=optim_params,
        optim_method=optim_method, method_params=method_params,
        dyn_type=dyn_type, dyn_params=dyn_params, 
        prop_type=prop_type, prop_params=prop_params,
        fid_type=fid_type, fid_params=fid_params,
        init_pulse_type=init_pulse_type, init_pulse_params=init_pulse_params,
        pulse_scaling=pulse_scaling, pulse_offset=pulse_offset,
        ramping_pulse_type=ramping_pulse_type, 
        ramping_pulse_params=ramping_pulse_params,
        log_level=log_level, gen_stats=gen_stats)
    dyn = optim.dynamics
    dyn.init_timeslots()
    # Generate initial pulses for each control
    init_amps = np.zeros([dyn.num_tslots, dyn.num_ctrls])
    
    if alg == 'CRAB':
        for j in range(dyn.num_ctrls):
            pgen = optim.pulse_generator[j]
            pgen.init_pulse()
            init_amps[:, j] = pgen.gen_pulse()
    else:
        pgen = optim.pulse_generator
        for j in range(dyn.num_ctrls):
            init_amps[:, j] = pgen.gen_pulse()
        
    # Initialise the starting amplitudes
    dyn.initialize_controls(init_amps)
    
    if log_level <= logging.INFO:
        msg = "System configuration:\n"
        dg_name = "dynamics generator"
        if dyn_type == 'UNIT':
            dg_name = "Hamiltonian"
        if dyn.time_depend_drift:
            msg += "Initial drift {}:\n".format(dg_name)
            msg += str(dyn.drift_dyn_gen[0])
        else:
            msg += "Drift {}:\n".format(dg_name)
            msg += str(dyn.drift_dyn_gen)
        for j in range(dyn.num_ctrls):
            msg += "\nControl {} {}:\n".format(j+1, dg_name)
            msg += str(dyn.ctrl_dyn_gen[j])
        msg += "\nInitial state / operator:\n"
        msg += str(dyn.initial)
        msg += "\nTarget state / operator:\n"
        msg += str(dyn.target)
        logger.info(msg)
    if out_file_ext is not None:
        # Save initial amplitudes to a text file
        pulsefile = "ctrl_amps_initial_" + out_file_ext
        dyn.save_amps(pulsefile)
        if log_level <= logging.INFO:
            logger.info("Initial amplitudes output to file: " + pulsefile)
    # Start the optimisation
    result = optim.run_optimization()
    if out_file_ext is not None:
        # Save final amplitudes to a text file
        pulsefile = "ctrl_amps_final_" + out_file_ext
        dyn.save_amps(pulsefile)
        if log_level <= logging.INFO:
            logger.info("Final amplitudes output to file: " + pulsefile)
    return result 
[docs]def optimize_pulse_unitary(
        H_d, H_c, U_0, U_targ,
        num_tslots=None, evo_time=None, tau=None,
        amp_lbound=None, amp_ubound=None,
        fid_err_targ=1e-10, min_grad=1e-10,
        max_iter=500, max_wall_time=180,
        alg='GRAPE', alg_params=None,
        optim_params=None, optim_method='DEF', method_params=None,
        optim_alg=None, max_metric_corr=None, accuracy_factor=None,
        phase_option='PSU', 
        dyn_params=None, prop_params=None, fid_params=None,
        tslot_type='DEF', tslot_params=None,
        amp_update_mode=None,
        init_pulse_type='DEF', init_pulse_params=None,
        pulse_scaling=1.0, pulse_offset=0.0,
        ramping_pulse_type=None, ramping_pulse_params=None,
        log_level=logging.NOTSET, out_file_ext=None, gen_stats=False):
    """
    Optimise a control pulse to minimise the fidelity error, assuming that
    the dynamics of the system are generated by unitary operators.
    This function is simply a wrapper for optimize_pulse, where the
    appropriate options for unitary dynamics are chosen and the parameter
    names are in the format familiar to unitary dynamics
    The dynamics of the system  in any given timeslot are governed
    by the combined Hamiltonian,
    i.e. the sum of the H_d + ctrl_amp[j]*H_c[j]
    The control pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes
    Starting from an intital (typically random) pulse,
    a multivariable optimisation algorithm attempts to determines the
    optimal values for the control pulse to minimise the fidelity error
    The maximum fidelity for a unitary system is 1, i.e. when the
    time evolution resulting from the pulse is equivalent to the target.
    And therefore the fidelity error is 1 - fidelity
    Parameters
    ----------
    H_d : Qobj or list of Qobj
        Drift (aka system) the underlying Hamiltonian of the system
        can provide list (of length num_tslots) for time dependent drift
        
    H_c : Qobj
        a list of control Hamiltonians. These are scaled by
        the amplitudes to alter the overall dynamics
    U_0 : Qobj
        starting point for the evolution.
        Typically the identity matrix
    U_targ : Qobj
        target transformation, e.g. gate or state, for the time evolution
    num_tslots : integer or None
        number of timeslots.
        None implies that timeslots will be given in the tau array
    evo_time : float or None
        total time for the evolution
        None implies that timeslots will be given in the tau array
    tau : array[num_tslots] of floats or None
        durations for the timeslots.
        if this is given then num_tslots and evo_time are dervived
        from it
        None implies that timeslot durations will be equal and
        calculated as evo_time/num_tslots
    amp_lbound : float or list of floats
        lower boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    amp_ubound : float or list of floats
        upper boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    fid_err_targ : float
        Fidelity error target. Pulse optimisation will
        terminate when the fidelity error falls below this value
    mim_grad : float
        Minimum gradient. When the sum of the squares of the
        gradients wrt to the control amplitudes falls below this
        value, the optimisation terminates, assuming local minima
    max_iter : integer
        Maximum number of iterations of the optimisation algorithm
    max_wall_time : float
        Maximum allowed elapsed time for the  optimisation algorithm
    alg : string
        Algorithm to use in pulse optimisation.
        Options are:
            'GRAPE' (default) - GRadient Ascent Pulse Engineering
            'CRAB' - Chopped RAndom Basis
    alg_params : Dictionary
        options that are specific to the algorithm see above
        
    optim_params : Dictionary
        The key value pairs are the attribute name and value
        used to set attribute values
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        Note: method_params are applied afterwards and so may override these
        
    optim_method : string
        a scipy.optimize.minimize method that will be used to optimise
        the pulse for minimum fidelity error
        Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B will all result
        in calling these specific scipy.optimize methods
        Note the LBFGSB is equivalent to FMIN_L_BFGS_B for backwards 
        capatibility reasons.
        Supplying DEF will given alg dependent result:
            
            GRAPE - Default optim_method is FMIN_L_BFGS_B
            CRAB - Default optim_method is FMIN
        
    method_params : dict
        Parameters for the optim_method. 
        Note that where there is an attribute of the
        Optimizer object or the termination_conditions matching the key 
        that attribute. Otherwise, and in some case also, 
        they are assumed to be method_options
        for the scipy.optimize.minimize method.        
        
    optim_alg : string
        Deprecated. Use optim_method.
    max_metric_corr : integer
        Deprecated. Use method_params instead
    accuracy_factor : float
        Deprecated. Use method_params instead
    phase_option : string
        determines how global phase is treated in fidelity
        calculations (fid_type='UNIT' only). Options:
            
            PSU - global phase ignored
            SU - global phase included
    dyn_params : dict
        Parameters for the Dynamics object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    prop_params : dict
        Parameters for the PropagatorComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    fid_params : dict
        Parameters for the FidelityComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    tslot_type : string
        Method for computing the dynamics generators, propagators and 
        evolution in the timeslots.
        Options: DEF, UPDATE_ALL, DYNAMIC
        UPDATE_ALL is the only one that currently works
        (See TimeslotComputer classes for details)
        
    tslot_params : dict
        Parameters for the TimeslotComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    amp_update_mode : string
        Deprecated. Use tslot_type instead.
        
    init_pulse_type : string
        type / shape of pulse(s) used to initialise the
        the control amplitudes. 
        Options (GRAPE) include:
            
            RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
            DEF is RND
        
        (see PulseGen classes for details)
        For the CRAB the this the guess_pulse_type. 
    init_pulse_params : dict
        Parameters for the initial / guess pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    pulse_scaling : float
        Linear scale factor for generated initial / guess pulses
        By default initial pulses are generated with amplitudes in the
        range (-1.0, 1.0). These will be scaled by this parameter
    pulse_offset : float
        Linear offset for the pulse. That is this value will be added
        to any initial / guess pulses generated.
        
    ramping_pulse_type : string
        Type of pulse used to modulate the control pulse.
        It's intended use for a ramping modulation, which is often required in 
        experimental setups.
        This is only currently implemented in CRAB.
        GAUSSIAN_EDGE was added for this purpose.
        
    ramping_pulse_params : dict
        Parameters for the ramping pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
    out_file_ext : string or None
        files containing the initial and final control pulse
        amplitudes are saved to the current directory.
        The default name will be postfixed with this extension
        Setting this to None will suppress the output of files
    gen_stats : boolean
        if set to True then statistics for the optimisation
        run will be generated - accessible through attributes
        of the stats object
    Returns
    -------
    opt : OptimResult
        Returns instance of OptimResult, which has attributes giving the
        reason for termination, final fidelity error, final evolution
        final amplitudes, statistics etc
    
    """
    # check parameters here, as names are different than in
    # create_pulse_optimizer, so TypeErrors would be confusing
    if not isinstance(H_d, Qobj):
        if not isinstance(H_d, (list, tuple)):
            raise TypeError("H_d should be a Qobj or a list of Qobj")
        else:
            for H in H_d:
                if not isinstance(H, Qobj):
                    raise TypeError("H_d should be a Qobj or a list of Qobj")
    if not isinstance(H_c, (list, tuple)):
        raise TypeError("H_c should be a list of Qobj")
    else:
        for ctrl in H_c:
            if not isinstance(ctrl, Qobj):
                raise TypeError("H_c should be a list of Qobj")
    if not isinstance(U_0, Qobj):
        raise TypeError("U_0 must be a Qobj")
    if not isinstance(U_targ, Qobj):
        raise TypeError("U_targ must be a Qobj")
        
    # The deprecation management is repeated here
    # so that the stack level is correct
    if not optim_alg is None:
        optim_method = optim_alg
        _param_deprecation(
            "The 'optim_alg' parameter is deprecated. "
            "Use 'optim_method' instead")
            
    if not max_metric_corr is None:
        if isinstance(method_params, dict):
            if not 'max_metric_corr' in method_params:
                 method_params['max_metric_corr'] = max_metric_corr
        else:
            method_params = {'max_metric_corr':max_metric_corr}
        _param_deprecation(
            "The 'max_metric_corr' parameter is deprecated. "
            "Use 'max_metric_corr' in method_params instead")
            
    if not accuracy_factor is None:
        if isinstance(method_params, dict):
            if not 'accuracy_factor' in method_params:
                 method_params['accuracy_factor'] = accuracy_factor
        else:
            method_params = {'accuracy_factor':accuracy_factor}
        _param_deprecation(
            "The 'accuracy_factor' parameter is deprecated. "
            "Use 'accuracy_factor' in method_params instead")
            
    # amp_update_mode
    if not amp_update_mode is None:
        amp_update_mode_up = _upper_safe(amp_update_mode)
        if amp_update_mode_up == 'ALL':
            tslot_type = 'UPDATE_ALL'
        else:
            tslot_type = amp_update_mode
        _param_deprecation(
            "The 'amp_update_mode' parameter is deprecated. "
            "Use 'tslot_type' instead")
            
    # phase_option is still valid for this method
    # pass it via the fid_params
    if not phase_option is None:
        if fid_params is None:
            fid_params = {'phase_option':phase_option}
        else:
            if not 'phase_option' in fid_params:
                fid_params['phase_option'] = phase_option
            
            
    return optimize_pulse(
            drift=H_d, ctrls=H_c, initial=U_0, target=U_targ,
            num_tslots=num_tslots, evo_time=evo_time, tau=tau,
            amp_lbound=amp_lbound, amp_ubound=amp_ubound,
            fid_err_targ=fid_err_targ, min_grad=min_grad,
            max_iter=max_iter, max_wall_time=max_wall_time,
            alg=alg, alg_params=alg_params, optim_params=optim_params,
            optim_method=optim_method, method_params=method_params,
            dyn_type='UNIT', dyn_params=dyn_params,
            prop_params=prop_params, fid_params=fid_params,
            init_pulse_type=init_pulse_type, init_pulse_params=init_pulse_params,
            pulse_scaling=pulse_scaling, pulse_offset=pulse_offset,
            ramping_pulse_type=ramping_pulse_type, 
            ramping_pulse_params=ramping_pulse_params,
            log_level=log_level, out_file_ext=out_file_ext,
            gen_stats=gen_stats) 
            
[docs]def opt_pulse_crab(
        drift, ctrls, initial, target,
        num_tslots=None, evo_time=None, tau=None,
        amp_lbound=None, amp_ubound=None,
        fid_err_targ=1e-5,
        max_iter=500, max_wall_time=180,
        alg_params=None,
        num_coeffs=None, init_coeff_scaling=1.0, 
        optim_params=None, optim_method='fmin', method_params=None,
        dyn_type='GEN_MAT', dyn_params=None,
        prop_type='DEF', prop_params=None,
        fid_type='DEF', fid_params=None,
        tslot_type='DEF', tslot_params=None,
        guess_pulse_type=None, guess_pulse_params=None,
        guess_pulse_scaling=1.0, guess_pulse_offset=0.0,
        guess_pulse_action='MODULATE', 
        ramping_pulse_type=None, ramping_pulse_params=None,
        log_level=logging.NOTSET, out_file_ext=None, gen_stats=False):
    """
    Optimise a control pulse to minimise the fidelity error.
    The dynamics of the system in any given timeslot are governed
    by the combined dynamics generator,
    i.e. the sum of the drift+ctrl_amp[j]*ctrls[j]
    The control pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes.
    The CRAB algorithm uses basis function coefficents as the variables to
    optimise. It does NOT use any gradient function.
    A multivariable optimisation algorithm attempts to determines the
    optimal values for the control pulse to minimise the fidelity error
    The fidelity error is some measure of distance of the system evolution
    from the given target evolution in the time allowed for the evolution.
    Parameters
    ----------
    drift : Qobj or list of Qobj
        the underlying dynamics generator of the system
        can provide list (of length num_tslots) for time dependent drift
    ctrls : List of Qobj
        a list of control dynamics generators. These are scaled by
        the amplitudes to alter the overall dynamics
    initial : Qobj
        starting point for the evolution.
        Typically the identity matrix
    target : Qobj
        target transformation, e.g. gate or state, for the time evolution
    num_tslots : integer or None
        number of timeslots.
        None implies that timeslots will be given in the tau array
    evo_time : float or None
        total time for the evolution
        None implies that timeslots will be given in the tau array
    tau : array[num_tslots] of floats or None
        durations for the timeslots.
        if this is given then num_tslots and evo_time are dervived
        from it
        None implies that timeslot durations will be equal and
        calculated as evo_time/num_tslots
    amp_lbound : float or list of floats
        lower boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    amp_ubound : float or list of floats
        upper boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    fid_err_targ : float
        Fidelity error target. Pulse optimisation will
        terminate when the fidelity error falls below this value
    max_iter : integer
        Maximum number of iterations of the optimisation algorithm
    max_wall_time : float
        Maximum allowed elapsed time for the  optimisation algorithm
    alg_params : Dictionary
        options that are specific to the algorithm see above
        
    optim_params : Dictionary
        The key value pairs are the attribute name and value
        used to set attribute values
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        Note: method_params are applied afterwards and so may override these
    coeff_scaling : float
        Linear scale factor for the random basis coefficients
        By default these range from -1.0 to 1.0
        Note this is overridden by alg_params (if given there)
        
    num_coeffs : integer
        Number of coefficients used for each basis function
        Note this is calculated automatically based on the dimension of the
        dynamics if not given. It is crucial to the performane of the 
        algorithm that it is set as low as possible, while still giving
        high enough frequencies.
        Note this is overridden by alg_params (if given there)
        
    optim_method : string
        Multi-variable optimisation method
        The only tested options are 'fmin' and 'Nelder-mead'
        In theory any non-gradient method implemented in 
        scipy.optimize.mininize could be used.
    method_params : dict
        Parameters for the optim_method. 
        Note that where there is an attribute of the
        Optimizer object or the termination_conditions matching the key 
        that attribute. Otherwise, and in some case also, 
        they are assumed to be method_options
        for the scipy.optimize.minimize method.
        The commonly used parameter are:
            xtol - limit on variable change for convergence
            ftol - limit on fidelity error change for convergence
            
    dyn_type : string
        Dynamics type, i.e. the type of matrix used to describe
        the dynamics. Options are UNIT, GEN_MAT, SYMPL
        (see Dynamics classes for details)
        
    dyn_params : dict
        Parameters for the Dynamics object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    prop_type : string
        Propagator type i.e. the method used to calculate the
        propagtors and propagtor gradient for each timeslot
        options are DEF, APPROX, DIAG, FRECHET, AUG_MAT
        DEF will use the default for the specific dyn_type
        (see PropagatorComputer classes for details)
    prop_params : dict
        Parameters for the PropagatorComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    fid_type : string
        Fidelity error (and fidelity error gradient) computation method
        Options are DEF, UNIT, TRACEDIFF, TD_APPROX
        DEF will use the default for the specific dyn_type
        (See FidelityComputer classes for details)
    fid_params : dict
        Parameters for the FidelityComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    tslot_type : string
        Method for computing the dynamics generators, propagators and 
        evolution in the timeslots.
        Options: DEF, UPDATE_ALL, DYNAMIC
        UPDATE_ALL is the only one that currently works
        (See TimeslotComputer classes for details)
        
    tslot_params : dict
        Parameters for the TimeslotComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    guess_pulse_type : string
        type / shape of pulse(s) used modulate the control amplitudes. 
        Options include:
            RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW, GAUSSIAN
        Default is None
        
    guess_pulse_params : dict
        Parameters for the guess pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    guess_pulse_action : string
        Determines how the guess pulse is applied to the pulse generated
        by the basis expansion.
        Options are: MODULATE, ADD 
        Default is MODULATE
    pulse_scaling : float
        Linear scale factor for generated guess pulses
        By default initial pulses are generated with amplitudes in the
        range (-1.0, 1.0). These will be scaled by this parameter
    pulse_offset : float
        Linear offset for the pulse. That is this value will be added
        to any guess pulses generated.
        
    ramping_pulse_type : string
        Type of pulse used to modulate the control pulse.
        It's intended use for a ramping modulation, which is often required in 
        experimental setups.
        This is only currently implemented in CRAB.
        GAUSSIAN_EDGE was added for this purpose.
        
    ramping_pulse_params : dict
        Parameters for the ramping pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
    out_file_ext : string or None
        files containing the initial and final control pulse
        amplitudes are saved to the current directory.
        The default name will be postfixed with this extension
        Setting this to None will suppress the output of files
    gen_stats : boolean
        if set to True then statistics for the optimisation
        run will be generated - accessible through attributes
        of the stats object
    Returns
    -------
    opt : OptimResult    
        Returns instance of OptimResult, which has attributes giving the
        reason for termination, final fidelity error, final evolution
        final amplitudes, statistics etc
    
    """
    # The parameters are checked in create_pulse_optimizer
    # so no need to do so here
    if log_level == logging.NOTSET:
        log_level = logger.getEffectiveLevel()
    else:
        logger.setLevel(log_level)
    # build the algorithm options
    if not isinstance(alg_params, dict): 
        alg_params = {'num_coeffs':num_coeffs, 
                       'init_coeff_scaling':init_coeff_scaling}
    else:
        if (num_coeffs is not None and 
            not 'num_coeffs' in alg_params):
            alg_params['num_coeffs'] = num_coeffs
        if (init_coeff_scaling is not None and 
            not 'init_coeff_scaling' in alg_params):
            alg_params['init_coeff_scaling'] = init_coeff_scaling
            
    # Build the guess pulse options
    # Any options passed in the guess_pulse_params take precedence
    # over the parameter values.
    if guess_pulse_type: 
        if not isinstance(guess_pulse_params, dict):
            guess_pulse_params = {}
        if (guess_pulse_scaling is not None and 
            not 'scaling' in guess_pulse_params):
            guess_pulse_params['scaling'] = guess_pulse_scaling
        if (guess_pulse_offset is not None and 
            not 'offset' in guess_pulse_params):
            guess_pulse_params['offset'] = guess_pulse_offset
        if (guess_pulse_action is not None and 
            not 'pulse_action' in guess_pulse_params):
            guess_pulse_params['pulse_action'] = guess_pulse_action
         
    return optimize_pulse(
        drift, ctrls, initial, target,
        num_tslots=num_tslots, evo_time=evo_time, tau=tau,
        amp_lbound=amp_lbound, amp_ubound=amp_ubound,
        fid_err_targ=fid_err_targ, min_grad=0.0,
        max_iter=max_iter, max_wall_time=max_wall_time,
        alg='CRAB', alg_params=alg_params, optim_params=optim_params,
        optim_method=optim_method, method_params=method_params,
        dyn_type=dyn_type, dyn_params=dyn_params, 
        prop_type=prop_type, prop_params=prop_params,
        fid_type=fid_type, fid_params=fid_params,
        tslot_type=tslot_type, tslot_params=tslot_params,
        init_pulse_type=guess_pulse_type, 
        init_pulse_params=guess_pulse_params,
        ramping_pulse_type=ramping_pulse_type, 
        ramping_pulse_params=ramping_pulse_params,
        log_level=log_level, out_file_ext=out_file_ext, gen_stats=gen_stats) 
          
[docs]def opt_pulse_crab_unitary(
        H_d, H_c, U_0, U_targ,
        num_tslots=None, evo_time=None, tau=None,
        amp_lbound=None, amp_ubound=None,
        fid_err_targ=1e-5,
        max_iter=500, max_wall_time=180,
        alg_params=None,
        num_coeffs=None, init_coeff_scaling=1.0, 
        optim_params=None, optim_method='fmin', method_params=None,
        phase_option='PSU', 
        dyn_params=None, prop_params=None, fid_params=None,
        tslot_type='DEF', tslot_params=None,
        guess_pulse_type=None, guess_pulse_params=None,
        guess_pulse_scaling=1.0, guess_pulse_offset=0.0,
        guess_pulse_action='MODULATE', 
        ramping_pulse_type=None, ramping_pulse_params=None,
        log_level=logging.NOTSET, out_file_ext=None, gen_stats=False):
    """
    Optimise a control pulse to minimise the fidelity error, assuming that
    the dynamics of the system are generated by unitary operators.
    This function is simply a wrapper for optimize_pulse, where the
    appropriate options for unitary dynamics are chosen and the parameter
    names are in the format familiar to unitary dynamics
    The dynamics of the system  in any given timeslot are governed
    by the combined Hamiltonian,
    i.e. the sum of the H_d + ctrl_amp[j]*H_c[j]
    The control pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes
    
    The CRAB algorithm uses basis function coefficents as the variables to
    optimise. It does NOT use any gradient function.
    A multivariable optimisation algorithm attempts to determines the
    optimal values for the control pulse to minimise the fidelity error
    The fidelity error is some measure of distance of the system evolution
    from the given target evolution in the time allowed for the evolution.
    Parameters
    ----------
    H_d : Qobj or list of Qobj
        Drift (aka system) the underlying Hamiltonian of the system
        can provide list (of length num_tslots) for time dependent drift
    H_c : Qobj
        a list of control Hamiltonians. These are scaled by
        the amplitudes to alter the overall dynamics
    U_0 : Qobj
        starting point for the evolution.
        Typically the identity matrix
    U_targ : Qobj
        target transformation, e.g. gate or state, for the time evolution
    num_tslots : integer or None
        number of timeslots.
        None implies that timeslots will be given in the tau array
    evo_time : float or None
        total time for the evolution
        None implies that timeslots will be given in the tau array
    tau : array[num_tslots] of floats or None
        durations for the timeslots.
        if this is given then num_tslots and evo_time are dervived
        from it
        None implies that timeslot durations will be equal and
        calculated as evo_time/num_tslots
    amp_lbound : float or list of floats
        lower boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    amp_ubound : float or list of floats
        upper boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    fid_err_targ : float
        Fidelity error target. Pulse optimisation will
        terminate when the fidelity error falls below this value
    max_iter : integer
        Maximum number of iterations of the optimisation algorithm
    max_wall_time : float
        Maximum allowed elapsed time for the  optimisation algorithm
    alg_params : Dictionary
        options that are specific to the algorithm see above
        
    optim_params : Dictionary
        The key value pairs are the attribute name and value
        used to set attribute values
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        Note: method_params are applied afterwards and so may override these
    coeff_scaling : float
        Linear scale factor for the random basis coefficients
        By default these range from -1.0 to 1.0
        Note this is overridden by alg_params (if given there)
        
    num_coeffs : integer
        Number of coefficients used for each basis function
        Note this is calculated automatically based on the dimension of the
        dynamics if not given. It is crucial to the performane of the 
        algorithm that it is set as low as possible, while still giving
        high enough frequencies.
        Note this is overridden by alg_params (if given there)
        
    optim_method : string
        Multi-variable optimisation method
        The only tested options are 'fmin' and 'Nelder-mead'
        In theory any non-gradient method implemented in 
        scipy.optimize.mininize could be used.
    method_params : dict
        Parameters for the optim_method. 
        Note that where there is an attribute of the
        Optimizer object or the termination_conditions matching the key 
        that attribute. Otherwise, and in some case also, 
        they are assumed to be method_options
        for the scipy.optimize.minimize method.
        The commonly used parameter are:
            xtol - limit on variable change for convergence
            ftol - limit on fidelity error change for convergence
    phase_option : string
        determines how global phase is treated in fidelity
        calculations (fid_type='UNIT' only). Options:
            PSU - global phase ignored
            SU - global phase included
    dyn_params : dict
        Parameters for the Dynamics object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    prop_params : dict
        Parameters for the PropagatorComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    fid_params : dict
        Parameters for the FidelityComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    tslot_type : string
        Method for computing the dynamics generators, propagators and 
        evolution in the timeslots.
        Options: DEF, UPDATE_ALL, DYNAMIC
        UPDATE_ALL is the only one that currently works
        (See TimeslotComputer classes for details)
        
    tslot_params : dict
        Parameters for the TimeslotComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    guess_pulse_type : string
        type / shape of pulse(s) used modulate the control amplitudes. 
        Options include:
            RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW, GAUSSIAN
        Default is None
        
    guess_pulse_params : dict
        Parameters for the guess pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    guess_pulse_action : string
        Determines how the guess pulse is applied to the pulse generated
        by the basis expansion.
        Options are: MODULATE, ADD 
        Default is MODULATE
    pulse_scaling : float
        Linear scale factor for generated guess pulses
        By default initial pulses are generated with amplitudes in the
        range (-1.0, 1.0). These will be scaled by this parameter
    pulse_offset : float
        Linear offset for the pulse. That is this value will be added
        to any guess pulses generated.
        
    ramping_pulse_type : string
        Type of pulse used to modulate the control pulse.
        It's intended use for a ramping modulation, which is often required in 
        experimental setups.
        This is only currently implemented in CRAB.
        GAUSSIAN_EDGE was added for this purpose.
        
    ramping_pulse_params : dict
        Parameters for the ramping pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
    out_file_ext : string or None
        files containing the initial and final control pulse
        amplitudes are saved to the current directory.
        The default name will be postfixed with this extension
        Setting this to None will suppress the output of files
    gen_stats : boolean
        if set to True then statistics for the optimisation
        run will be generated - accessible through attributes
        of the stats object
    Returns
    -------
    opt : OptimResult    
        Returns instance of OptimResult, which has attributes giving the
        reason for termination, final fidelity error, final evolution
        final amplitudes, statistics etc
    
    """
    # The parameters are checked in create_pulse_optimizer
    # so no need to do so here
    if log_level == logging.NOTSET:
        log_level = logger.getEffectiveLevel()
    else:
        logger.setLevel(log_level)
    # build the algorithm options
    if not isinstance(alg_params, dict): 
        alg_params = {'num_coeffs':num_coeffs, 
                       'init_coeff_scaling':init_coeff_scaling}
    else:
        if (num_coeffs is not None and 
            not 'num_coeffs' in alg_params):
            alg_params['num_coeffs'] = num_coeffs
        if (init_coeff_scaling is not None and 
            not 'init_coeff_scaling' in alg_params):
            alg_params['init_coeff_scaling'] = init_coeff_scaling
            
    # Build the guess pulse options
    # Any options passed in the guess_pulse_params take precedence
    # over the parameter values.
    if guess_pulse_type: 
        if not isinstance(guess_pulse_params, dict):
            guess_pulse_params = {}
        if (guess_pulse_scaling is not None and 
            not 'scaling' in guess_pulse_params):
            guess_pulse_params['scaling'] = guess_pulse_scaling
        if (guess_pulse_offset is not None and 
            not 'offset' in guess_pulse_params):
            guess_pulse_params['offset'] = guess_pulse_offset
        if (guess_pulse_action is not None and 
            not 'pulse_action' in guess_pulse_params):
            guess_pulse_params['pulse_action'] = guess_pulse_action
         
    return optimize_pulse_unitary(
        H_d, H_c, U_0, U_targ,
        num_tslots=num_tslots, evo_time=evo_time, tau=tau,
        amp_lbound=amp_lbound, amp_ubound=amp_ubound,
        fid_err_targ=fid_err_targ, min_grad=0.0,
        max_iter=max_iter, max_wall_time=max_wall_time,
        alg='CRAB', alg_params=alg_params, optim_params=optim_params,
        optim_method=optim_method, method_params=method_params,
        phase_option=phase_option,
        dyn_params=dyn_params, prop_params=prop_params, fid_params=fid_params,
        tslot_type=tslot_type, tslot_params=tslot_params,
        init_pulse_type=guess_pulse_type, 
        init_pulse_params=guess_pulse_params,
        ramping_pulse_type=ramping_pulse_type, 
        ramping_pulse_params=ramping_pulse_params,
        log_level=log_level, out_file_ext=out_file_ext, gen_stats=gen_stats) 
[docs]def create_pulse_optimizer(
        drift, ctrls, initial, target,
        num_tslots=None, evo_time=None, tau=None,
        amp_lbound=None, amp_ubound=None,
        fid_err_targ=1e-10, min_grad=1e-10,
        max_iter=500, max_wall_time=180,
        alg='GRAPE', alg_params=None,
        optim_params=None, optim_method='DEF', method_params=None,
        optim_alg=None, max_metric_corr=None, accuracy_factor=None,
        dyn_type='GEN_MAT', dyn_params=None,
        prop_type='DEF', prop_params=None,
        fid_type='DEF', fid_params=None,
        phase_option=None, fid_err_scale_factor=None,
        tslot_type='DEF', tslot_params=None,
        amp_update_mode=None,
        init_pulse_type='DEF', init_pulse_params=None,
        pulse_scaling=1.0, pulse_offset=0.0,
        ramping_pulse_type=None, ramping_pulse_params=None,
        log_level=logging.NOTSET, gen_stats=False):
    """
    Generate the objects of the appropriate subclasses
    required for the pulse optmisation based on the parameters given
    Note this method may be preferable to calling optimize_pulse
    if more detailed configuration is required before running the
    optmisation algorthim, or the algorithm will be run many times,
    for instances when trying to finding global the optimum or
    minimum time optimisation
    Parameters
    ----------
    drift : Qobj or list of Qobj
        the underlying dynamics generator of the system
        can provide list (of length num_tslots) for time dependent drift
    ctrls : List of Qobj
        a list of control dynamics generators. These are scaled by
        the amplitudes to alter the overall dynamics
    initial : Qobj
        starting point for the evolution.
        Typically the identity matrix
    target : Qobj
        target transformation, e.g. gate or state, for the time evolution
    num_tslots : integer or None
        number of timeslots.
        None implies that timeslots will be given in the tau array
    evo_time : float or None
        total time for the evolution
        None implies that timeslots will be given in the tau array
    tau : array[num_tslots] of floats or None
        durations for the timeslots.
        if this is given then num_tslots and evo_time are dervived
        from it
        None implies that timeslot durations will be equal and
        calculated as evo_time/num_tslots
    amp_lbound : float or list of floats
        lower boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    amp_ubound : float or list of floats
        upper boundaries for the control amplitudes
        Can be a scalar value applied to all controls
        or a list of bounds for each control
    fid_err_targ : float
        Fidelity error target. Pulse optimisation will
        terminate when the fidelity error falls below this value
    mim_grad : float
        Minimum gradient. When the sum of the squares of the
        gradients wrt to the control amplitudes falls below this
        value, the optimisation terminates, assuming local minima
    max_iter : integer
        Maximum number of iterations of the optimisation algorithm
    max_wall_time : float
        Maximum allowed elapsed time for the optimisation algorithm
        
    alg : string
        Algorithm to use in pulse optimisation.
        Options are:
            'GRAPE' (default) - GRadient Ascent Pulse Engineering
            'CRAB' - Chopped RAndom Basis
    alg_params : Dictionary
        options that are specific to the algorithm see above
        
    optim_params : Dictionary
        The key value pairs are the attribute name and value
        used to set attribute values
        Note: attributes are created if they do not exist already,
        and are overwritten if they do.
        Note: method_params are applied afterwards and so may override these
        
    optim_method : string
        a scipy.optimize.minimize method that will be used to optimise
        the pulse for minimum fidelity error
        Note that FMIN, FMIN_BFGS & FMIN_L_BFGS_B will all result
        in calling these specific scipy.optimize methods
        Note the LBFGSB is equivalent to FMIN_L_BFGS_B for backwards 
        capatibility reasons.
        Supplying DEF will given alg dependent result:
            - GRAPE - Default optim_method is FMIN_L_BFGS_B
            - CRAB - Default optim_method is Nelder-Mead
        
    method_params : dict
        Parameters for the optim_method. 
        Note that where there is an attribute of the
        Optimizer object or the termination_conditions matching the key 
        that attribute. Otherwise, and in some case also, 
        they are assumed to be method_options
        for the scipy.optimize.minimize method.        
        
    optim_alg : string
        Deprecated. Use optim_method.
    max_metric_corr : integer
        Deprecated. Use method_params instead
    accuracy_factor : float
        Deprecated. Use method_params instead
    dyn_type : string
        Dynamics type, i.e. the type of matrix used to describe
        the dynamics. Options are UNIT, GEN_MAT, SYMPL
        (see Dynamics classes for details)
        
    dyn_params : dict
        Parameters for the Dynamics object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    prop_type : string
        Propagator type i.e. the method used to calculate the
        propagtors and propagtor gradient for each timeslot
        options are DEF, APPROX, DIAG, FRECHET, AUG_MAT
        DEF will use the default for the specific dyn_type
        (see PropagatorComputer classes for details)
    prop_params : dict
        Parameters for the PropagatorComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    fid_type : string
        Fidelity error (and fidelity error gradient) computation method
        Options are DEF, UNIT, TRACEDIFF, TD_APPROX
        DEF will use the default for the specific dyn_type
        (See FidelityComputer classes for details)
    fid_params : dict
        Parameters for the FidelityComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    phase_option : string
        Deprecated. Pass in fid_params instead.
    fid_err_scale_factor : float
        Deprecated. Use scale_factor key in fid_params instead.
    tslot_type : string
        Method for computing the dynamics generators, propagators and 
        evolution in the timeslots.
        Options: DEF, UPDATE_ALL, DYNAMIC
        UPDATE_ALL is the only one that currently works
        (See TimeslotComputer classes for details)
        
    tslot_params : dict
        Parameters for the TimeslotComputer object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
        
    amp_update_mode : string
        Deprecated. Use tslot_type instead.
        
    init_pulse_type : string
        type / shape of pulse(s) used to initialise the
        the control amplitudes. 
        Options (GRAPE) include:
            
            RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW
            DEF is RND
        
        (see PulseGen classes for details)
        For the CRAB the this the guess_pulse_type. 
    init_pulse_params : dict
        Parameters for the initial / guess pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    pulse_scaling : float
        Linear scale factor for generated initial / guess pulses
        By default initial pulses are generated with amplitudes in the
        range (-1.0, 1.0). These will be scaled by this parameter
    pulse_offset : float
        Linear offset for the pulse. That is this value will be added
        to any initial / guess pulses generated.
        
    ramping_pulse_type : string
        Type of pulse used to modulate the control pulse.
        It's intended use for a ramping modulation, which is often required in 
        experimental setups.
        This is only currently implemented in CRAB.
        GAUSSIAN_EDGE was added for this purpose.
        
    ramping_pulse_params : dict
        Parameters for the ramping pulse generator object
        The key value pairs are assumed to be attribute name value pairs
        They applied after the object is created
    
    log_level : integer
        level of messaging output from the logger.
        Options are attributes of qutip.logging_utils,
        in decreasing levels of messaging, are:
        DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL
        Anything WARN or above is effectively 'quiet' execution,
        assuming everything runs as expected.
        The default NOTSET implies that the level will be taken from
        the QuTiP settings file, which by default is WARN
    gen_stats : boolean
        if set to True then statistics for the optimisation
        run will be generated - accessible through attributes
        of the stats object
    Returns
    -------
    opt : Optimizer    
        Instance of an Optimizer, through which the
        Config, Dynamics, PulseGen, and TerminationConditions objects
        can be accessed as attributes.
        The PropagatorComputer, FidelityComputer and TimeslotComputer objects
        can be accessed as attributes of the Dynamics object, e.g. optimizer.dynamics.fid_computer
        The optimisation can be run through the optimizer.run_optimization
    
    """
    # check parameters
    if not isinstance(drift, Qobj):
        if not isinstance(drift, (list, tuple)):
            raise TypeError("drift should be a Qobj or a list of Qobj")
        else:
            for d in drift:
                if not isinstance(d, Qobj):
                    raise TypeError("drift should be a Qobj or a list of Qobj")
    if not isinstance(ctrls, (list, tuple)):
        raise TypeError("ctrls should be a list of Qobj")
    else:
        for ctrl in ctrls:
            if not isinstance(ctrl, Qobj):
                raise TypeError("ctrls should be a list of Qobj")
    if not isinstance(initial, Qobj):
        raise TypeError("initial must be a Qobj")
    if not isinstance(target, Qobj):
        raise TypeError("target must be a Qobj")
        
    # Deprecated parameter management
    if not optim_alg is None:
        optim_method = optim_alg
        _param_deprecation(
            "The 'optim_alg' parameter is deprecated. "
            "Use 'optim_method' instead")
            
    if not max_metric_corr is None:
        if isinstance(method_params, dict):
            if not 'max_metric_corr' in method_params:
                 method_params['max_metric_corr'] = max_metric_corr
        else:
            method_params = {'max_metric_corr':max_metric_corr}
        _param_deprecation(
            "The 'max_metric_corr' parameter is deprecated. "
            "Use 'max_metric_corr' in method_params instead")
            
    if not accuracy_factor is None:
        if isinstance(method_params, dict):
            if not 'accuracy_factor' in method_params:
                 method_params['accuracy_factor'] = accuracy_factor
        else:
            method_params = {'accuracy_factor':accuracy_factor}
        _param_deprecation(
            "The 'accuracy_factor' parameter is deprecated. "
            "Use 'accuracy_factor' in method_params instead")
    
    # phase_option
    if not phase_option is None:
        if isinstance(fid_params, dict):
            if not 'phase_option' in fid_params:
                 fid_params['phase_option'] = phase_option
        else:
            fid_params = {'phase_option':phase_option}
        _param_deprecation(
            "The 'phase_option' parameter is deprecated. "
            "Use 'phase_option' in fid_params instead")
            
    # fid_err_scale_factor
    if not fid_err_scale_factor is None:
        if isinstance(fid_params, dict):
            if not 'fid_err_scale_factor' in fid_params:
                 fid_params['scale_factor'] = fid_err_scale_factor
        else:
            fid_params = {'scale_factor':fid_err_scale_factor}
        _param_deprecation(
            "The 'fid_err_scale_factor' parameter is deprecated. "
            "Use 'scale_factor' in fid_params instead")
            
    # amp_update_mode
    if not amp_update_mode is None:
        amp_update_mode_up = _upper_safe(amp_update_mode)
        if amp_update_mode_up == 'ALL':
            tslot_type = 'UPDATE_ALL'
        else:
            tslot_type = amp_update_mode
        _param_deprecation(
            "The 'amp_update_mode' parameter is deprecated. "
            "Use 'tslot_type' instead")
            
    # set algorithm defaults
    alg_up = _upper_safe(alg)
    if alg is None:
        raise errors.UsageError(
            "Optimisation algorithm must be specified through 'alg' parameter")
    elif alg_up == 'GRAPE':
        if optim_method is None or optim_method.upper() == 'DEF':
            optim_method = 'FMIN_L_BFGS_B'
        if init_pulse_type is None or init_pulse_type.upper() == 'DEF':
            init_pulse_type = 'RND'
    elif alg_up == 'CRAB':
        if optim_method is None or optim_method.upper() == 'DEF':
            optim_method = 'FMIN'
        if prop_type is None or prop_type.upper() == 'DEF':
            prop_type = 'APPROX'
        if init_pulse_type is None or init_pulse_type.upper() == 'DEF':
            init_pulse_type = None
    else:
        raise errors.UsageError(
            "No option for pulse optimisation algorithm alg={}".format(alg))
    cfg = optimconfig.OptimConfig()
    cfg.optim_method = optim_method
    cfg.dyn_type = dyn_type
    cfg.prop_type = prop_type
    cfg.fid_type = fid_type
    cfg.init_pulse_type = init_pulse_type
    if log_level == logging.NOTSET:
        log_level = logger.getEffectiveLevel()
    else:
        logger.setLevel(log_level)
    cfg.log_level = log_level
    # Create the Dynamics instance
    if dyn_type == 'GEN_MAT' or dyn_type is None or dyn_type == '':
        dyn = dynamics.DynamicsGenMat(cfg)
    elif dyn_type == 'UNIT':
        dyn = dynamics.DynamicsUnitary(cfg)
    elif dyn_type == 'SYMPL':
        dyn = dynamics.DynamicsSymplectic(cfg)
    else:
        raise errors.UsageError("No option for dyn_type: " + dyn_type)
    dyn.apply_params(dyn_params)
    
    # Create the PropagatorComputer instance
    # The default will be typically be the best option
    if prop_type == 'DEF' or prop_type is None or prop_type == '':
        # Do nothing use the default for the Dynamics
        pass
    elif prop_type == 'APPROX':
        if not isinstance(dyn.prop_computer, propcomp.PropCompApproxGrad):
            dyn.prop_computer = propcomp.PropCompApproxGrad(dyn)
    elif prop_type == 'DIAG':
        if not isinstance(dyn.prop_computer, propcomp.PropCompDiag):
            dyn.prop_computer = propcomp.PropCompDiag(dyn)
    elif prop_type == 'AUG_MAT':
        if not isinstance(dyn.prop_computer, propcomp.PropCompAugMat):
            dyn.prop_computer = propcomp.PropCompAugMat(dyn)
    elif prop_type == 'FRECHET':
        if not isinstance(dyn.prop_computer, propcomp.PropCompFrechet):
            dyn.prop_computer = propcomp.PropCompFrechet(dyn)
    else:
        raise errors.UsageError("No option for prop_type: " + prop_type)
    dyn.prop_computer.apply_params(prop_params)
    # Create the FidelityComputer instance
    # The default will be typically be the best option
    # Note: the FidCompTraceDiffApprox is a subclass of FidCompTraceDiff
    # so need to check this type first
    fid_type_up = _upper_safe(fid_type)
    if fid_type_up == 'DEF' or fid_type_up is None or fid_type_up == '':
        # None given, use the default for the Dynamics
        pass
    elif fid_type_up == 'TDAPPROX':
        if not isinstance(dyn.fid_computer, fidcomp.FidCompTraceDiffApprox):
            dyn.fid_computer = fidcomp.FidCompTraceDiffApprox(dyn)
    elif fid_type_up == 'TRACEDIFF':
        if not isinstance(dyn.fid_computer, fidcomp.FidCompTraceDiff):
            dyn.fid_computer = fidcomp.FidCompTraceDiff(dyn)
    elif fid_type_up == 'UNIT':
        if not isinstance(dyn.fid_computer, fidcomp.FidCompUnitary):
            dyn.fid_computer = fidcomp.FidCompUnitary(dyn)
    else:
        raise errors.UsageError("No option for fid_type: " + fid_type)
    dyn.fid_computer.apply_params(fid_params)
    
    # Currently the only working option for tslot computer is 
    # TSlotCompUpdateAll.
    # so just apply the parameters
    dyn.tslot_computer.apply_params(tslot_params)    
    # Create the Optimiser instance
    optim_method_up = _upper_safe(optim_method)
    if optim_method is None or optim_method_up == '':
        raise errors.UsageError("Optimisation method must be specified "
                                "via 'optim_method' parameter")
    elif optim_method_up == 'FMIN_BFGS':
        optim = optimizer.OptimizerBFGS(cfg, dyn)
    elif optim_method_up == 'LBFGSB' or optim_method_up == 'FMIN_L_BFGS_B':
        optim = optimizer.OptimizerLBFGSB(cfg, dyn)
    elif optim_method_up == 'FMIN':
        if alg_up == 'CRAB':
            optim = optimizer.OptimizerCrabFmin(cfg, dyn)
        else:
            raise errors.UsageError(
                "Invalid optim_method '{}' for '{}' algorthim".format(
                                    optim_method, alg))
    else:
        # Assume that the optim_method is a valid
        #scipy.optimize.minimize method
        # Choose an optimiser based on the algorithm
        if alg_up == 'CRAB':
            optim = optimizer.OptimizerCrab(cfg, dyn)
        else:
            optim = optimizer.Optimizer(cfg, dyn)
    
    optim.alg = alg
    optim.method = optim_method
    optim.amp_lbound = amp_lbound
    optim.amp_ubound = amp_ubound
    optim.apply_params(optim_params)
    
    # Create the TerminationConditions instance
    tc = termcond.TerminationConditions()
    tc.fid_err_targ = fid_err_targ
    tc.min_gradient_norm = min_grad
    tc.max_iterations = max_iter
    tc.max_wall_time = max_wall_time
    optim.termination_conditions = tc
    
    
    optim.apply_method_params(method_params)
    if gen_stats:
        # Create a stats object
        # Note that stats object is optional
        # if the Dynamics and Optimizer stats attribute is not set
        # then no stats will be collected, which could improve performance
        if amp_update_mode == 'DYNAMIC':
            sts = stats.StatsDynTsUpdate()
        else:
            sts = stats.Stats()
        dyn.stats = sts
        optim.stats = sts
    # Configure the dynamics
    dyn.drift_dyn_gen = drift
    dyn.ctrl_dyn_gen = ctrls
    dyn.initial = initial
    dyn.target = target
    if tau is None:
        # Check that parameters have been supplied to generate the
        # timeslot durations
        try:
            evo_time / num_tslots
        except:
            raise errors.UsageError(
                "Either the timeslot durations should be supplied as an "
                "array 'tau' or the number of timeslots 'num_tslots' "
                "and the evolution time 'evo_time' must be given.")
        dyn.num_tslots = num_tslots
        dyn.evo_time = evo_time
    else:
        dyn.tau = tau
    # this function is called, so that the num_ctrls attribute will be set
    n_ctrls = dyn.num_ctrls
    ramping_pgen = None
    if ramping_pulse_type:
        ramping_pgen = pulsegen.create_pulse_gen(
                            pulse_type=ramping_pulse_type, dyn=dyn, 
                            pulse_params=ramping_pulse_params)
    if alg_up == 'CRAB':
        # Create a pulse generator for each ctrl
        crab_pulse_params = None
        num_coeffs = None
        init_coeff_scaling = None
        if isinstance(alg_params, dict):
            num_coeffs = alg_params.get('num_coeffs')
            init_coeff_scaling = alg_params.get('init_coeff_scaling')
            if 'crab_pulse_params' in alg_params:
                crab_pulse_params = alg_params.get('crab_pulse_params')
            
        guess_pulse_type = init_pulse_type
        if guess_pulse_type:
            guess_pulse_action = None
            guess_pgen = pulsegen.create_pulse_gen(
                                pulse_type=guess_pulse_type, dyn=dyn)
            guess_pgen.scaling = pulse_scaling
            guess_pgen.offset = pulse_offset
            if init_pulse_params is not None:
                guess_pgen.apply_params(init_pulse_params)
                guess_pulse_action = init_pulse_params.get('pulse_action')
        optim.pulse_generator = []
        for j in range(n_ctrls):
            crab_pgen = pulsegen.PulseGenCrabFourier(
                                dyn=dyn, num_coeffs=num_coeffs)
            if init_coeff_scaling is not None:
                crab_pgen.scaling = init_coeff_scaling
            if isinstance(crab_pulse_params, dict):
                crab_pgen.apply_params(crab_pulse_params)
                
            lb = None
            if amp_lbound:
                if isinstance(amp_lbound, list):
                    try:
                        lb = amp_lbound[j]
                    except:
                        lb = amp_lbound[-1]
                else:
                    lb = amp_lbound
            ub = None
            if amp_ubound:
                if isinstance(amp_ubound, list):
                    try:
                        ub = amp_ubound[j]
                    except:
                        ub = amp_ubound[-1]
                else:
                    ub = amp_ubound
            crab_pgen.lbound = lb
            crab_pgen.ubound = ub
            
            if guess_pulse_type:
                guess_pgen.lbound = lb
                guess_pgen.ubound = ub
                crab_pgen.guess_pulse = guess_pgen.gen_pulse()
                if guess_pulse_action:
                    crab_pgen.guess_pulse_action = guess_pulse_action
                
            if ramping_pgen:
                crab_pgen.ramping_pulse = ramping_pgen.gen_pulse()
            optim.pulse_generator.append(crab_pgen)
        #This is just for the debug message now
        pgen = optim.pulse_generator[0]
            
    else:
        # Create a pulse generator of the type specified
        pgen = pulsegen.create_pulse_gen(pulse_type=init_pulse_type, dyn=dyn,
                                        pulse_params=init_pulse_params)
        pgen.scaling = pulse_scaling
        pgen.offset = pulse_offset
        pgen.lbound = amp_lbound
        pgen.ubound = amp_ubound
        optim.pulse_generator = pgen
    if log_level <= logging.DEBUG:
        logger.debug(
            "Optimisation config summary...\n"
            "  object classes:\n"
            "    optimizer: " + optim.__class__.__name__ +
            "\n    dynamics: " + dyn.__class__.__name__ +
            "\n    tslotcomp: " + dyn.tslot_computer.__class__.__name__ +
            "\n    fidcomp: " + dyn.fid_computer.__class__.__name__ +
            "\n    propcomp: " + dyn.prop_computer.__class__.__name__ +
            "\n    pulsegen: " + pgen.__class__.__name__)
    return optim