# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module contains a collection functions for calculating continuous variable
quantities from fock-basis representation of the state of multi-mode fields.
"""
__all__ = ['correlation_matrix', 'covariance_matrix',
           'correlation_matrix_field', 'correlation_matrix_quadrature',
           'wigner_covariance_matrix', 'logarithmic_negativity']
from qutip.expect import expect
import numpy as np
[docs]def correlation_matrix(basis, rho=None):
    """
    Given a basis set of operators :math:`\\{a\\}_n`, calculate the correlation
    matrix:
    .. math::
        C_{mn} = \\langle a_m a_n \\rangle
    Parameters
    ----------
    basis : list
        List of operators that defines the basis for the correlation matrix.
    rho : Qobj
        Density matrix for which to calculate the correlation matrix. If
        `rho` is `None`, then a matrix of correlation matrix operators is
        returned instead of expectation values of those operators.
    Returns
    -------
    corr_mat : ndarray
        A 2-dimensional *array* of correlation values or operators.
    """
    if rho is None:
        # return array of operators
        return np.array([[op1 * op2 for op1 in basis]
                         for op2 in basis], dtype=object)
    else:
        # return array of expectation values
        return np.array([[expect(op1 * op2, rho)
                          for op1 in basis] for op2 in basis], dtype=object) 
[docs]def covariance_matrix(basis, rho, symmetrized=True):
    """
    Given a basis set of operators :math:`\{a\}_n`, calculate the covariance
    matrix:
    .. math::
        V_{mn} = \\frac{1}{2}\\langle a_m a_n + a_n a_m \\rangle -
        \\langle a_m \\rangle \\langle a_n\\rangle
    or, if of the optional argument `symmetrized=False`,
    .. math::
        V_{mn} = \\langle a_m a_n\\rangle -
        \\langle a_m \\rangle \\langle a_n\\rangle
    Parameters
    ----------
    basis : list
        List of operators that defines the basis for the covariance matrix.
    rho : Qobj
        Density matrix for which to calculate the covariance matrix.
    symmetrized : bool {True, False}
        Flag indicating whether the symmetrized (default) or non-symmetrized
        correlation matrix is to be calculated.
    Returns
    -------
    corr_mat : ndarray
        A 2-dimensional array of covariance values.
    """
    if symmetrized:
        return np.array([[0.5 * expect(op1 * op2 + op2 * op1, rho) -
                          expect(op1, rho) * expect(op2, rho)
                          for op1 in basis] for op2 in basis], dtype=object)
    else:
        return np.array([[expect(op1 * op2, rho) -
                          expect(op1, rho) * expect(op2, rho)
                          for op1 in basis] for op2 in basis], dtype=object) 
[docs]def correlation_matrix_field(a1, a2, rho=None):
    """
    Calculates the correlation matrix for given field operators :math:`a_1` and
    :math:`a_2`. If a density matrix is given the expectation values are
    calculated, otherwise a matrix with operators is returned.
    Parameters
    ----------
    a1 : Qobj
        Field operator for mode 1.
    a2 : Qobj
        Field operator for mode 2.
    rho : Qobj
        Density matrix for which to calculate the covariance matrix.
    Returns
    -------
    cov_mat : ndarray 
        Array of complex numbers or Qobj's
        A 2-dimensional *array* of covariance values, or, if rho=0, a matrix
        of operators.
    """
    basis = [a1, a1.dag(), a2, a2.dag()]
    return correlation_matrix(basis, rho) 
[docs]def correlation_matrix_quadrature(a1, a2, rho=None):
    """
    Calculate the quadrature correlation matrix with given field operators
    :math:`a_1` and :math:`a_2`. If a density matrix is given the expectation
    values are calculated, otherwise a matrix with operators is returned.
    Parameters
    ----------
    a1 : Qobj
        Field operator for mode 1.
    a2 : Qobj
        Field operator for mode 2.
    rho : Qobj
        Density matrix for which to calculate the covariance matrix.
    Returns
    -------
    corr_mat : ndarray 
        Array of complex numbers or Qobj's
        A 2-dimensional *array* of covariance values for the field quadratures,
        or, if rho=0, a matrix of operators.
    """
    x1 = (a1 + a1.dag()) / np.sqrt(2)
    p1 = -1j * (a1 - a1.dag()) / np.sqrt(2)
    x2 = (a2 + a2.dag()) / np.sqrt(2)
    p2 = -1j * (a2 - a2.dag()) / np.sqrt(2)
    basis = [x1, p1, x2, p2]
    return correlation_matrix(basis, rho) 
[docs]def wigner_covariance_matrix(a1=None, a2=None, R=None, rho=None):
    """
    Calculates the Wigner covariance matrix
    :math:`V_{ij} = \\frac{1}{2}(R_{ij} + R_{ji})`, given
    the quadrature correlation matrix
    :math:`R_{ij} = \\langle R_{i} R_{j}\\rangle -
    \\langle R_{i}\\rangle \\langle R_{j}\\rangle`, where
    :math:`R = (q_1, p_1, q_2, p_2)^T` is the vector with quadrature operators
    for the two modes.
    Alternatively, if `R = None`, and if annihilation operators `a1` and `a2`
    for the two modes are supplied instead, the quadrature correlation matrix
    is constructed from the annihilation operators before then the covariance
    matrix is calculated.
    Parameters
    ----------
    a1 : Qobj
        Field operator for mode 1.
    a2 : Qobj
        Field operator for mode 2.
    R : ndarray
        The quadrature correlation matrix.
    rho : Qobj
        Density matrix for which to calculate the covariance matrix.
    Returns
    -------
    cov_mat : ndarray
        A 2-dimensional array of covariance values.
    """
    if R is not None:
        if rho is None:
            return np.array([[0.5 * np.real(R[i, j] + R[j, i])
                              for i in range(4)]
                             for j in range(4)], dtype=object)
        else:
            return np.array([[0.5 * np.real(expect(R[i, j] + R[j, i], rho))
                              for i in range(4)]
                             for j in range(4)], dtype=object)
    elif a1 is not None and a2 is not None:
        if rho is not None:
            x1 = (a1 + a1.dag()) / np.sqrt(2)
            p1 = -1j * (a1 - a1.dag()) / np.sqrt(2)
            x2 = (a2 + a2.dag()) / np.sqrt(2)
            p2 = -1j * (a2 - a2.dag()) / np.sqrt(2)
            return covariance_matrix([x1, p1, x2, p2], rho)
        else:
            raise ValueError("Must give rho if using field operators " +
                             "(a1 and a2)")
    else:
        raise ValueError("Must give either field operators (a1 and a2) " +
                         "or a precomputed correlation matrix (R)") 
[docs]def logarithmic_negativity(V):
    """
    Calculates the logarithmic negativity given a symmetrized covariance
    matrix, see :func:`qutip.continous_variables.covariance_matrix`. Note that
    the two-mode field state that is described by `V` must be Gaussian for this
    function to applicable.
    Parameters
    ----------
    V : *2d array*
        The covariance matrix.
    Returns
    -------
    N : float 
        The logarithmic negativity for the two-mode Gaussian state
        that is described by the the Wigner covariance matrix V.
    """
    A = V[0:2, 0:2]
    B = V[2:4, 2:4]
    C = V[0:2, 2:4]
    sigma = np.linalg.det(A) + np.linalg.det(B) - 2 * np.linalg.det(C)
    nu_ = sigma / 2 - np.sqrt(sigma ** 2 - 4 * np.linalg.det(V)) / 2
    if nu_ < 0.0:
        return 0.0
    nu = np.sqrt(nu_)
    lognu = -np.log(2 * nu)
    logneg = max(0, lognu)
    return logneg