Source code for qutip.bloch_redfield

# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################

__all__ = ['brmesolve', 'bloch_redfield_solve', 'bloch_redfield_tensor']

import numpy as np
import scipy.integrate
import scipy.sparse as sp
from qutip.qobj import Qobj, isket
from qutip.superoperator import spre, spost, vec2mat, mat2vec, vec2mat_index
from qutip.expect import expect
from qutip.solver import Options, _solver_safety_check
from qutip.cy.spmatfuncs import cy_ode_rhs
from qutip.cy.spconvert import dense2D_to_fastcsr_fmode
from qutip.solver import Result
from qutip.superoperator import liouvillian
from qutip.cy.spconvert import arr_coo2fast


# -----------------------------------------------------------------------------
# Solve the Bloch-Redfield master equation
#
[docs]def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[], args={}, options=Options(), _safe_mode=True): """ Solve the dynamics for a system using the Bloch-Redfield master equation. .. note:: This solver does not currently support time-dependent Hamiltonians. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.Qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. a_ops : list of :class:`qutip.qobj` List of system operators that couple to bath degrees of freedom. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. c_ops : list of :class:`qutip.qobj` List of system collapse operators. args : *dictionary* Placeholder for future implementation, kept for API consistency. options : :class:`qutip.solver.Options` Options for the solver. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ if _safe_mode: _solver_safety_check(H, psi0, a_ops, e_ops, args) if not spectra_cb: # default to infinite temperature white noise spectra_cb = [lambda w: 1.0 for _ in a_ops] R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops) output = Result() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if e_ops: output.expect = results else: output.states = results return output
# ----------------------------------------------------------------------------- # Evolution of the Bloch-Redfield master equation given the Bloch-Redfield # tensor. #
[docs]def bloch_redfield_solve(R, ekets, rho0, tlist, e_ops=[], options=None): """ Evolve the ODEs defined by Bloch-Redfield master equation. The Bloch-Redfield tensor can be calculated by the function :func:`bloch_redfield_tensor`. Parameters ---------- R : :class:`qutip.qobj` Bloch-Redfield tensor. ekets : array of :class:`qutip.qobj` Array of kets that make up a basis tranformation for the eigenbasis. rho0 : :class:`qutip.qobj` Initial density matrix. tlist : *list* / *array* List of times for :math:`t`. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. options : :class:`qutip.Qdeoptions` Options for the ODE solver. Returns ------- output: :class:`qutip.solver` An instance of the class :class:`qutip.solver`, which contains either an *array* of expectation values for the times specified by `tlist`. """ if options is None: options = Options() if options.tidy: R.tidyup() # # check initial state # if isket(rho0): # Got a wave function as initial state: convert to density matrix. rho0 = rho0 * rho0.dag() # # prepare output array # n_tsteps = len(tlist) dt = tlist[1] - tlist[0] result_list = [] # # transform the initial density matrix and the e_ops opterators to the # eigenbasis # rho_eb = rho0.transform(ekets) e_eb_ops = [e.transform(ekets) for e in e_ops] for e_eb in e_eb_ops: if e_eb.isherm: result_list.append(np.zeros(n_tsteps, dtype=float)) else: result_list.append(np.zeros(n_tsteps, dtype=complex)) # # setup integrator # initial_vector = mat2vec(rho_eb.full()) r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(R.data.data, R.data.indices, R.data.indptr) r.set_integrator('zvode', method=options.method, order=options.order, atol=options.atol, rtol=options.rtol, nsteps=options.nsteps, first_step=options.first_step, min_step=options.min_step, max_step=options.max_step) r.set_initial_value(initial_vector, tlist[0]) # # start evolution # dt = np.diff(tlist) for t_idx, _ in enumerate(tlist): if not r.successful(): break rho_eb.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho0.shape[0], rho0.shape[1]) # calculate all the expectation values, or output rho_eb if no # expectation value operators are given if e_ops: rho_eb_tmp = Qobj(rho_eb) for m, e in enumerate(e_eb_ops): result_list[m][t_idx] = expect(e, rho_eb_tmp) else: result_list.append(rho_eb.transform(ekets, True)) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) return result_list
# ----------------------------------------------------------------------------- # Functions for calculating the Bloch-Redfield tensor for a time-independent # system. #
[docs]def bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops=[], use_secular=True): """ Calculate the Bloch-Redfield tensor for a system given a set of operators and corresponding spectral functions that describes the system's coupling to its environment. .. note:: This tensor generation requires a time-independent Hamiltonian. Parameters ---------- H : :class:`qutip.qobj` System Hamiltonian. a_ops : list of :class:`qutip.qobj` List of system operators that couple to the environment. spectra_cb : list of callback functions List of callback functions that evaluate the noise power spectrum at a given frequency. c_ops : list of :class:`qutip.qobj` List of system collapse operators. use_secular : bool Flag (True of False) that indicates if the secular approximation should be used. Returns ------- R, kets: :class:`qutip.Qobj`, list of :class:`qutip.Qobj` R is the Bloch-Redfield tensor and kets is a list eigenstates of the Hamiltonian. """ # Sanity checks for input parameters if not isinstance(H, Qobj): raise TypeError("H must be an instance of Qobj") for a in a_ops: if not isinstance(a, Qobj) or not a.isherm: raise TypeError("Operators in a_ops must be Hermitian Qobj.") # default spectrum if not spectra_cb: spectra_cb = [lambda w: 1.0 for _ in a_ops] if c_ops is None: c_ops = [] # use the eigenbasis evals, ekets = H.eigenstates() N = len(evals) K = len(a_ops) #only Lindblad collapse terms if K==0: Heb = H.transform(ekets) L = liouvillian(Heb, c_ops=[c_op.transform(ekets) for c_op in c_ops]) return L, ekets A = np.array([a_ops[k].transform(ekets).full() for k in range(K)]) Jw = np.zeros((K, N, N), dtype=complex) # pre-calculate matrix elements and spectral densities # W[m,n] = real(evals[m] - evals[n]) W = np.real(evals[:,np.newaxis] - evals[np.newaxis,:]) for k in range(K): # do explicit loops here in case spectra_cb[k] can not deal with array arguments for n in range(N): for m in range(N): Jw[k, n, m] = spectra_cb[k](W[n, m]) dw_min = np.abs(W[W.nonzero()]).min() # pre-calculate mapping between global index I and system indices a,b Iabs = np.empty((N*N,3),dtype=int) for I, Iab in enumerate(Iabs): # important: use [:] to change array values, instead of creating new variable Iab Iab[0] = I Iab[1:] = vec2mat_index(N, I) # unitary part + dissipation from c_ops (if given): Heb = H.transform(ekets) L = liouvillian(Heb, c_ops=[c_op.transform(ekets) for c_op in c_ops]) # dissipative part: rows = [] cols = [] data = [] for I, a, b in Iabs: # only check use_secular once per I if use_secular: # only loop over those indices J which actually contribute Jcds = Iabs[np.where(np.abs(W[a, b] - W[Iabs[:,1], Iabs[:,2]]) < dw_min / 10.0)] else: Jcds = Iabs for J, c, d in Jcds: elem = 0+0j # summed over k, i.e., each operator coupling the system to the environment elem += 0.5 * np.sum(A[:, a, c] * A[:, d, b] * (Jw[:, c, a] + Jw[:, d, b])) if b==d: # sum_{k,n} A[k, a, n] * A[k, n, c] * Jw[k, c, n]) elem -= 0.5 * np.sum(A[:, a, :] * A[:, :, c] * Jw[:, c, :]) if a==c: # sum_{k,n} A[k, d, n] * A[k, n, b] * Jw[k, d, n]) elem -= 0.5 * np.sum(A[:, d, :] * A[:, :, b] * Jw[:, d, :]) if elem != 0: rows.append(I) cols.append(J) data.append(elem) R = arr_coo2fast(np.array(data, dtype=complex), np.array(rows, dtype=np.int32), np.array(cols, dtype=np.int32), N**2, N**2) L.data = L.data + R return L, ekets