API
Contents
Quantum object (Qobj) and type
QuantumToolbox.AbstractQuantumObject
— Typeabstract type AbstractQuantumObject{DataType,ObjType,N}
Abstract type for all quantum objects like QuantumObject
and QuantumObjectEvolution
.
Example
julia> sigmax() isa AbstractQuantumObject
true
QuantumToolbox.BraQuantumObject
— TypeBraQuantumObject <: QuantumObjectType
Constructor representing a bra state $\langle\psi|$.
QuantumToolbox.Bra
— Constantconst Bra = BraQuantumObject()
A constant representing the type of BraQuantumObject
: a bra state $\langle\psi|$
QuantumToolbox.KetQuantumObject
— TypeKetQuantumObject <: QuantumObjectType
Constructor representing a ket state $|\psi\rangle$.
QuantumToolbox.Ket
— Constantconst Ket = KetQuantumObject()
A constant representing the type of KetQuantumObject
: a ket state $|\psi\rangle$
QuantumToolbox.OperatorQuantumObject
— TypeOperatorQuantumObject <: QuantumObjectType
Constructor representing an operator $\hat{O}$.
QuantumToolbox.Operator
— Constantconst Operator = OperatorQuantumObject()
A constant representing the type of OperatorQuantumObject
: an operator $\hat{O}$
QuantumToolbox.OperatorBraQuantumObject
— TypeOperatorBraQuantumObject <: QuantumObjectType
Constructor representing a bra state in the SuperOperator
formalism $\langle\langle\rho|$.
QuantumToolbox.OperatorBra
— Constantconst OperatorBra = OperatorBraQuantumObject()
A constant representing the type of OperatorBraQuantumObject
: a bra state in the SuperOperator
formalism $\langle\langle\rho|$.
QuantumToolbox.OperatorKetQuantumObject
— TypeOperatorKetQuantumObject <: QuantumObjectType
Constructor representing a ket state in the SuperOperator
formalism $|\rho\rangle\rangle$.
QuantumToolbox.OperatorKet
— Constantconst OperatorKet = OperatorKetQuantumObject()
A constant representing the type of OperatorKetQuantumObject
: a ket state in the SuperOperator
formalism $|\rho\rangle\rangle$
QuantumToolbox.SuperOperatorQuantumObject
— TypeSuperOperatorQuantumObject <: QuantumObjectType
Constructor representing a super-operator $\hat{\mathcal{O}}$ acting on vectorized density operator matrices.
QuantumToolbox.SuperOperator
— Constantconst SuperOperator = SuperOperatorQuantumObject()
A constant representing the type of SuperOperatorQuantumObject
: a super-operator $\hat{\mathcal{O}}$ acting on vectorized density operator matrices
QuantumToolbox.QuantumObject
— Typestruct QuantumObject{MT<:AbstractArray,ObjType<:QuantumObjectType,N}
data::MT
type::ObjType
dims::SVector{N, Int}
end
Julia struct representing any quantum objects.
Examples
julia> a = destroy(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⎡⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠈⠢⡀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠈⠢⡀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⎦
julia> a isa QuantumObject
true
QuantumToolbox.QuantumObjectEvolution
— Typestruct QuantumObjectEvolution{DT<:AbstractSciMLOperator,ObjType<:QuantumObjectType,N} <: AbstractQuantumObject
data::DT
type::ObjType
dims::SVector{N,Int}
end
Julia struct representing any time-dependent quantum object. The data
field is a AbstractSciMLOperator
object that represents the time-dependent quantum object. It can be seen as
\[\hat{O}(t) = \sum_{i} c_i(p, t) \hat{O}_i\]
where $c_i(p, t)$ is a function that depends on the parameters p
and time t
, and $\hat{O}_i$ are the operators that form the quantum object. The type
field is the type of the quantum object, and the dims
field is the dimensions of the quantum object. For more information about type
and dims
, see QuantumObject
. For more information about AbstractSciMLOperator
, see the SciML documentation.
Examples
This operator can be initialized in the same way as the QuTiP QobjEvo
object. For example
julia> a = tensor(destroy(10), qeye(2))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 18 stored entries:
⎡⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⎦
julia> σm = tensor(qeye(10), sigmam())
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 10 stored entries:
⎡⠂⡀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡀⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡀⎦
julia> coef1(p, t) = exp(-1im * t)
coef1 (generic function with 1 method)
julia> coef2(p, t) = sin(t)
coef2 (generic function with 1 method)
julia> op1 = QuantumObjectEvolution(((a, coef1), (σm, coef2)))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=true
(ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20) + ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20))
We can also concretize the operator at a specific time t
julia> op1(0.1)
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 28 stored entries:
⎡⠂⡑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡑⎦
It also supports parameter-dependent time evolution
julia> coef1(p, t) = exp(-1im * p.ω1 * t)
coef1 (generic function with 1 method)
julia> coef2(p, t) = sin(p.ω2 * t)
coef2 (generic function with 1 method)
julia> op1 = QuantumObjectEvolution(((a, coef1), (σm, coef2)))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=true
(ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20) + ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20))
julia> p = (ω1 = 1.0, ω2 = 0.5)
(ω1 = 1.0, ω2 = 0.5)
julia> op1(p, 0.1)
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 28 stored entries:
⎡⠂⡑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡑⎦
Base.size
— Functionsize(A::AbstractQuantumObject)
size(A::AbstractQuantumObject, idx::Int)
Returns a tuple containing each dimensions of the array in the AbstractQuantumObject
.
Optionally, you can specify an index (idx
) to just get the corresponding dimension of the array.
Base.eltype
— Functioneltype(A::AbstractQuantumObject)
Returns the elements type of the matrix or vector corresponding to the AbstractQuantumObject
A
.
Base.length
— Functionlength(A::AbstractQuantumObject)
Returns the length of the matrix or vector corresponding to the AbstractQuantumObject
A
.
Qobj boolean functions
QuantumToolbox.isbra
— Functionisbra(A)
Checks if the QuantumObject
A
is a BraQuantumObject
. Default case returns false
for any other inputs.
QuantumToolbox.isket
— Functionisket(A)
Checks if the QuantumObject
A
is a KetQuantumObject
. Default case returns false
for any other inputs.
QuantumToolbox.isoper
— Functionisoper(A)
Checks if the AbstractQuantumObject
A
is a OperatorQuantumObject
. Default case returns false
for any other inputs.
QuantumToolbox.isoperbra
— Functionisoperbra(A)
Checks if the QuantumObject
A
is a OperatorBraQuantumObject
. Default case returns false
for any other inputs.
QuantumToolbox.isoperket
— Functionisoperket(A)
Checks if the QuantumObject
A
is a OperatorKetQuantumObject
. Default case returns false
for any other inputs.
QuantumToolbox.issuper
— Functionissuper(A)
Checks if the AbstractQuantumObject
A
is a SuperOperatorQuantumObject
. Default case returns false
for any other inputs.
LinearAlgebra.ishermitian
— Functionishermitian(A::AbstractQuantumObject)
Test whether the AbstractQuantumObject
is Hermitian.
LinearAlgebra.issymmetric
— Functionissymmetric(A::AbstractQuantumObject)
Test whether the AbstractQuantumObject
is symmetric.
LinearAlgebra.isposdef
— Functionisposdef(A::AbstractQuantumObject)
Test whether the AbstractQuantumObject
is positive definite (and Hermitian) by trying to perform a Cholesky factorization of A
.
QuantumToolbox.isunitary
— Functionisunitary(U::QuantumObject; kwargs...)
Test whether the QuantumObject
$U$ is unitary operator. This function calls Base.isapprox
to test whether $U U^\dagger$ is approximately equal to identity operator.
Note that all the keyword arguments will be passed to Base.isapprox
.
SciMLOperators.isconstant
— Functionisconstant(A::AbstractQuantumObject)
Test whether the AbstractQuantumObject
A
is constant in time. For a QuantumObject
, this function returns true
, while for a QuantumObjectEvolution
, this function returns true
if the operator is contant in time.
Qobj arithmetic and attributes
Base.conj
— Functionconj(A::AbstractQuantumObject)
Return the element-wise complex conjugation of the AbstractQuantumObject
.
Base.transpose
— Functiontranspose(A::AbstractQuantumObject)
Lazy matrix transpose of the AbstractQuantumObject
.
Base.adjoint
— FunctionA'
adjoint(A::AbstractQuantumObject)
Lazy adjoint (conjugate transposition) of the AbstractQuantumObject
Note that A'
is a synonym for adjoint(A)
LinearAlgebra.dot
— Functiondot(A::QuantumObject, B::QuantumObject)
Compute the dot product between two QuantumObject
: $\langle A | B \rangle$
Note that A
and B
should be Ket
or OperatorKet
A ⋅ B
(where ⋅
can be typed by tab-completing \cdot
in the REPL) is a synonym for dot(A, B)
dot(i::QuantumObject, A::AbstractQuantumObject j::QuantumObject)
Compute the generalized dot product dot(i, A*j)
between a AbstractQuantumObject
and two QuantumObject
(i
and j
), namely $\langle i | \hat{A} | j \rangle$.
Supports the following inputs:
A
is in the type ofOperator
, withi
andj
are bothKet
.A
is in the type ofSuperOperator
, withi
andj
are bothOperatorKet
Base.sqrt
— Function√(A)
sqrt(A::QuantumObject)
Matrix square root of QuantumObject
Note that √(A)
is a synonym for sqrt(A)
Base.log
— Functionlog(A::QuantumObject)
Matrix logarithm of QuantumObject
Note that this function only supports for Operator
and SuperOperator
Base.exp
— Functionexp(A::QuantumObject)
Matrix exponential of QuantumObject
Note that this function only supports for Operator
and SuperOperator
Base.sin
— Functionsin(A::QuantumObject)
Matrix sine of QuantumObject
, defined as
$\sin \left( \hat{A} \right) = \frac{e^{i \hat{A}} - e^{-i \hat{A}}}{2 i}$
Note that this function only supports for Operator
and SuperOperator
Base.cos
— Functioncos(A::QuantumObject)
Matrix cosine of QuantumObject
, defined as
$\cos \left( \hat{A} \right) = \frac{e^{i \hat{A}} + e^{-i \hat{A}}}{2}$
Note that this function only supports for Operator
and SuperOperator
LinearAlgebra.tr
— Functiontr(A::QuantumObject)
Returns the trace of QuantumObject
.
Note that this function only supports for Operator
and SuperOperator
Examples
julia> a = destroy(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠈⠢⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠈⠢⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢
julia> tr(a' * a)
190.0 + 0.0im
LinearAlgebra.svdvals
— Functionsvdvals(A::QuantumObject)
Return the singular values of a QuantumObject
in descending order
LinearAlgebra.norm
— Functionnorm(A::QuantumObject, p::Real)
Return the standard vector p
-norm or Schatten p
-norm of a QuantumObject
depending on the type of A
:
- If
A
is eitherKet
,Bra
,OperatorKet
, orOperatorBra
, returns the standard vectorp
-norm (defaultp=2
) ofA
. - If
A
is eitherOperator
orSuperOperator
, returns Schattenp
-norm (defaultp=1
) ofA
.
Examples
julia> ψ = fock(10, 2)
Quantum Object: type=Ket dims=[10] size=(10,)
10-element Vector{ComplexF64}:
0.0 + 0.0im
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
julia> norm(ψ)
1.0
LinearAlgebra.normalize
— Functionnormalize(A::QuantumObject, p::Real)
Return normalized QuantumObject
so that its p
-norm equals to unity, i.e. norm(A, p) == 1
.
Support for the following types of QuantumObject
:
Also, see norm
about its definition for different types of QuantumObject
.
LinearAlgebra.normalize!
— Functionnormalize!(A::QuantumObject, p::Real)
Normalize QuantumObject
in-place so that its p
-norm equals to unity, i.e. norm(A, p) == 1
.
Support for the following types of QuantumObject
:
Also, see norm
about its definition for different types of QuantumObject
.
Base.inv
— Functioninv(A::AbstractQuantumObject)
Matrix inverse of the AbstractQuantumObject
. If A
is a QuantumObjectEvolution
, the inverse is computed at the last computed time.
LinearAlgebra.diag
— Functiondiag(A::QuantumObject, k::Int=0)
Return the k
-th diagonal elements of a matrix-type QuantumObject
Note that this function only supports for Operator
and SuperOperator
QuantumToolbox.proj
— Functionproj(ψ::QuantumObject)
Return the projector for a Ket
or Bra
type of QuantumObject
QuantumToolbox.ptrace
— Functionptrace(QO::QuantumObject, sel)
Partial trace of a quantum state QO
leaving only the dimensions with the indices present in the sel
vector.
Note that this function will always return Operator
. No matter the input QuantumObject
is a Ket
, Bra
, or Operator
.
Examples
Two qubits in the state $\ket{\psi} = \ket{e,g}$:
julia> ψ = kron(fock(2,0), fock(2,1))
Quantum Object: type=Ket dims=[2, 2] size=(4,)
4-element Vector{ComplexF64}:
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
julia> ptrace(ψ, 2)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 Matrix{ComplexF64}:
0.0+0.0im 0.0+0.0im
0.0+0.0im 1.0+0.0im
or in an entangled state $\ket{\psi} = \frac{1}{\sqrt{2}} \left( \ket{e,e} + \ket{g,g} \right)$:
julia> ψ = 1 / √2 * (kron(fock(2,0), fock(2,0)) + kron(fock(2,1), fock(2,1)))
Quantum Object: type=Ket dims=[2, 2] size=(4,)
4-element Vector{ComplexF64}:
0.7071067811865475 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.7071067811865475 + 0.0im
julia> ptrace(ψ, 1)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 Matrix{ComplexF64}:
0.5+0.0im 0.0+0.0im
0.0+0.0im 0.5+0.0im
QuantumToolbox.purity
— Functionpurity(ρ::QuantumObject)
Calculate the purity of a QuantumObject
: $\textrm{Tr}(\rho^2)$
Note that this function only supports for Ket
, Bra
, and Operator
QuantumToolbox.permute
— Functionpermute(A::QuantumObject, order::Union{AbstractVector{Int},Tuple})
Permute the tensor structure of a QuantumObject
A
according to the specified order
list
Note that this method currently works for Ket
, Bra
, and Operator
types of QuantumObject
.
Examples
If order = [2, 1, 3]
, the Hilbert space structure will be re-arranged: $\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \rightarrow \mathcal{H}_2 \otimes \mathcal{H}_1 \otimes \mathcal{H}_3$.
julia> ψ1 = fock(2, 0)
julia> ψ2 = fock(3, 1)
julia> ψ3 = fock(4, 2)
julia> ψ_123 = tensor(ψ1, ψ2, ψ3)
julia> permute(ψ_123, [2, 1, 3]) ≈ tensor(ψ2, ψ1, ψ3)
true
It is highly recommended to use permute(A, order)
with order
as Tuple
or SVector
to keep type stability. See the related Section about type stability for more details.
QuantumToolbox.tidyup
— Functiontidyup(A::QuantumObject, tol::Real=1e-14)
Given a QuantumObject
A
, check the real and imaginary parts of each element separately. Remove the real or imaginary value if its absolute value is less than tol
.
QuantumToolbox.tidyup!
— Functiontidyup!(A::QuantumObject, tol::Real=1e-14)
Given a QuantumObject
A
, check the real and imaginary parts of each element separately. Remove the real or imaginary value if its absolute value is less than tol
.
Note that this function is an in-place version of tidyup
.
QuantumToolbox.get_data
— Functionget_data(A::AbstractQuantumObject)
Returns the data of a AbstractQuantumObject
.
QuantumToolbox.get_coherence
— Functionget_coherence(ψ::QuantumObject)
Get the coherence value $\alpha$ by measuring the expectation value of the destruction operator $\hat{a}$ on a state $\ket{\psi}$ or a density matrix $\hat{\rho}$.
It returns both $\alpha$ and the corresponding state with the coherence removed: $\ket{\delta_\alpha} = \exp ( \alpha^* \hat{a} - \alpha \hat{a}^\dagger ) \ket{\psi}$ for a pure state, and $\hat{\rho_\alpha} = \exp ( \alpha^* \hat{a} - \alpha \hat{a}^\dagger ) \hat{\rho} \exp ( -\bar{\alpha} \hat{a} + \alpha \hat{a}^\dagger )$ for a density matrix. These states correspond to the quantum fluctuations around the coherent state $\ket{\alpha}$ or $|\alpha\rangle\langle\alpha|$.
QuantumToolbox.partial_transpose
— Functionpartial_transpose(ρ::QuantumObject, mask::Vector{Bool})
Return the partial transpose of a density matrix $\rho$, where mask
is an array/vector with length that equals the length of ρ.dims
. The elements in mask
are boolean (true
or false
) which indicates whether or not the corresponding subsystem should be transposed.
Arguments
ρ::QuantumObject
: The density matrix (ρ.type
must beOperatorQuantumObject
).mask::Vector{Bool}
: A boolean vector selects which subsystems should be transposed.
Returns
ρ_pt::QuantumObject
: The density matrix with the selected subsystems transposed.
Qobj eigenvalues and eigenvectors
QuantumToolbox.EigsolveResult
— Typestruct EigsolveResult{T1<:Vector{<:Number}, T2<:AbstractMatrix{<:Number}, ObjType<:Union{Nothing,OperatorQuantumObject,SuperOperatorQuantumObject},N}
values::T1
vectors::T2
type::ObjType
dims::SVector{N,Int}
iter::Int
numops::Int
converged::Bool
end
A struct containing the eigenvalues, the eigenvectors, and some information from the solver
Fields
values::AbstractVector
: the eigenvaluesvectors::AbstractMatrix
: the transformation matrix (eigenvectors)type::Union{Nothing,QuantumObjectType}
: the type ofQuantumObject
, ornothing
means solving eigen equation for general matrixdims::SVector
: thedims
ofQuantumObject
iter::Int
: the number of iteration during the solving processnumops::Int
: number of times the linear map was applied in krylov methodsconverged::Bool
: Whether the result is converged
Examples
One can obtain the eigenvalues and the corresponding QuantumObject
-type eigenvectors by:
julia> result = eigenstates(sigmax());
julia> λ, ψ, T = result;
julia> λ
2-element Vector{ComplexF64}:
-1.0 + 0.0im
1.0 + 0.0im
julia> ψ
2-element Vector{QuantumObject{Vector{ComplexF64}, KetQuantumObject}}:
QuantumObject{Vector{ComplexF64}, KetQuantumObject}(ComplexF64[-0.7071067811865475 + 0.0im, 0.7071067811865475 + 0.0im], KetQuantumObject(), [2])
QuantumObject{Vector{ComplexF64}, KetQuantumObject}(ComplexF64[0.7071067811865475 + 0.0im, 0.7071067811865475 + 0.0im], KetQuantumObject(), [2])
julia> T
2×2 Matrix{ComplexF64}:
-0.707107+0.0im 0.707107+0.0im
0.707107+0.0im 0.707107+0.0im
QuantumToolbox.eigenenergies
— Functioneigenenergies(A::QuantumObject; sparse::Bool=false, kwargs...)
Calculate the eigenenergies
Arguments
A::QuantumObject
: theQuantumObject
to solve eigenvaluessparse::Bool
: iffalse
calleigvals(A::QuantumObject; kwargs...)
, otherwise calleigsolve
. Default tofalse
.kwargs
: Additional keyword arguments passed to the solver
Returns
::Vector{<:Number}
: a list of eigenvalues
QuantumToolbox.eigenstates
— Functioneigenstates(A::QuantumObject; sparse::Bool=false, kwargs...)
Calculate the eigenvalues and corresponding eigenvectors
Arguments
A::QuantumObject
: theQuantumObject
to solve eigenvalues and eigenvectorssparse::Bool
: iffalse
calleigen(A::QuantumObject; kwargs...)
, otherwise calleigsolve
. Default tofalse
.kwargs
: Additional keyword arguments passed to the solver
Returns
::EigsolveResult
: containing the eigenvalues, the eigenvectors, and some information from the solver. see alsoEigsolveResult
LinearAlgebra.eigen
— FunctionLinearAlgebra.eigen(A::QuantumObject; kwargs...)
Calculates the eigenvalues and eigenvectors of the QuantumObject
A
using the Julia LinearAlgebra package.
julia> a = destroy(5);
julia> H = a + a'
Quantum Object: type=Operator dims=[5] size=(5, 5) ishermitian=true
5×5 SparseMatrixCSC{ComplexF64, Int64} with 8 stored entries:
⋅ 1.0+0.0im ⋅ ⋅ ⋅
1.0+0.0im ⋅ 1.41421+0.0im ⋅ ⋅
⋅ 1.41421+0.0im ⋅ 1.73205+0.0im ⋅
⋅ ⋅ 1.73205+0.0im ⋅ 2.0+0.0im
⋅ ⋅ ⋅ 2.0+0.0im ⋅
julia> E, ψ, U = eigen(H)
EigsolveResult: type=Operator dims=[5]
values:
5-element Vector{Float64}:
-2.8569700138728
-1.3556261799742608
1.3322676295501878e-15
1.3556261799742677
2.8569700138728056
vectors:
5×5 Matrix{ComplexF64}:
0.106101+0.0im -0.471249-0.0im … 0.471249-0.0im 0.106101-0.0im
-0.303127-0.0im 0.638838+0.0im 0.638838+0.0im 0.303127-0.0im
0.537348+0.0im -0.279149-0.0im 0.279149-0.0im 0.537348-0.0im
-0.638838-0.0im -0.303127-0.0im -0.303127-0.0im 0.638838+0.0im
0.447214+0.0im 0.447214+0.0im -0.447214-0.0im 0.447214-0.0im
julia> expect(H, ψ[1]) ≈ E[1]
true
LinearAlgebra.eigvals
— FunctionLinearAlgebra.eigvals(A::QuantumObject; kwargs...)
Same as eigen(A::QuantumObject; kwargs...)
but for only the eigenvalues.
QuantumToolbox.eigsolve
— Functioneigsolve(A::QuantumObject;
v0::Union{Nothing,AbstractVector}=nothing,
sigma::Union{Nothing, Real}=nothing,
k::Int = 1,
krylovdim::Int = max(20, 2*k+1),
tol::Real = 1e-8,
maxiter::Int = 200,
solver::Union{Nothing, SciMLLinearSolveAlgorithm} = nothing,
kwargs...)
Solve for the eigenvalues and eigenvectors of a matrix A
using the Arnoldi method.
Notes
- For more details about
solver
and extrakwargs
, please refer toLinearSolve.jl
Returns
EigsolveResult
: A struct containing the eigenvalues, the eigenvectors, and some information about the eigsolver
QuantumToolbox.eigsolve_al
— Functioneigsolve_al(
H::Union{AbstractQuantumObject{DT1,HOpType},Tuple},
T::Real,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
alg::OrdinaryDiffEqAlgorithm = Tsit5(),
params::NamedTuple = NamedTuple(),
ρ0::AbstractMatrix = rand_dm(prod(H.dims)).data,
k::Int = 1,
krylovdim::Int = min(10, size(H, 1)),
maxiter::Int = 200,
eigstol::Real = 1e-6,
kwargs...,
)
Solve the eigenvalue problem for a Liouvillian superoperator L
using the Arnoldi-Lindblad method.
Arguments
H
: The Hamiltonian (or directly the Liouvillian) of the system. It can be aQuantumObject
, aQuantumObjectEvolution
, or a tuple of the form supported bymesolve
.T
: The time at which to evaluate the time evolution.c_ops
: A vector of collapse operators. Default isnothing
meaning the system is closed.alg
: The differential equation solver algorithm. Default isTsit5()
.params
: ANamedTuple
containing the parameters of the system.ρ0
: The initial density matrix. If not specified, a random density matrix is used.k
: The number of eigenvalues to compute.krylovdim
: The dimension of the Krylov subspace.maxiter
: The maximum number of iterations for the eigsolver.eigstol
: The tolerance for the eigsolver.kwargs
: Additional keyword arguments passed to the differential equation solver.
Notes
- For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
EigsolveResult
: A struct containing the eigenvalues, the eigenvectors, and some information about the eigsolver
References
- [1] Minganti, F., & Huybrechts, D. (2022). Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of time-independent and Floquet open quantum systems. Quantum, 6, 649.
Qobj manipulation
QuantumToolbox.ket2dm
— Functionket2dm(ψ::QuantumObject)
Transform the ket state $\ket{\psi}$ into a pure density matrix $\hat{\rho} = \dyad{\psi}$.
QuantumToolbox.expect
— Functionexpect(O::AbstractQuantumObject, ψ::Union{QuantumObject,Vector{QuantumObject}})
Expectation value of the Operator
O
with the state ψ
. The state can be a Ket
, Bra
or Operator
.
If ψ
is a Ket
or Bra
, the function calculates $\langle\psi|\hat{O}|\psi\rangle$.
If ψ
is a density matrix (Operator
), the function calculates $\textrm{Tr} \left[ \hat{O} \hat{\psi} \right]$
The function returns a real number if O
is of Hermitian
type or Symmetric
type, and returns a complex number otherwise. You can make an operator O
hermitian by using Hermitian(O)
.
Note that ψ
can also be given as a list of QuantumObject
, it returns a list of expectation values.
Examples
julia> ψ = 1 / √2 * (fock(10,2) + fock(10,4));
julia> a = destroy(10);
julia> expect(a' * a, ψ) |> round
3.0 + 0.0im
julia> expect(Hermitian(a' * a), ψ) |> round
3.0
QuantumToolbox.variance
— Functionvariance(O::QuantumObject, ψ::Union{QuantumObject,Vector{QuantumObject}})
Variance of the Operator
O
: $\langle\hat{O}^2\rangle - \langle\hat{O}\rangle^2$,
where $\langle\hat{O}\rangle$ is the expectation value of O
with the state ψ
(see also expect
), and the state ψ
can be a Ket
, Bra
or Operator
.
The function returns a real number if O
is hermitian, and returns a complex number otherwise.
Note that ψ
can also be given as a list of QuantumObject
, it returns a list of expectation values.
Base.kron
— Functionkron(A::AbstractQuantumObject, B::AbstractQuantumObject, ...)
Returns the Kronecker product $\hat{A} \otimes \hat{B} \otimes \cdots$.
Examples
julia> a = destroy(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠈⠢⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠈⠢⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢
julia> kron(a, a)
Quantum Object: type=Operator dims=[20, 20] size=(400, 400) ishermitian=false
400×400 SparseMatrixCSC{ComplexF64, Int64} with 361 stored entries:
⠀⠀⠘⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠦
QuantumToolbox.sparse_to_dense
— Functionsparse_to_dense(A::QuantumObject)
Converts a sparse QuantumObject to a dense QuantumObject.
QuantumToolbox.dense_to_sparse
— Functiondense_to_sparse(A::QuantumObject)
Converts a dense QuantumObject to a sparse QuantumObject.
QuantumToolbox.vec2mat
— Functionvec2mat(A::AbstractVector)
Converts a vector to a matrix.
vec2mat(A::QuantumObject)
Convert a quantum object from vector (OperatorKetQuantumObject
-type) to matrix (OperatorQuantumObject
-type)
QuantumToolbox.mat2vec
— Functionmat2vec(A::QuantumObject)
Convert a quantum object from matrix (OperatorQuantumObject
-type) to vector (OperatorKetQuantumObject
-type)
mat2vec(A::AbstractMatrix)
Converts a matrix to a vector.
Generate states and operators
QuantumToolbox.zero_ket
— Functionzero_ket(dimensions)
Returns a zero Ket
vector with given argument dimensions
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int}, Tuple}
: list of dimensions representing the each number of basis in the subsystems.
It is highly recommended to use zero_ket(dimensions)
with dimensions
as Tuple
or SVector
to keep type stability. See the related Section about type stability for more details.
QuantumToolbox.fock
— Functionfock(N::Int, j::Int=0; dims::Union{Int,AbstractVector{Int},Tuple}=N, sparse::Union{Bool,Val}=Val(false))
Generates a fock state $\ket{\psi}$ of dimension N
.
It is also possible to specify the list of dimensions dims
if different subsystems are present.
If you want to keep type stability, it is recommended to use fock(N, j, dims=dims, sparse=Val(sparse))
instead of fock(N, j, dims=dims, sparse=sparse)
. Consider also to use dims
as a Tuple
or SVector
instead of Vector
. See this link and the related Section about type stability for more details.
QuantumToolbox.basis
— Functionbasis(N::Int, j::Int = 0; dims::Union{Int,AbstractVector{Int},Tuple}=N)
Generates a fock state like fock
.
It is also possible to specify the list of dimensions dims
if different subsystems are present.
If you want to keep type stability, it is recommended to use basis(N, j, dims=dims)
with dims
as a Tuple
or SVector
instead of Vector
. See this link and the related Section about type stability for more details.
QuantumToolbox.coherent
— Functioncoherent(N::Int, α::Number)
Generates a coherent state $|\alpha\rangle$, which is defined as an eigenvector of the bosonic annihilation operator $\hat{a} |\alpha\rangle = \alpha |\alpha\rangle$.
This state is constructed via the displacement operator displace
and zero-fock state fock
: $|\alpha\rangle = \hat{D}(\alpha) |0\rangle$
QuantumToolbox.rand_ket
— Functionrand_ket(dimensions)
Generate a random normalized Ket
vector with given argument dimensions
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int},Tuple}
: list of dimensions representing the each number of basis in the subsystems.
If you want to keep type stability, it is recommended to use rand_ket(dimensions)
with dimensions
as Tuple
or SVector
to keep type stability. See the related Section about type stability for more details.
QuantumToolbox.fock_dm
— Functionfock_dm(N::Int, j::Int=0; dims::Union{Int,AbstractVector{Int},Tuple}=N, sparse::Union{Bool,Val}=Val(false))
Density matrix representation of a Fock state.
Constructed via outer product of fock
.
If you want to keep type stability, it is recommended to use fock_dm(N, j, dims=dims, sparse=Val(sparse))
instead of fock_dm(N, j, dims=dims, sparse=sparse)
. Consider also to use dims
as a Tuple
or SVector
instead of Vector
. See this link and the related Section about type stability for more details.
QuantumToolbox.coherent_dm
— Functioncoherent_dm(N::Int, α::Number)
Density matrix representation of a coherent state.
Constructed via outer product of coherent
.
QuantumToolbox.thermal_dm
— Functionthermal_dm(N::Int, n::Real; sparse::Union{Bool,Val}=Val(false))
Density matrix for a thermal state (generating thermal state probabilities) with the following arguments:
N::Int
: Number of basis states in the Hilbert spacen::Real
: Expectation value for number of particles in the thermal state.sparse::Union{Bool,Val}
: Iftrue
, return a sparse matrix representation.
If you want to keep type stability, it is recommended to use thermal_dm(N, n, sparse=Val(sparse))
instead of thermal_dm(N, n, sparse=sparse)
. See this link and the related Section about type stability for more details.
QuantumToolbox.maximally_mixed_dm
— Functionmaximally_mixed_dm(dimensions)
Returns the maximally mixed density matrix with given argument dimensions
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int},Tuple}
: list of dimensions representing the each number of basis in the subsystems.
If you want to keep type stability, it is recommended to use maximally_mixed_dm(dimensions)
with dimensions
as Tuple
or SVector
to keep type stability. See the related Section about type stability for more details.
QuantumToolbox.rand_dm
— Functionrand_dm(dimensions; rank::Int=prod(dimensions))
Generate a random density matrix from Ginibre ensemble with given argument dimensions
and rank
, ensuring that it is positive semi-definite and trace equals to 1
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int},Tuple}
: list of dimensions representing the each number of basis in the subsystems.
The default keyword argument rank = prod(dimensions)
(full rank).
If you want to keep type stability, it is recommended to use rand_dm(dimensions; rank=rank)
with dimensions
as Tuple
or SVector
instead of Vector
. See this link and the related Section about type stability for more details.
References
QuantumToolbox.spin_state
— Functionspin_state(j::Real, m::Real)
Generate the spin state: $|j, m\rangle$
The eigenstate of the Spin-j
$\hat{S}_z$ operator with eigenvalue m
, where where j
is the spin quantum number and can be a non-negative integer or half-integer
See also jmat
.
QuantumToolbox.spin_coherent
— Functionspin_coherent(j::Real, θ::Real, ϕ::Real)
Generate the coherent spin state (rotation of the $|j, j\rangle$ state), namely
\[|\theta, \phi \rangle = \hat{R}(\theta, \phi) |j, j\rangle\]
where the rotation operator is defined as
\[\hat{R}(\theta, \phi) = \exp \left( \frac{\theta}{2} (\hat{S}_- e^{i\phi} - \hat{S}_+ e^{-i\phi}) \right)\]
and $\hat{S}_\pm$ are plus and minus Spin-j
operators, respectively.
Arguments
j::Real
: The spin quantum number and can be a non-negative integer or half-integerθ::Real
: rotation angle from z-axisϕ::Real
: rotation angle from x-axis
See also jmat
and spin_state
.
Reference
QuantumToolbox.bell_state
— Functionbell_state(x::Union{Int}, z::Union{Int})
Return the Bell state depending on the arguments (x, z)
:
(0, 0)
: $| \Phi^+ \rangle = ( |00\rangle + |11\rangle ) / \sqrt{2}$(0, 1)
: $| \Phi^- \rangle = ( |00\rangle - |11\rangle ) / \sqrt{2}$(1, 0)
: $| \Psi^+ \rangle = ( |01\rangle + |10\rangle ) / \sqrt{2}$(1, 1)
: $| \Psi^- \rangle = ( |01\rangle - |10\rangle ) / \sqrt{2}$
Here, x = 1
(z = 1
) means applying Pauli-$X$ ( Pauli-$Z$) unitary transformation on $| \Phi^+ \rangle$.
Example
julia> bell_state(0, 0)
Quantum Object: type=Ket dims=[2, 2] size=(4,)
4-element Vector{ComplexF64}:
0.7071067811865475 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.7071067811865475 + 0.0im
julia> bell_state(Val(1), Val(0))
Quantum Object: type=Ket dims=[2, 2] size=(4,)
4-element Vector{ComplexF64}:
0.0 + 0.0im
0.7071067811865475 + 0.0im
0.7071067811865475 + 0.0im
0.0 + 0.0im
If you want to keep type stability, it is recommended to use bell_state(Val(x), Val(z))
instead of bell_state(x, z)
. See this link and the related Section for more details.
QuantumToolbox.singlet_state
— Functionsinglet_state()
Return the two particle singlet state: $\frac{1}{\sqrt{2}} ( |01\rangle - |10\rangle )$
QuantumToolbox.triplet_states
— Functiontriplet_states()
Return a list of the two particle triplet states:
- $|11\rangle$
- $( |01\rangle + |10\rangle ) / \sqrt{2}$
- $|00\rangle$
QuantumToolbox.w_state
— Functionw_state(n::Union{Int,Val})
Returns the n
-qubit W-state:
\[\frac{1}{\sqrt{n}} \left( |100...0\rangle + |010...0\rangle + \cdots + |00...01\rangle \right)\]
If you want to keep type stability, it is recommended to use w_state(Val(n))
instead of w_state(n)
. See this link and the related Section for more details.
QuantumToolbox.ghz_state
— Functionghz_state(n::Union{Int,Val}; d::Int=2)
Returns the generalized n
-qudit Greenberger–Horne–Zeilinger (GHZ) state:
\[\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} | i \rangle \otimes \cdots \otimes | i \rangle\]
Here, d
specifies the dimension of each qudit. Default to d=2
(qubit).
If you want to keep type stability, it is recommended to use ghz_state(Val(n))
instead of ghz_state(n)
. See this link and the related Section for more details.
QuantumToolbox.rand_unitary
— Functionrand_unitary(dimensions, distribution=Val(:haar))
Returns a random unitary QuantumObject
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int},Tuple}
: list of dimensions representing the each number of basis in the subsystems.
The distribution
specifies which of the method used to obtain the unitary matrix:
:haar
: Haar random unitary matrix using the algorithm from reference 1:exp
: Uses $\exp(-i\hat{H})$, where $\hat{H}$ is a randomly generated Hermitian operator.
References
If you want to keep type stability, it is recommended to use rand_unitary(dimensions, Val(distribution))
instead of rand_unitary(dimensions, distribution)
. Also, put dimensions
as Tuple
or SVector
. See this link and the related Section about type stability for more details.
QuantumToolbox.sigmap
— Functionsigmap()
Pauli ladder operator $\hat{\sigma}_+ = (\hat{\sigma}_x + i \hat{\sigma}_y) / 2$.
See also jmat
.
QuantumToolbox.sigmam
— Functionsigmam()
Pauli ladder operator $\hat{\sigma}_- = (\hat{\sigma}_x - i \hat{\sigma}_y) / 2$.
See also jmat
.
QuantumToolbox.sigmax
— FunctionQuantumToolbox.sigmay
— Functionsigmay()
Pauli operator $\hat{\sigma}_y = i \left( \hat{\sigma}_- - \hat{\sigma}_+ \right)$.
See also jmat
.
QuantumToolbox.sigmaz
— FunctionQuantumToolbox.jmat
— Functionjmat(j::Real, which::Union{Symbol,Val})
Generate higher-order Spin-j
operators, where j
is the spin quantum number and can be a non-negative integer or half-integer
The parameter which
specifies which of the following operator to return.
:x
: $\hat{S}_x$:y
: $\hat{S}_y$:z
: $\hat{S}_z$:+
: $\hat{S}_+$:-
: $\hat{S}_-$
Note that if the parameter which
is not specified, returns a set of Spin-j
operators: $(\hat{S}_x, \hat{S}_y, \hat{S}_z)$
Examples
julia> jmat(0.5, :x)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 SparseMatrixCSC{ComplexF64, Int64} with 2 stored entries:
⋅ 0.5+0.0im
0.5+0.0im ⋅
julia> jmat(0.5, :-)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=false
2×2 SparseMatrixCSC{ComplexF64, Int64} with 1 stored entry:
⋅ ⋅
1.0+0.0im ⋅
julia> jmat(1.5, Val(:z))
Quantum Object: type=Operator dims=[4] size=(4, 4) ishermitian=true
4×4 SparseMatrixCSC{ComplexF64, Int64} with 4 stored entries:
1.5+0.0im ⋅ ⋅ ⋅
⋅ 0.5+0.0im ⋅ ⋅
⋅ ⋅ -0.5+0.0im ⋅
⋅ ⋅ ⋅ -1.5+0.0im
If you want to keep type stability, it is recommended to use jmat(j, Val(which))
instead of jmat(j, which)
. See this link and the related Section about type stability for more details.
QuantumToolbox.spin_Jx
— Functionspin_Jx(j::Real)
$\hat{S}_x$ operator for Spin-j
, where j
is the spin quantum number and can be a non-negative integer or half-integer.
See also jmat
.
QuantumToolbox.spin_Jy
— Functionspin_Jy(j::Real)
$\hat{S}_y$ operator for Spin-j
, where j
is the spin quantum number and can be a non-negative integer or half-integer.
See also jmat
.
QuantumToolbox.spin_Jz
— Functionspin_Jz(j::Real)
$\hat{S}_z$ operator for Spin-j
, where j
is the spin quantum number and can be a non-negative integer or half-integer.
See also jmat
.
QuantumToolbox.spin_Jm
— Functionspin_Jm(j::Real)
$\hat{S}_-$ operator for Spin-j
, where j
is the spin quantum number and can be a non-negative integer or half-integer.
See also jmat
.
QuantumToolbox.spin_Jp
— Functionspin_Jp(j::Real)
$\hat{S}_+$ operator for Spin-j
, where j
is the spin quantum number and can be a non-negative integer or half-integer.
See also jmat
.
QuantumToolbox.spin_J_set
— Functionspin_J_set(j::Real)
A set of Spin-j
operators $(\hat{S}_x, \hat{S}_y, \hat{S}_z)$, where j
is the spin quantum number and can be a non-negative integer or half-integer.
Note that this functions is same as jmat(j)
. See also jmat
.
QuantumToolbox.destroy
— Functiondestroy(N::Int)
Bosonic annihilation operator with Hilbert space cutoff N
.
This operator acts on a fock state as $\hat{a} \ket{n} = \sqrt{n} \ket{n-1}$.
Examples
julia> a = destroy(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⎡⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠈⠢⡀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠈⠢⡀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⎦
julia> fock(20, 3)' * a * fock(20, 4)
2.0 + 0.0im
QuantumToolbox.create
— Functioncreate(N::Int)
Bosonic creation operator with Hilbert space cutoff N
.
This operator acts on a fock state as $\hat{a}^\dagger \ket{n} = \sqrt{n+1} \ket{n+1}$.
Examples
julia> a_d = create(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⎡⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠈⠢⡀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠈⠢⡀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠈⠢⡀⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠈⠢⡀⎦
julia> fock(20, 4)' * a_d * fock(20, 3)
2.0 + 0.0im
QuantumToolbox.displace
— Functiondisplace(N::Int, α::Number)
Generate a displacement operator:
\[\hat{D}(\alpha)=\exp\left( \alpha \hat{a}^\dagger - \alpha^* \hat{a} \right),\]
where $\hat{a}$ is the bosonic annihilation operator, and $\alpha$ is the amount of displacement in optical phase space.
QuantumToolbox.squeeze
— Functionsqueeze(N::Int, z::Number)
Generate a single-mode squeeze operator:
\[\hat{S}(z)=\exp\left( \frac{1}{2} (z^* \hat{a}^2 - z(\hat{a}^\dagger)^2) \right),\]
where $\hat{a}$ is the bosonic annihilation operator.
QuantumToolbox.num
— Functionnum(N::Int)
Bosonic number operator with Hilbert space cutoff N
.
This operator is defined as $\hat{N}=\hat{a}^\dagger \hat{a}$, where $\hat{a}$ is the bosonic annihilation operator.
QuantumToolbox.position
— Functionposition(N::Int)
Position operator with Hilbert space cutoff N
.
This operator is defined as $\hat{x}=\frac{1}{\sqrt{2}} (\hat{a}^\dagger + \hat{a})$, where $\hat{a}$ is the bosonic annihilation operator.
QuantumToolbox.momentum
— Functionmomentum(N::Int)
Momentum operator with Hilbert space cutoff N
.
This operator is defined as $\hat{p}= \frac{i}{\sqrt{2}} (\hat{a}^\dagger - \hat{a})$, where $\hat{a}$ is the bosonic annihilation operator.
QuantumToolbox.phase
— Functionphase(N::Int, ϕ0::Real=0)
Single-mode Pegg-Barnett phase operator with Hilbert space cutoff $N$ and the reference phase $\phi_0$.
This operator is defined as
\[\hat{\phi} = \sum_{m=0}^{N-1} \phi_m |\phi_m\rangle \langle\phi_m|,\]
where
\[\phi_m = \phi_0 + \frac{2m\pi}{N},\]
and
\[|\phi_m\rangle = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \exp(i n \phi_m) |n\rangle.\]
Reference
QuantumToolbox.fdestroy
— Functionfdestroy(N::Union{Int,Val}, j::Int)
Construct a fermionic destruction operator acting on the j
-th site, where the fock space has totally N
-sites:
Here, we use the Jordan-Wigner transformation, namely
\[\hat{d}_j = \hat{\sigma}_z^{\otimes j-1} \otimes \hat{\sigma}_{+} \otimes \hat{\mathbb{1}}^{\otimes N-j}\]
The site index j
should satisfy: 1 ≤ j ≤ N
.
Note that we put $\hat{\sigma}_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ here because we consider $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to be ground (vacant) state, and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to be excited (occupied) state.
If you want to keep type stability, it is recommended to use fdestroy(Val(N), j)
instead of fdestroy(N, j)
. See this link and the related Section about type stability for more details.
QuantumToolbox.fcreate
— Functionfcreate(N::Union{Int,Val}, j::Int)
Construct a fermionic creation operator acting on the j
-th site, where the fock space has totally N
-sites:
Here, we use the Jordan-Wigner transformation, namely
\[\hat{d}^\dagger_j = \hat{\sigma}_z^{\otimes j-1} \otimes \hat{\sigma}_{-} \otimes \hat{\mathbb{1}}^{\otimes N-j}\]
The site index j
should satisfy: 1 ≤ j ≤ N
.
Note that we put $\hat{\sigma}_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ here because we consider $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to be ground (vacant) state, and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to be excited (occupied) state.
If you want to keep type stability, it is recommended to use fcreate(Val(N), j)
instead of fcreate(N, j)
. See this link and the related Section about type stability for more details.
QuantumToolbox.tunneling
— Functiontunneling(N::Int, m::Int=1; sparse::Union{Bool,Val{<:Bool}}=Val(false))
Generate a tunneling operator defined as:
\[\sum_{n=0}^{N-m} | n \rangle\langle n+m | + | n+m \rangle\langle n |,\]
where $N$ is the number of basis states in the Hilbert space, and $m$ is the number of excitations in tunneling event.
If sparse=true
, the operator is returned as a sparse matrix, otherwise a dense matrix is returned.
If you want to keep type stability, it is recommended to use tunneling(N, m, Val(sparse))
instead of tunneling(N, m, sparse)
. See this link and the related Section about type stability for more details.
QuantumToolbox.qft
— Functionqft(dimensions)
Generates a discrete Fourier transform matrix $\hat{F}_N$ for Quantum Fourier Transform (QFT) with given argument dimensions
.
The dimensions
can be either the following types:
dimensions::Int
: Number of basis states in the Hilbert space.dimensions::Union{AbstractVector{Int},Tuple}
: list of dimensions representing the each number of basis in the subsystems.
$N$ represents the total dimension, and therefore the matrix is defined as
\[\hat{F}_N = \frac{1}{\sqrt{N}}\begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1}\\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(N-1)}\\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix},\]
where $\omega = \exp(\frac{2 \pi i}{N})$.
It is highly recommended to use qft(dimensions)
with dimensions
as Tuple
or SVector
to keep type stability. See the related Section about type stability for more details.
QuantumToolbox.eye
— Functioneye(N::Int; type=Operator, dims=nothing)
Identity operator $\hat{\mathbb{1}}$ with size N
.
It is also possible to specify the list of Hilbert dimensions dims
if different subsystems are present.
Note that type
can only be either Operator
or SuperOperator
QuantumToolbox.projection
— Functionprojection(N::Int, i::Int, j::Int)
Generates the projection operator $\hat{O} = \dyad{i}{j}$ with Hilbert space dimension N
.
QuantumToolbox.commutator
— Functioncommutator(A::QuantumObject, B::QuantumObject; anti::Bool=false)
Return the commutator (or anti
-commutator) of the two QuantumObject
:
- commutator (
anti=false
): $\hat{A}\hat{B}-\hat{B}\hat{A}$ - anticommutator (
anti=true
): $\hat{A}\hat{B}+\hat{B}\hat{A}$
Note that A
and B
must be Operator
QuantumToolbox.spre
— Functionspre(A::AbstractQuantumObject, Id_cache=I(size(A,1)))
Returns the SuperOperator
form of A
acting on the left of the density matrix operator: $\mathcal{O} \left(\hat{A}\right) \left[ \hat{\rho} \right] = \hat{A} \hat{\rho}$.
Since the density matrix is vectorized in OperatorKet
form: $|\hat{\rho}\rangle\rangle$, this SuperOperator
is always a matrix $\hat{\mathbb{1}} \otimes \hat{A}$, namely
\[\mathcal{O} \left(\hat{A}\right) \left[ \hat{\rho} \right] = \hat{\mathbb{1}} \otimes \hat{A} ~ |\hat{\rho}\rangle\rangle\]
(see the section in documentation: Superoperators and Vectorized Operators for more details)
The optional argument Id_cache
can be used to pass a precomputed identity matrix. This can be useful when the same function is applied multiple times with a known Hilbert space dimension.
QuantumToolbox.spost
— Functionspost(B::AbstractQuantumObject, Id_cache=I(size(B,1)))
Returns the SuperOperator
form of B
acting on the right of the density matrix operator: $\mathcal{O} \left(\hat{B}\right) \left[ \hat{\rho} \right] = \hat{\rho} \hat{B}$.
Since the density matrix is vectorized in OperatorKet
form: $|\hat{\rho}\rangle\rangle$, this SuperOperator
is always a matrix $\hat{B}^T \otimes \hat{\mathbb{1}}$, namely
\[\mathcal{O} \left(\hat{B}\right) \left[ \hat{\rho} \right] = \hat{B}^T \otimes \hat{\mathbb{1}} ~ |\hat{\rho}\rangle\rangle\]
(see the section in documentation: Superoperators and Vectorized Operators for more details)
The optional argument Id_cache
can be used to pass a precomputed identity matrix. This can be useful when the same function is applied multiple times with a known Hilbert space dimension.
QuantumToolbox.sprepost
— Functionsprepost(A::QuantumObject, B::QuantumObject)
Returns the SuperOperator
form of A
and B
acting on the left and right of the density matrix operator, respectively: $\mathcal{O} \left( \hat{A}, \hat{B} \right) \left[ \hat{\rho} \right] = \hat{A} \hat{\rho} \hat{B}$.
Since the density matrix is vectorized in OperatorKet
form: $|\hat{\rho}\rangle\rangle$, this SuperOperator
is always a matrix $\hat{B}^T \otimes \hat{A}$, namely
\[\mathcal{O} \left(\hat{A}, \hat{B}\right) \left[ \hat{\rho} \right] = \hat{B}^T \otimes \hat{A} ~ |\hat{\rho}\rangle\rangle = \textrm{spre}(\hat{A}) * \textrm{spost}(\hat{B}) ~ |\hat{\rho}\rangle\rangle\]
(see the section in documentation: Superoperators and Vectorized Operators for more details)
QuantumToolbox.lindblad_dissipator
— Functionlindblad_dissipator(O::QuantumObject, Id_cache=I(size(O,1))
Returns the Lindblad SuperOperator
defined as
\[\mathcal{D} \left( \hat{O} \right) \left[ \hat{\rho} \right] = \frac{1}{2} \left( 2 \hat{O} \hat{\rho} \hat{O}^\dagger - \hat{O}^\dagger \hat{O} \hat{\rho} - \hat{\rho} \hat{O}^\dagger \hat{O} \right)\]
The optional argument Id_cache
can be used to pass a precomputed identity matrix. This can be useful when the same function is applied multiple times with a known Hilbert space dimension.
Synonyms of functions for Qobj
QuantumToolbox.Qobj
— FunctionQobj(A::AbstractArray; type::QuantumObjectType, dims::Vector{Int})
Generate QuantumObject
Note that this functions is same as QuantumObject(A; type=type, dims=dims)
.
QuantumToolbox.QobjEvo
— FunctionQobjEvo(op_func_list::Union{Tuple,AbstractQuantumObject}, α::Union{Nothing,Number}=nothing; type::Union{Nothing, QuantumObjectType}=nothing, f::Function=identity)
Generate QuantumObjectEvolution
.
Note that this functions is same as QuantumObjectEvolution(op_func_list)
. If α
is provided, all the operators in op_func_list
will be pre-multiplied by α
. The type
parameter is used to specify the type of the QuantumObject
, either Operator
or SuperOperator
. The f
parameter is used to pre-apply a function to the operators before converting them to SciML operators.
Arguments
op_func_list::Union{Tuple,AbstractQuantumObject}
: A tuple of tuples or operators.α::Union{Nothing,Number}=nothing
: A scalar to pre-multiply the operators.f::Function=identity
: A function to pre-apply to the operators.
Please note that, unlike QuTiP, this function doesn't support op_func_list
as Vector
type. This is related to the type-stability issue. See the Section The Importance of Type-Stability for more details.
Examples
This operator can be initialized in the same way as the QuTiP QobjEvo
object. For example
julia> a = tensor(destroy(10), qeye(2))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 18 stored entries:
⎡⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⎦
julia> σm = tensor(qeye(10), sigmam())
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 10 stored entries:
⎡⠂⡀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡀⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡀⎦
julia> coef1(p, t) = exp(-1im * t)
coef1 (generic function with 1 method)
julia> coef2(p, t) = sin(t)
coef2 (generic function with 1 method)
julia> op1 = QobjEvo(((a, coef1), (σm, coef2)))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=true
(ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20) + ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20))
We can also concretize the operator at a specific time t
julia> op1(0.1)
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 28 stored entries:
⎡⠂⡑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡑⎦
It also supports parameter-dependent time evolution
julia> coef1(p, t) = exp(-1im * p.ω1 * t)
coef1 (generic function with 1 method)
julia> coef2(p, t) = sin(p.ω2 * t)
coef2 (generic function with 1 method)
julia> op1 = QobjEvo(((a, coef1), (σm, coef2)))
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=true
(ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20) + ScalarOperator(0.0 + 0.0im) * MatrixOperator(20 × 20))
julia> p = (ω1 = 1.0, ω2 = 0.5)
(ω1 = 1.0, ω2 = 0.5)
julia> op1(p, 0.1)
Quantum Object: type=Operator dims=[10, 2] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 28 stored entries:
⎡⠂⡑⢄⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠂⡑⢄⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠂⡑⢄⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠂⡑⢄⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠂⡑⎦
QobjEvo(data::AbstractSciMLOperator; type::QuantumObjectType = Operator, dims = nothing)
Synonym of QuantumObjectEvolution
object from a SciMLOperator
. See the documentation for QuantumObjectEvolution
for more information.
QuantumToolbox.shape
— Functionshape(A::AbstractQuantumObject)
Returns a tuple containing each dimensions of the array in the AbstractQuantumObject
.
Note that this function is same as size(A)
.
QuantumToolbox.isherm
— Functionisherm(A::AbstractQuantumObject)
Test whether the AbstractQuantumObject
is Hermitian.
Note that this functions is same as ishermitian(A)
.
QuantumToolbox.trans
— Functiontrans(A::AbstractQuantumObject)
Lazy matrix transpose of the AbstractQuantumObject
.
Note that this function is same as transpose(A)
.
QuantumToolbox.dag
— Functiondag(A::AbstractQuantumObject)
Lazy adjoint (conjugate transposition) of the AbstractQuantumObject
Note that this function is same as adjoint(A)
.
QuantumToolbox.matrix_element
— Functionmatrix_element(i::QuantumObject, A::QuantumObject j::QuantumObject)
Compute the generalized dot product dot(i, A*j)
between three QuantumObject
: $\langle i | \hat{A} | j \rangle$
Note that this function is same as dot(i, A, j)
Supports the following inputs:
A
is in the type ofOperator
, withi
andj
are bothKet
.A
is in the type ofSuperOperator
, withi
andj
are bothOperatorKet
QuantumToolbox.unit
— Functionunit(A::QuantumObject, p::Real)
Return normalized QuantumObject
so that its p
-norm equals to unity, i.e. norm(A, p) == 1
.
Support for the following types of QuantumObject
:
Note that this function is same as normalize(A, p)
Also, see norm
about its definition for different types of QuantumObject
.
QuantumToolbox.sqrtm
— Functionsqrtm(A::QuantumObject)
Matrix square root of Operator
type of QuantumObject
Note that for other types of QuantumObject
use sprt(A)
instead.
QuantumToolbox.logm
— Functionlogm(A::QuantumObject)
Matrix logarithm of QuantumObject
Note that this function is same as log(A)
and only supports for Operator
and SuperOperator
.
QuantumToolbox.expm
— Functionexpm(A::QuantumObject)
Matrix exponential of QuantumObject
Note that this function is same as exp(A)
and only supports for Operator
and SuperOperator
.
QuantumToolbox.sinm
— Functionsinm(A::QuantumObject)
Matrix sine of QuantumObject
, defined as
$\sin \left( \hat{A} \right) = \frac{e^{i \hat{A}} - e^{-i \hat{A}}}{2 i}$
Note that this function is same as sin(A)
and only supports for Operator
and SuperOperator
.
QuantumToolbox.cosm
— Functioncosm(A::QuantumObject)
Matrix cosine of QuantumObject
, defined as
$\cos \left( \hat{A} \right) = \frac{e^{i \hat{A}} + e^{-i \hat{A}}}{2}$
Note that this function is same as cos(A)
and only supports for Operator
and SuperOperator
.
QuantumToolbox.tensor
— Functiontensor(A::QuantumObject, B::QuantumObject, ...)
Returns the Kronecker product $\hat{A} \otimes \hat{B} \otimes \cdots$.
Note that this function is same as kron(A, B, ...)
.
Examples
julia> x = sigmax()
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 SparseMatrixCSC{ComplexF64, Int64} with 2 stored entries:
⋅ 1.0+0.0im
1.0+0.0im ⋅
julia> x_list = fill(x, 3);
julia> tensor(x_list...)
Quantum Object: type=Operator dims=[2, 2, 2] size=(8, 8) ishermitian=true
8×8 SparseMatrixCSC{ComplexF64, Int64} with 8 stored entries:
⋅ ⋅ ⋅ … ⋅ ⋅ 1.0+0.0im
⋅ ⋅ ⋅ ⋅ 1.0+0.0im ⋅
⋅ ⋅ ⋅ 1.0+0.0im ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1.0+0.0im … ⋅ ⋅ ⋅
⋅ 1.0+0.0im ⋅ ⋅ ⋅ ⋅
1.0+0.0im ⋅ ⋅ ⋅ ⋅ ⋅
QuantumToolbox.:⊗
— Function⊗(A::QuantumObject, B::QuantumObject)
Returns the Kronecker product $\hat{A} \otimes \hat{B}$.
Note that this function is same as kron(A, B)
.
Examples
julia> a = destroy(20)
Quantum Object: type=Operator dims=[20] size=(20, 20) ishermitian=false
20×20 SparseMatrixCSC{ComplexF64, Int64} with 19 stored entries:
⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠈⠢⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠈⠢⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢
julia> a ⊗ a
Quantum Object: type=Operator dims=[20, 20] size=(400, 400) ishermitian=false
400×400 SparseMatrixCSC{ComplexF64, Int64} with 361 stored entries:
⠀⠀⠘⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠦
QuantumToolbox.qeye
— Functionqeye(N::Int; type=Operator, dims=nothing)
Identity operator $\hat{\mathbb{1}}$ with size N
.
It is also possible to specify the list of Hilbert dimensions dims
if different subsystems are present.
Note that this function is same as eye(N, type=type, dims=dims)
, and type
can only be either Operator
or SuperOperator
.
Time evolution
QuantumToolbox.TimeEvolutionSol
— Typestruct TimeEvolutionSol
A structure storing the results and some information from solving time evolution.
Fields (Attributes)
times::AbstractVector
: The time list of the evolution.states::Vector{QuantumObject}
: The list of result states.expect::Matrix
: The expectation values corresponding to each time point intimes
.retcode
: The return code from the solver.alg
: The algorithm which is used during the solving process.abstol::Real
: The absolute tolerance which is used during the solving process.reltol::Real
: The relative tolerance which is used during the solving process.
QuantumToolbox.TimeEvolutionMCSol
— Typestruct TimeEvolutionMCSol
A structure storing the results and some information from solving quantum trajectories of the Monte Carlo wave function time evolution.
Fields (Attributes)
ntraj::Int
: Number of trajectoriestimes::AbstractVector
: The time list of the evolution.states::Vector{Vector{QuantumObject}}
: The list of result states in each trajectory.expect::Matrix
: The expectation values (averaging all trajectories) corresponding to each time point intimes
.expect_all::Array
: The expectation values corresponding to each trajectory and each time point intimes
jump_times::Vector{Vector{Real}}
: The time records of every quantum jump occurred in each trajectory.jump_which::Vector{Vector{Int}}
: The indices of the jump operators inc_ops
that describe the corresponding quantum jumps occurred in each trajectory.converged::Bool
: Whether the solution is converged or not.alg
: The algorithm which is used during the solving process.abstol::Real
: The absolute tolerance which is used during the solving process.reltol::Real
: The relative tolerance which is used during the solving process.
QuantumToolbox.TimeEvolutionSSESol
— Typestruct TimeEvolutionSSESol
A structure storing the results and some information from solving trajectories of the Stochastic Shrodinger equation time evolution.
Fields (Attributes)
ntraj::Int
: Number of trajectoriestimes::AbstractVector
: The time list of the evolution.states::Vector{Vector{QuantumObject}}
: The list of result states in each trajectory.expect::Matrix
: The expectation values (averaging all trajectories) corresponding to each time point intimes
.expect_all::Array
: The expectation values corresponding to each trajectory and each time point intimes
converged::Bool
: Whether the solution is converged or not.alg
: The algorithm which is used during the solving process.abstol::Real
: The absolute tolerance which is used during the solving process.reltol::Real
: The relative tolerance which is used during the solving process.
QuantumToolbox.sesolveProblem
— FunctionsesolveProblem(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Generate the ODEProblem for the Schrödinger time evolution of a quantum system:
\[\frac{\partial}{\partial t} |\psi(t)\rangle = -i \hat{H} |\psi(t)\rangle\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob
: TheODEProblem
for the Schrödinger time evolution of the system.
QuantumToolbox.mesolveProblem
— FunctionmesolveProblem(
H::Union{AbstractQuantumObject{DT1,HOpType},Tuple},
ψ0::QuantumObject{DT2,StateOpType},
tlist,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Generate the ODEProblem for the master equation time evolution of an open quantum system:
\[\frac{\partial \hat{\rho}(t)}{\partial t} = -i[\hat{H}, \hat{\rho}(t)] + \sum_n \mathcal{D}(\hat{C}_n) [\hat{\rho}(t)]\]
where
\[\mathcal{D}(\hat{C}_n) [\hat{\rho}(t)] = \hat{C}_n \hat{\rho}(t) \hat{C}_n^\dagger - \frac{1}{2} \hat{C}_n^\dagger \hat{C}_n \hat{\rho}(t) - \frac{1}{2} \hat{\rho}(t) \hat{C}_n^\dagger \hat{C}_n\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.c_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob::ODEProblem
: The ODEProblem for the master equation time evolution.
QuantumToolbox.mcsolveProblem
— FunctionmcsolveProblem(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
jump_callback::TJC = ContinuousLindbladJumpCallback(),
kwargs...,
)
Generate the ODEProblem for a single trajectory of the Monte Carlo wave function time evolution of an open quantum system.
Given a system Hamiltonian $\hat{H}$ and a list of collapse (jump) operators $\{\hat{C}_n\}_n$, the evolution of the state $|\psi(t)\rangle$ is governed by the Schrodinger equation:
\[\frac{\partial}{\partial t} |\psi(t)\rangle= -i \hat{H}_{\textrm{eff}} |\psi(t)\rangle\]
with a non-Hermitian effective Hamiltonian:
\[\hat{H}_{\textrm{eff}} = \hat{H} - \frac{i}{2} \sum_n \hat{C}_n^\dagger \hat{C}_n.\]
To the first-order of the wave function in a small time $\delta t$, the strictly negative non-Hermitian portion in $\hat{H}_{\textrm{eff}}$ gives rise to a reduction in the norm of the wave function, namely
\[\langle \psi(t+\delta t) | \psi(t+\delta t) \rangle = 1 - \delta p,\]
where
\[\delta p = \delta t \sum_n \langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle\]
is the corresponding quantum jump probability.
If the environmental measurements register a quantum jump, the wave function undergoes a jump into a state defined by projecting $|\psi(t)\rangle$ using the collapse operator $\hat{C}_n$ corresponding to the measurement, namely
\[| \psi(t+\delta t) \rangle = \frac{\hat{C}_n |\psi(t)\rangle}{ \sqrt{\langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle} }\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.c_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.jump_callback
: The Jump Callback type: Discrete or Continuous. The default isContinuousLindbladJumpCallback()
, which is more precise.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob::ODEProblem
: The ODEProblem for the Monte Carlo wave function time evolution.
QuantumToolbox.mcsolveEnsembleProblem
— FunctionmcsolveEnsembleProblem(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
ntraj::Int = 1,
ensemble_method = EnsembleThreads(),
jump_callback::TJC = ContinuousLindbladJumpCallback(),
prob_func::Function = _mcsolve_prob_func,
output_func::Function = _mcsolve_dispatch_output_func(ensemble_method),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Generate the EnsembleProblem
of ODEProblem
s for the ensemble of trajectories of the Monte Carlo wave function time evolution of an open quantum system.
Given a system Hamiltonian $\hat{H}$ and a list of collapse (jump) operators $\{\hat{C}_n\}_n$, the evolution of the state $|\psi(t)\rangle$ is governed by the Schrodinger equation:
\[\frac{\partial}{\partial t} |\psi(t)\rangle= -i \hat{H}_{\textrm{eff}} |\psi(t)\rangle\]
with a non-Hermitian effective Hamiltonian:
\[\hat{H}_{\textrm{eff}} = \hat{H} - \frac{i}{2} \sum_n \hat{C}_n^\dagger \hat{C}_n.\]
To the first-order of the wave function in a small time $\delta t$, the strictly negative non-Hermitian portion in $\hat{H}_{\textrm{eff}}$ gives rise to a reduction in the norm of the wave function, namely
\[\langle \psi(t+\delta t) | \psi(t+\delta t) \rangle = 1 - \delta p,\]
where
\[\delta p = \delta t \sum_n \langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle\]
is the corresponding quantum jump probability.
If the environmental measurements register a quantum jump, the wave function undergoes a jump into a state defined by projecting $|\psi(t)\rangle$ using the collapse operator $\hat{C}_n$ corresponding to the measurement, namely
\[| \psi(t+\delta t) \rangle = \frac{\hat{C}_n |\psi(t)\rangle}{ \sqrt{\langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle} }\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.c_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.ntraj
: Number of trajectories to use.ensemble_method
: Ensemble method to use. Default toEnsembleThreads()
.jump_callback
: The Jump Callback type: Discrete or Continuous. The default isContinuousLindbladJumpCallback()
, which is more precise.prob_func
: Function to use for generating the ODEProblem.output_func
: Function to use for generating the output of a single trajectory.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob::EnsembleProblem with ODEProblem
: The Ensemble ODEProblem for the Monte Carlo wave function time evolution.
QuantumToolbox.ssesolveProblem
— FunctionssesolveProblem(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
sc_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Generate the SDEProblem for the Stochastic Schrödinger time evolution of a quantum system. This is defined by the following stochastic differential equation:
\[d|\psi(t)\rangle = -i K |\psi(t)\rangle dt + \sum_n M_n |\psi(t)\rangle dW_n(t)\]
where
\[K = \hat{H} + i \sum_n \left(\frac{e_j} C_n - \frac{1}{2} \sum_{j} C_n^\dagger C_n - \frac{e_j^2}{8}\right),\]
\[M_n = C_n - \frac{e_n}{2},\]
and
\[e_n = \langle C_n + C_n^\dagger \rangle.\]
Above, C_n
is the n
-th collapse operator and dW_j(t)
is the real Wiener increment associated to C_n
.
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.sc_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-2
andabstol=1e-2
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob
: TheSDEProblem
for the Stochastic Schrödinger time evolution of the system.
QuantumToolbox.ssesolveEnsembleProblem
— FunctionssesolveEnsembleProblem(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
sc_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
ntraj::Int = 1,
ensemble_method = EnsembleThreads(),
prob_func::Function = _ssesolve_prob_func,
output_func::Function = _ssesolve_dispatch_output_func(ensemble_method),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Generate the SDE EnsembleProblem for the Stochastic Schrödinger time evolution of a quantum system. This is defined by the following stochastic differential equation:
\[d|\psi(t)\rangle = -i K |\psi(t)\rangle dt + \sum_n M_n |\psi(t)\rangle dW_n(t)\]
where
\[K = \hat{H} + i \sum_n \left(\frac{e_j} C_n - \frac{1}{2} \sum_{j} C_n^\dagger C_n - \frac{e_j^2}{8}\right),\]
\[M_n = C_n - \frac{e_n}{2},\]
and
\[e_n = \langle C_n + C_n^\dagger \rangle.\]
Above, C_n
is the n
-th collapse operator and dW_j(t)
is the real Wiener increment associated to C_n
.
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.sc_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.ntraj
: Number of trajectories to use.ensemble_method
: Ensemble method to use. Default toEnsembleThreads()
.jump_callback
: The Jump Callback type: Discrete or Continuous. The default isContinuousLindbladJumpCallback()
, which is more precise.prob_func
: Function to use for generating the ODEProblem.output_func
: Function to use for generating the output of a single trajectory.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-2
andabstol=1e-2
. - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
prob::EnsembleProblem with SDEProblem
: The Ensemble SDEProblem for the Stochastic Shrödinger time evolution.
QuantumToolbox.sesolve
— Functionsesolve(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector;
alg::OrdinaryDiffEqAlgorithm = Tsit5(),
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Time evolution of a closed quantum system using the Schrödinger equation:
\[\frac{\partial}{\partial t} |\psi(t)\rangle = -i \hat{H} |\psi(t)\rangle\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.alg
: The algorithm for the ODE solver. The default isTsit5()
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
sol::TimeEvolutionSol
: The solution of the time evolution. See alsoTimeEvolutionSol
QuantumToolbox.mesolve
— Functionmesolve(
H::Union{AbstractQuantumObject{DT1,HOpType},Tuple},
ψ0::QuantumObject{DT2,StateOpType},
tlist::AbstractVector,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
alg::OrdinaryDiffEqAlgorithm = Tsit5(),
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Time evolution of an open quantum system using Lindblad master equation:
\[\frac{\partial \hat{\rho}(t)}{\partial t} = -i[\hat{H}, \hat{\rho}(t)] + \sum_n \mathcal{D}(\hat{C}_n) [\hat{\rho}(t)]\]
where
\[\mathcal{D}(\hat{C}_n) [\hat{\rho}(t)] = \hat{C}_n \hat{\rho}(t) \hat{C}_n^\dagger - \frac{1}{2} \hat{C}_n^\dagger \hat{C}_n \hat{\rho}(t) - \frac{1}{2} \hat{\rho}(t) \hat{C}_n^\dagger \hat{C}_n\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.c_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.alg
: The algorithm for the ODE solver. The default value isTsit5()
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
sol::TimeEvolutionSol
: The solution of the time evolution. See alsoTimeEvolutionSol
QuantumToolbox.mcsolve
— Functionmcsolve(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
alg::OrdinaryDiffEqAlgorithm = Tsit5(),
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
ntraj::Int = 1,
ensemble_method = EnsembleThreads(),
jump_callback::TJC = ContinuousLindbladJumpCallback(),
prob_func::Function = _mcsolve_prob_func,
output_func::Function = _mcsolve_dispatch_output_func(ensemble_method),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Time evolution of an open quantum system using quantum trajectories.
Given a system Hamiltonian $\hat{H}$ and a list of collapse (jump) operators $\{\hat{C}_n\}_n$, the evolution of the state $|\psi(t)\rangle$ is governed by the Schrodinger equation:
\[\frac{\partial}{\partial t} |\psi(t)\rangle= -i \hat{H}_{\textrm{eff}} |\psi(t)\rangle\]
with a non-Hermitian effective Hamiltonian:
\[\hat{H}_{\textrm{eff}} = \hat{H} - \frac{i}{2} \sum_n \hat{C}_n^\dagger \hat{C}_n.\]
To the first-order of the wave function in a small time $\delta t$, the strictly negative non-Hermitian portion in $\hat{H}_{\textrm{eff}}$ gives rise to a reduction in the norm of the wave function, namely
\[\langle \psi(t+\delta t) | \psi(t+\delta t) \rangle = 1 - \delta p,\]
where
\[\delta p = \delta t \sum_n \langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle\]
is the corresponding quantum jump probability.
If the environmental measurements register a quantum jump, the wave function undergoes a jump into a state defined by projecting $|\psi(t)\rangle$ using the collapse operator $\hat{C}_n$ corresponding to the measurement, namely
\[| \psi(t+\delta t) \rangle = \frac{\hat{C}_n |\psi(t)\rangle}{ \sqrt{\langle \psi(t) | \hat{C}_n^\dagger \hat{C}_n | \psi(t) \rangle} }\]
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.c_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.alg
: The algorithm to use for the ODE solver. Default toTsit5()
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.ntraj
: Number of trajectories to use.ensemble_method
: Ensemble method to use. Default toEnsembleThreads()
.jump_callback
: The Jump Callback type: Discrete or Continuous. The default isContinuousLindbladJumpCallback()
, which is more precise.prob_func
: Function to use for generating the ODEProblem.output_func
: Function to use for generating the output of a single trajectory.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
ensemble_method
can be one ofEnsembleThreads()
,EnsembleSerial()
,EnsembleDistributed()
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-6
andabstol=1e-8
. - For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
sol::TimeEvolutionMCSol
: The solution of the time evolution. See alsoTimeEvolutionMCSol
.
QuantumToolbox.ssesolve
— Functionssesolve(
H::Union{AbstractQuantumObject{DT1,OperatorQuantumObject},Tuple},
ψ0::QuantumObject{DT2,KetQuantumObject},
tlist::AbstractVector,
sc_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
alg::StochasticDiffEqAlgorithm = SRA1(),
e_ops::Union{Nothing,AbstractVector,Tuple} = nothing,
params::NamedTuple = NamedTuple(),
rng::AbstractRNG = default_rng(),
ntraj::Int = 1,
ensemble_method = EnsembleThreads(),
prob_func::Function = _ssesolve_prob_func,
output_func::Function = _ssesolve_dispatch_output_func(ensemble_method),
progress_bar::Union{Val,Bool} = Val(true),
kwargs...,
)
Stochastic Schrödinger equation evolution of a quantum system given the system Hamiltonian $\hat{H}$ and a list of stochadtic collapse (jump) operators $\{\hat{C}_n\}_n$. The stochastic evolution of the state $|\psi(t)\rangle$ is defined by:
\[d|\psi(t)\rangle = -i K |\psi(t)\rangle dt + \sum_n M_n |\psi(t)\rangle dW_n(t)\]
where
\[K = \hat{H} + i \sum_n \left(\frac{e_j} C_n - \frac{1}{2} \sum_{j} C_n^\dagger C_n - \frac{e_j^2}{8}\right),\]
\[M_n = C_n - \frac{e_n}{2},\]
and
\[e_n = \langle C_n + C_n^\dagger \rangle.\]
Above, C_n
is the n
-th collapse operator and dW_j(t)
is the real Wiener increment associated to C_n
.
Arguments
H
: Hamiltonian of the system $\hat{H}$. It can be either aQuantumObject
, aQuantumObjectEvolution
, or aTuple
of operator-function pairs.ψ0
: Initial state of the system $|\psi(0)\rangle$.tlist
: List of times at which to save either the state or the expectation values of the system.sc_ops
: List of collapse operators $\{\hat{C}_n\}_n$. It can be either aVector
or aTuple
.alg
: The algorithm to use for the stochastic differential equation. Default isSRA1()
.e_ops
: List of operators for which to calculate expectation values. It can be either aVector
or aTuple
.params
:NamedTuple
of parameters to pass to the solver.rng
: Random number generator for reproducibility.ntraj
: Number of trajectories to use.ensemble_method
: Ensemble method to use. Default toEnsembleThreads()
.prob_func
: Function to use for generating the ODEProblem.output_func
: Function to use for generating the output of a single trajectory.progress_bar
: Whether to show the progress bar. Using non-Val
types might lead to type instabilities.kwargs
: The keyword arguments for the ODEProblem.
Notes
- The states will be saved depend on the keyword argument
saveat
inkwargs
. - If
e_ops
is empty, the default value ofsaveat=tlist
(saving the states corresponding totlist
), otherwise,saveat=[tlist[end]]
(only save the final state). You can also specifye_ops
andsaveat
separately. - The default tolerances in
kwargs
are given asreltol=1e-2
andabstol=1e-2
. - For more details about
alg
please refer toDifferentialEquations.jl
(SDE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Returns
sol::TimeEvolutionSSESol
: The solution of the time evolution. See alsoTimeEvolutionSSESol
.
QuantumToolbox.dfd_mesolve
— Functiondfd_mesolve(H::Function, ψ0::QuantumObject,
tlist::AbstractVector, c_ops::Function, maxdims::AbstractVector,
dfd_params::NamedTuple=NamedTuple();
alg::OrdinaryDiffEqAlgorithm=Tsit5(),
e_ops::Function=(dim_list) -> Vector{Vector{T1}}([]),
params::NamedTuple=NamedTuple(),
tol_list::Vector{<:Number}=fill(1e-8, length(maxdims)),
kwargs...)
Time evolution of an open quantum system using master equation, dynamically changing the dimension of the Hilbert subspaces.
Notes
- For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
QuantumToolbox.liouvillian
— Functionliouvillian(H::AbstractQuantumObject, c_ops::Union{Nothing,AbstractVector,Tuple}=nothing, Id_cache=I(prod(H.dims)))
Construct the Liouvillian SuperOperator
for a system Hamiltonian $\hat{H}$ and a set of collapse operators $\{\hat{C}_n\}_n$:
\[\mathcal{L} [\cdot] = -i[\hat{H}, \cdot] + \sum_n \mathcal{D}(\hat{C}_n) [\cdot]\]
where
\[\mathcal{D}(\hat{C}_n) [\cdot] = \hat{C}_n [\cdot] \hat{C}_n^\dagger - \frac{1}{2} \hat{C}_n^\dagger \hat{C}_n [\cdot] - \frac{1}{2} [\cdot] \hat{C}_n^\dagger \hat{C}_n\]
The optional argument Id_cache
can be used to pass a precomputed identity matrix. This can be useful when the same function is applied multiple times with a known Hilbert space dimension.
See also spre
, spost
, and lindblad_dissipator
.
QuantumToolbox.liouvillian_generalized
— Functionliouvillian_generalized(H::QuantumObject, fields::Vector,
T_list::Vector; N_trunc::Int=size(H,1), tol::Float64=0.0, σ_filter::Union{Nothing, Real}=nothing)
Constructs the generalized Liouvillian for a system coupled to a bath of harmonic oscillators.
See, e.g., Settineri, Alessio, et al. "Dissipation and thermal noise in hybrid quantum systems in the ultrastrong-coupling regime." Physical Review A 98.5 (2018): 053834.
Steady State Solvers
QuantumToolbox.steadystate
— Functionsteadystate(
H::QuantumObject{DT,OpType},
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
solver::SteadyStateSolver = SteadyStateDirectSolver(),
kwargs...,
)
Solve the stationary state based on different solvers.
Parameters
H
: The Hamiltonian or the Liouvillian of the system.c_ops
: The list of the collapse operators.solver
: see documentation Solving for Steady-State Solutions for different solvers.kwargs
: The keyword arguments for the solver.
steadystate(
H::QuantumObject{DT1,HOpType},
ψ0::QuantumObject{DT2,StateOpType},
tmax::Real = Inf,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
solver::SteadyStateODESolver = SteadyStateODESolver(),
reltol::Real = 1.0e-8,
abstol::Real = 1.0e-10,
kwargs...,
)
Solve the stationary state based on time evolution (ordinary differential equations; OrdinaryDiffEq.jl
) with a given initial state.
The termination condition of the stationary state $|\rho\rangle\rangle$ is that either the following condition is true
:
\[\lVert\frac{\partial |\hat{\rho}\rangle\rangle}{\partial t}\rVert \leq \textrm{reltol} \times\lVert\frac{\partial |\hat{\rho}\rangle\rangle}{\partial t}+|\hat{\rho}\rangle\rangle\rVert\]
or
\[\lVert\frac{\partial |\hat{\rho}\rangle\rangle}{\partial t}\rVert \leq \textrm{abstol}\]
Parameters
H
: The Hamiltonian or the Liouvillian of the system.ψ0
: The initial state of the system.tmax=Inf
: The final time step for the steady state problem.c_ops=nothing
: The list of the collapse operators.solver
: seeSteadyStateODESolver
for more details.reltol=1.0e-8
: Relative tolerance in steady state terminate condition and solver adaptive timestepping.abstol=1.0e-10
: Absolute tolerance in steady state terminate condition and solver adaptive timestepping.kwargs
: The keyword arguments for the ODEProblem.
QuantumToolbox.steadystate_floquet
— Functionsteadystate_floquet(
H_0::QuantumObject{MT,OpType1},
H_p::QuantumObject{<:AbstractArray,OpType2},
H_m::QuantumObject{<:AbstractArray,OpType3},
ωd::Number,
c_ops::Union{Nothing,AbstractVector,Tuple} = nothing;
n_max::Integer = 2,
tol::R = 1e-8,
solver::FSolver = SSFloquetLinearSystem,
kwargs...,
)
Calculates the steady state of a periodically driven system. Here H_0
is the Hamiltonian or the Liouvillian of the undriven system. Considering a monochromatic drive at frequency $\omega_d$, we divide it into two parts, H_p
and H_m
, where H_p
oscillates as $e^{i \omega t}$ and H_m
oscillates as $e^{-i \omega t}$. There are two solvers available for this function:
SSFloquetLinearSystem
: Solves the linear system of equations.SSFloquetEffectiveLiouvillian
: Solves the effective Liouvillian.
For both cases, n_max
is the number of Fourier components to consider, and tol
is the tolerance for the solver.
In the case of SSFloquetLinearSystem
, the full linear system is solved at once:
\[( \mathcal{L}_0 - i n \omega_d ) \hat{\rho}_n + \mathcal{L}_1 \hat{\rho}_{n-1} + \mathcal{L}_{-1} \hat{\rho}_{n+1} = 0\]
This is a tridiagonal linear system of the form
\[\mathbf{A} \cdot \mathbf{b} = 0\]
where
\[\mathbf{A} = \begin{pmatrix} \mathcal{L}_0 - i (-n_{\textrm{max}}) \omega_{\textrm{d}} & \mathcal{L}_{-1} & 0 & \cdots & 0 \\ \mathcal{L}_1 & \mathcal{L}_0 - i (-n_{\textrm{max}}+1) \omega_{\textrm{d}} & \mathcal{L}_{-1} & \cdots & 0 \\ 0 & \mathcal{L}_1 & \mathcal{L}_0 - i (-n_{\textrm{max}}+2) \omega_{\textrm{d}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \mathcal{L}_0 - i n_{\textrm{max}} \omega_{\textrm{d}} \end{pmatrix}\]
and
\[\mathbf{b} = \begin{pmatrix} \hat{\rho}_{-n_{\textrm{max}}} \\ \hat{\rho}_{-n_{\textrm{max}}+1} \\ \vdots \\ \hat{\rho}_{0} \\ \vdots \\ \hat{\rho}_{n_{\textrm{max}}-1} \\ \hat{\rho}_{n_{\textrm{max}}} \end{pmatrix}\]
This will allow to simultaneously obtain all the $\hat{\rho}_n$.
In the case of SSFloquetEffectiveLiouvillian
, instead, the effective Liouvillian is calculated using the matrix continued fraction method.
The two solvers returns different objects. The SSFloquetLinearSystem
returns a list of QuantumObject
, containing the density matrices for each Fourier component ($\hat{\rho}_{-n}$, with $n$ from $0$ to $n_\textrm{max}$), while the SSFloquetEffectiveLiouvillian
returns only $\hat{\rho}_0$.
Arguments
H_0::QuantumObject
: The Hamiltonian or the Liouvillian of the undriven system.H_p::QuantumObject
: The Hamiltonian or the Liouvillian of the part of the drive that oscillates as $e^{i \omega t}$.H_m::QuantumObject
: The Hamiltonian or the Liouvillian of the part of the drive that oscillates as $e^{-i \omega t}$.ωd::Number
: The frequency of the drive.c_ops::Union{Nothing,AbstractVector} = nothing
: The optional collapse operators.n_max::Integer = 2
: The number of Fourier components to consider.tol::R = 1e-8
: The tolerance for the solver.solver::FSolver = SSFloquetLinearSystem
: The solver to use.kwargs...
: Additional keyword arguments to be passed to the solver.
QuantumToolbox.SteadyStateDirectSolver
— TypeSteadyStateDirectSolver()
A solver which solves steadystate
by finding the inverse of Liouvillian SuperOperator
using the standard method given in LinearAlgebra
.
QuantumToolbox.SteadyStateEigenSolver
— TypeSteadyStateEigenSolver()
A solver which solves steadystate
by finding the zero (or lowest) eigenvalue of Liouvillian SuperOperator
using eigsolve
.
QuantumToolbox.SteadyStateLinearSolver
— TypeSteadyStateLinearSolver(alg = KrylovJL_GMRES(), Pl = nothing, Pr = nothing)
A solver which solves steadystate
by finding the inverse of Liouvillian SuperOperator
using the alg
orithms given in LinearSolve.jl
.
Parameters
alg::SciMLLinearSolveAlgorithm=KrylovJL_GMRES()
: algorithms given inLinearSolve.jl
Pl::Union{Function,Nothing}=nothing
: left preconditioner, see documentation Solving for Steady-State Solutions for more details.Pr::Union{Function,Nothing}=nothing
: right preconditioner, see documentation Solving for Steady-State Solutions for more details.
QuantumToolbox.SteadyStateODESolver
— TypeSteadyStateODESolver(alg = Tsit5())
An ordinary differential equation (ODE) solver for solving steadystate
.
It includes a field (attribute) SteadyStateODESolver.alg
that specifies the solving algorithm. Default to Tsit5()
.
For more details about the solvers, please refer to OrdinaryDiffEq.jl
Dynamical Shifted Fock method
QuantumToolbox.dsf_mesolve
— Functiondsf_mesolve(H::Function,
ψ0::QuantumObject,
tlist::AbstractVector, c_ops::Function,
op_list::Vector{TOl},
α0_l::Vector{<:Number}=zeros(length(op_list)),
dsf_params::NamedTuple=NamedTuple();
alg::OrdinaryDiffEqAlgorithm=Tsit5(),
e_ops::Function=(op_list,p) -> Vector{TOl}([]),
params::NamedTuple=NamedTuple(),
δα_list::Vector{<:Number}=fill(0.2, length(op_list)),
krylov_dim::Int=max(6, min(10, cld(length(ket2dm(ψ0).data), 4))),
kwargs...)
Time evolution of an open quantum system using master equation and the Dynamical Shifted Fock algorithm.
Notes
- For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
QuantumToolbox.dsf_mcsolve
— Functiondsf_mcsolve(H::Function,
ψ0::QuantumObject,
tlist::AbstractVector, c_ops::Function,
op_list::Vector{TOl},
α0_l::Vector{<:Number}=zeros(length(op_list)),
dsf_params::NamedTuple=NamedTuple();
alg::OrdinaryDiffEqAlgorithm=Tsit5(),
e_ops::Function=(op_list,p) -> Vector{TOl}([]),
params::NamedTuple=NamedTuple(),
δα_list::Vector{<:Real}=fill(0.2, length(op_list)),
ntraj::Int=1,
ensemble_method=EnsembleThreads(),
jump_callback::LindbladJumpCallbackType=ContinuousLindbladJumpCallback(),
krylov_dim::Int=max(6, min(10, cld(length(ket2dm(ψ0).data), 4))),
progress_bar::Union{Bool,Val} = Val(true)
kwargs...)
Time evolution of a quantum system using the Monte Carlo wave function method and the Dynamical Shifted Fock algorithm.
Notes
- For more details about
alg
please refer toDifferentialEquations.jl
(ODE Solvers) - For more details about
kwargs
please refer toDifferentialEquations.jl
(Keyword Arguments)
Low-rank time evolution
QuantumToolbox.TimeEvolutionLRSol
— Typestruct TimeEvolutionLRSol
A structure storing the results and some information from solving low-rank master equation time evolution.
Fields (Attributes)
times::AbstractVector
: The time list of the evolution.states::Vector{QuantumObject}
: The list of result states.expect::Matrix
: The expectation values corresponding to each time point intimes
.fexpect::Matrix
: The function values at each time point.retcode
: The return code from the solver.alg
: The algorithm which is used during the solving process.abstol::Real
: The absolute tolerance which is used during the solving process.reltol::Real
: The relative tolerance which is used during the solving process.z::Vector{QuantumObject}
: Thez
` matrix of the low-rank algorithm at each time point.B::Vector{QuantumObject}
: TheB
matrix of the low-rank algorithm at each time point.
QuantumToolbox.lr_mesolveProblem
— Functionlr_mesolveProblem(
H::QuantumObject{DT1,OperatorQuantumObject},
z::AbstractArray{T2,2},
B::AbstractArray{T2,2},
tlist::AbstractVector,
c_ops::Union{AbstractVector,Tuple}=();
e_ops::Union{AbstractVector,Tuple}=(),
f_ops::Union{AbstractVector,Tuple}=(),
opt::NamedTuple = lr_mesolve_options_default,
kwargs...,
)
Formulates the ODEproblem for the low-rank time evolution of the system. The function is called by lr_mesolve
. For more information about the low-rank master equation, see (Gravina and Savona, 2024).
Arguments
H::QuantumObject
: The Hamiltonian of the system.z::AbstractArray
: The initial z matrix of the low-rank algorithm.B::AbstractArray
: The initial B matrix of the low-rank algorithm.tlist::AbstractVector
: The time steps at which the expectation values and function values are calculated.c_ops::Union{AbstractVector,Tuple}
: The list of the collapse operators.e_ops::Union{AbstractVector,Tuple}
: The list of the operators for which the expectation values are calculated.f_ops::Union{AbstractVector,Tuple}
: The list of the functions for which the function values are calculated.opt::NamedTuple
: The options of the low-rank master equation.kwargs
: Additional keyword arguments.
QuantumToolbox.lr_mesolve
— Functionlr_mesolve(
H::QuantumObject{DT1,OperatorQuantumObject},
z::AbstractArray{T2,2},
B::AbstractArray{T2,2},
tlist::AbstractVector,
c_ops::Union{AbstractVector,Tuple}=();
e_ops::Union{AbstractVector,Tuple}=(),
f_ops::Union{AbstractVector,Tuple}=(),
opt::NamedTuple = lr_mesolve_options_default,
kwargs...,
)
Time evolution of an open quantum system using the low-rank master equation. For more information about the low-rank master equation, see (Gravina and Savona, 2024).
Arguments
H::QuantumObject
: The Hamiltonian of the system.z::AbstractArray
: The initial z matrix of the low-rank algorithm.B::AbstractArray
: The initial B matrix of the low-rank algorithm.tlist::AbstractVector
: The time steps at which the expectation values and function values are calculated.c_ops::Union{AbstractVector,Tuple}
: The list of the collapse operators.e_ops::Union{AbstractVector,Tuple}
: The list of the operators for which the expectation values are calculated.f_ops::Union{AbstractVector,Tuple}
: The list of the functions for which the function values are calculated.opt::NamedTuple
: The options of the low-rank master equation.kwargs
: Additional keyword arguments.
Correlations and Spectrum
QuantumToolbox.correlation_3op_2t
— Functioncorrelation_3op_2t(H::QuantumObject,
ψ0::QuantumObject,
t_l::AbstractVector,
τ_l::AbstractVector,
A::QuantumObject,
B::QuantumObject,
C::QuantumObject,
c_ops::Union{Nothing,AbstractVector,Tuple}=nothing;
kwargs...)
Returns the two-times correlation function of three operators $\hat{A}$, $\hat{B}$ and $\hat{C}$: $\expval{\hat{A}(t) \hat{B}(t + \tau) \hat{C}(t)}$
for a given initial state $\ket{\psi_0}$.
QuantumToolbox.correlation_2op_2t
— Functioncorrelation_2op_2t(H::QuantumObject,
ψ0::QuantumObject,
t_l::AbstractVector,
τ_l::AbstractVector,
A::QuantumObject,
B::QuantumObject,
c_ops::Union{Nothing,AbstractVector,Tuple}=nothing;
reverse::Bool=false,
kwargs...)
Returns the two-times correlation function of two operators $\hat{A}$ and $\hat{B}$ at different times: $\expval{\hat{A}(t + \tau) \hat{B}(t)}$.
When reverse=true
, the correlation function is calculated as $\expval{\hat{A}(t) \hat{B}(t + \tau)}$.
QuantumToolbox.correlation_2op_1t
— Functioncorrelation_2op_1t(H::QuantumObject,
ψ0::QuantumObject,
τ_l::AbstractVector,
A::QuantumObject,
B::QuantumObject,
c_ops::Union{Nothing,AbstractVector,Tuple}=nothing;
reverse::Bool=false,
kwargs...)
Returns the one-time correlation function of two operators $\hat{A}$ and $\hat{B}$ at different times $\expval{\hat{A}(\tau) \hat{B}(0)}$.
When reverse=true
, the correlation function is calculated as $\expval{\hat{A}(0) \hat{B}(\tau)}$.
QuantumToolbox.spectrum
— Functionspectrum(H::QuantumObject,
ω_list::AbstractVector,
A::QuantumObject{<:AbstractArray{T2},OperatorQuantumObject},
B::QuantumObject{<:AbstractArray{T3},OperatorQuantumObject},
c_ops::Union{Nothing,AbstractVector,Tuple}=nothing;
solver::MySolver=ExponentialSeries(),
kwargs...)
Returns the emission spectrum
\[S(\omega) = \int_{-\infty}^\infty \expval{\hat{A}(\tau) \hat{B}(0)} e^{-i \omega \tau} d \tau\]
Metrics
QuantumToolbox.entropy_vn
— Functionentropy_vn(ρ::QuantumObject; base::Int=0, tol::Real=1e-15)
Calculates the Von Neumann entropy $S = - \Tr \left[ \hat{\rho} \log \left( \hat{\rho} \right) \right]$ where $\hat{\rho}$ is the density matrix of the system.
The base
parameter specifies the base of the logarithm to use, and when using the default value 0, the natural logarithm is used. The tol
parameter describes the absolute tolerance for detecting the zero-valued eigenvalues of the density matrix $\hat{\rho}$.
Examples
Pure state:
julia> ψ = fock(2,0)
Quantum Object: type=Ket dims=[2] size=(2,)
2-element Vector{ComplexF64}:
1.0 + 0.0im
0.0 + 0.0im
julia> ρ = ket2dm(ψ)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 Matrix{ComplexF64}:
1.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im
julia> entropy_vn(ρ, base=2)
-0.0
Mixed state:
julia> ρ = maximally_mixed_dm(2)
Quantum Object: type=Operator dims=[2] size=(2, 2) ishermitian=true
2×2 Diagonal{ComplexF64, Vector{ComplexF64}}:
0.5-0.0im ⋅
⋅ 0.5-0.0im
julia> entropy_vn(ρ, base=2)
1.0
QuantumToolbox.entanglement
— Functionentanglement(QO::QuantumObject, sel::Union{Int,AbstractVector{Int},Tuple})
Calculates the entanglement by doing the partial trace of QO
, selecting only the dimensions with the indices contained in the sel
vector, and then using the Von Neumann entropy entropy_vn
.
QuantumToolbox.tracedist
— Functiontracedist(ρ::QuantumObject, σ::QuantumObject)
Calculates the trace distance between two QuantumObject
: $T(\hat{\rho}, \hat{\sigma}) = \frac{1}{2} \lVert \hat{\rho} - \hat{\sigma} \rVert_1$
QuantumToolbox.fidelity
— Functionfidelity(ρ::QuantumObject, σ::QuantumObject)
Calculate the fidelity of two QuantumObject
: $F(\hat{\rho}, \hat{\sigma}) = \textrm{Tr} \sqrt{\sqrt{\hat{\rho}} \hat{\sigma} \sqrt{\hat{\rho}}}$
Here, the definition is from Nielsen & Chuang, "Quantum Computation and Quantum Information". It is the square root of the fidelity defined in R. Jozsa, Journal of Modern Optics, 41:12, 2315 (1994).
Spin Lattice
QuantumToolbox.Lattice
— TypeLattice
A Julia constructor for a lattice object. The lattice object is used to define the geometry of the lattice. Nx
and Ny
are the number of sites in the x and y directions, respectively. N
is the total number of sites. lin_idx
is a LinearIndices
object and car_idx
is a CartesianIndices
object, and they are used to efficiently select sites on the lattice.
QuantumToolbox.SingleSiteOperator
— FunctionSingleSiteOperator(O::QuantumObject, i::Integer, N::Integer)
A Julia constructor for a single-site operator. s
is the operator acting on the site. i
is the site index, and N
is the total number of sites. The function returns a QuantumObject
given by $\\mathbb{1}^{\\otimes (i - 1)} \\otimes \hat{O} \\otimes \\mathbb{1}^{\\otimes (N - i)}$.
QuantumToolbox.DissipativeIsing
— FunctionDissipativeIsing(Jx::Real, Jy::Real, Jz::Real, hx::Real, hy::Real, hz::Real, γ::Real, latt::Lattice; boundary_condition::Union{Symbol, Val} = Val(:periodic_bc), order::Integer = 1)
A Julia constructor for a dissipative Ising model. The function returns the Hamiltonian
\[\hat{H} = \frac{J_x}{2} \sum_{\langle i, j \rangle} \hat{\sigma}_i^x \hat{\sigma}_j^x + \frac{J_y}{2} \sum_{\langle i, j \rangle} \hat{\sigma}_i^y \hat{\sigma}_j^y + \frac{J_z}{2} \sum_{\langle i, j \rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z + h_x \sum_i \hat{\sigma}_i^x\]
and the collapse operators
\[\hat{c}_i = \sqrt{\gamma} \hat{\sigma}_i^-\]
Arguments
Jx::Real
: The coupling constant in the x-direction.Jy::Real
: The coupling constant in the y-direction.Jz::Real
: The coupling constant in the z-direction.hx::Real
: The magnetic field in the x-direction.hy::Real
: The magnetic field in the y-direction.hz::Real
: The magnetic field in the z-direction.γ::Real
: The local dissipation rate.latt::Lattice
: ALattice
object that defines the geometry of the lattice.boundary_condition::Union{Symbol, Val}
: The boundary conditions of the lattice. The possible inputs areperiodic_bc
andopen_bc
, for periodic or open boundary conditions, respectively. The default value isVal(:periodic_bc)
.order::Integer
: The order of the nearest-neighbour sites. The default value is 1.
Miscellaneous
QuantumToolbox.wigner
— Functionwigner(
state::QuantumObject{DT,OpType},
xvec::AbstractVector,
yvec::AbstractVector;
g::Real = √2,
method::WignerSolver = WignerClenshaw(),
)
Generates the Wigner quasipropability distribution of state
at points xvec + 1im * yvec
in phase space. The g
parameter is a scaling factor related to the value of $\hbar$ in the commutation relation $[x, y] = i \hbar$ via $\hbar=2/g^2$ giving the default value $\hbar=1$.
The method
parameter can be either WignerLaguerre()
or WignerClenshaw()
. The former uses the Laguerre polynomial expansion of the Wigner function, while the latter uses the Clenshaw algorithm. The Laguerre expansion is faster for sparse matrices, while the Clenshaw algorithm is faster for dense matrices. The WignerLaguerre
method has an optional parallel
parameter which defaults to true
and uses multithreading to speed up the calculation.
Arguments
state::QuantumObject
: The quantum state for which the Wigner function is calculated. It can be either aKetQuantumObject
,BraQuantumObject
, orOperatorQuantumObject
.xvec::AbstractVector
: The x-coordinates of the phase space grid.yvec::AbstractVector
: The y-coordinates of the phase space grid.g::Real
: The scaling factor related to the value of $\hbar$ in the commutation relation $[x, y] = i \hbar$ via $\hbar=2/g^2$.method::WignerSolver
: The method used to calculate the Wigner function. It can be eitherWignerLaguerre()
orWignerClenshaw()
, withWignerClenshaw()
as default. TheWignerLaguerre
method has the optionalparallel
andtol
parameters, with default valuestrue
and1e-14
, respectively.
Returns
W::Matrix
: The Wigner function of the state at the pointsxvec + 1im * yvec
in phase space.
Example
julia> ψ = fock(10, 0) + fock(10, 1) |> normalize
Quantum Object: type=Ket dims=[10] size=(10,)
10-element Vector{ComplexF64}:
0.7071067811865475 + 0.0im
0.7071067811865475 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
julia> xvec = range(-5, 5, 200)
-5.0:0.05025125628140704:5.0
julia> wig = wigner(ψ, xvec, xvec)
200×200 Matrix{Float64}:
2.63558e-21 4.30187e-21 6.98638e-21 1.12892e-20 1.81505e-20 … 1.50062e-20 9.28736e-21 5.71895e-21 3.50382e-21
4.29467e-21 7.00905e-21 1.13816e-20 1.83891e-20 2.9562e-20 2.45173e-20 1.51752e-20 9.3454e-21 5.72614e-21
6.96278e-21 1.13621e-20 1.8448e-20 2.98026e-20 4.79043e-20 3.98553e-20 2.46711e-20 1.51947e-20 9.31096e-21
1.12314e-20 1.83256e-20 2.97505e-20 4.80558e-20 7.72344e-20 6.4463e-20 3.99074e-20 2.45808e-20 1.50639e-20
1.80254e-20 2.94073e-20 4.77351e-20 7.70963e-20 1.23892e-19 1.0374e-19 6.42289e-20 3.95652e-20 2.42491e-20
⋮ ⋱
1.80254e-20 2.94073e-20 4.77351e-20 7.70963e-20 1.23892e-19 … 1.0374e-19 6.42289e-20 3.95652e-20 2.42491e-20
1.12314e-20 1.83256e-20 2.97505e-20 4.80558e-20 7.72344e-20 6.4463e-20 3.99074e-20 2.45808e-20 1.50639e-20
6.96278e-21 1.13621e-20 1.8448e-20 2.98026e-20 4.79043e-20 3.98553e-20 2.46711e-20 1.51947e-20 9.31096e-21
4.29467e-21 7.00905e-21 1.13816e-20 1.83891e-20 2.9562e-20 2.45173e-20 1.51752e-20 9.3454e-21 5.72614e-21
2.63558e-21 4.30187e-21 6.98638e-21 1.12892e-20 1.81505e-20 1.50062e-20 9.28736e-21 5.71895e-21 3.50382e-21
or taking advantage of the parallel computation of the WignerLaguerre
method
julia> wig = wigner(ρ, xvec, xvec, method=WignerLaguerre(parallel=true))
200×200 Matrix{Float64}:
2.63558e-21 4.30187e-21 6.98638e-21 1.12892e-20 1.81505e-20 … 1.50062e-20 9.28736e-21 5.71895e-21 3.50382e-21
4.29467e-21 7.00905e-21 1.13816e-20 1.83891e-20 2.9562e-20 2.45173e-20 1.51752e-20 9.3454e-21 5.72614e-21
6.96278e-21 1.13621e-20 1.8448e-20 2.98026e-20 4.79043e-20 3.98553e-20 2.46711e-20 1.51947e-20 9.31096e-21
1.12314e-20 1.83256e-20 2.97505e-20 4.80558e-20 7.72344e-20 6.4463e-20 3.99074e-20 2.45808e-20 1.50639e-20
1.80254e-20 2.94073e-20 4.77351e-20 7.70963e-20 1.23892e-19 1.0374e-19 6.42289e-20 3.95652e-20 2.42491e-20
⋮ ⋱
1.80254e-20 2.94073e-20 4.77351e-20 7.70963e-20 1.23892e-19 … 1.0374e-19 6.42289e-20 3.95652e-20 2.42491e-20
1.12314e-20 1.83256e-20 2.97505e-20 4.80558e-20 7.72344e-20 6.4463e-20 3.99074e-20 2.45808e-20 1.50639e-20
6.96278e-21 1.13621e-20 1.8448e-20 2.98026e-20 4.79043e-20 3.98553e-20 2.46711e-20 1.51947e-20 9.31096e-21
4.29467e-21 7.00905e-21 1.13816e-20 1.83891e-20 2.9562e-20 2.45173e-20 1.51752e-20 9.3454e-21 5.72614e-21
2.63558e-21 4.30187e-21 6.98638e-21 1.12892e-20 1.81505e-20 1.50062e-20 9.28736e-21 5.71895e-21 3.50382e-21
QuantumToolbox.negativity
— Functionnegativity(ρ::QuantumObject, subsys::Int; logarithmic::Bool=false)
Compute the negativity $N(\hat{\rho}) = \frac{\Vert \hat{\rho}^{\Gamma}\Vert_1 - 1}{2}$ where $\hat{\rho}^{\Gamma}$ is the partial transpose of $\hat{\rho}$ with respect to the subsystem, and $\Vert \hat{X} \Vert_1=\textrm{Tr}\sqrt{\hat{X}^\dagger \hat{X}}$ is the trace norm.
Arguments
ρ::QuantumObject
: The density matrix (ρ.type
must beOperatorQuantumObject
).subsys::Int
: an index that indicates which subsystem to compute the negativity for.logarithmic::Bool
: choose whether to calculate logarithmic negativity or not. Default asfalse
Returns
N::Real
: The value of negativity.
Examples
julia> Ψ = bell_state(0, 0)
Quantum Object: type=Ket dims=[2, 2] size=(4,)
4-element Vector{ComplexF64}:
0.7071067811865475 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.7071067811865475 + 0.0im
julia> ρ = ket2dm(Ψ)
Quantum Object: type=Operator dims=[2, 2] size=(4, 4) ishermitian=true
4×4 Matrix{ComplexF64}:
0.5+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.5+0.0im 0.0+0.0im 0.0+0.0im 0.5+0.0im
julia> negativity(ρ, 2)
0.4999999999999998
Linear Maps
QuantumToolbox.AbstractLinearMap
— TypeAbstractLinearMap{T, TS}
Represents a general linear map with element type T
and size TS
.
Overview
A linear map is a transformation L
that satisfies:
- Additivity:
math L(u + v) = L(u) + L(v)
- Homogeneity:
math L(cu) = cL(u)
It is typically represented as a matrix with dimensions given by size
, and this abtract type helps to define this map when the matrix is not explicitly available.
Methods
Base.eltype(A)
: Returns the element typeT
.Base.size(A)
: Returns the sizeA.size
.Base.size(A, i)
: Returns thei
-th dimension.
Example
As an example, we now define the linear map used in the eigsolve_al
function for Arnoldi-Lindblad eigenvalue solver:
struct ArnoldiLindbladIntegratorMap{T,TS,TI} <: AbstractLinearMap{T,TS}
elty::Type{T}
size::TS
integrator::TI
end
function LinearAlgebra.mul!(y::AbstractVector, A::ArnoldiLindbladIntegratorMap, x::AbstractVector)
reinit!(A.integrator, x)
solve!(A.integrator)
return copyto!(y, A.integrator.u)
end
where integrator
is the ODE integrator for the time-evolution. In this way, we can diagonalize this linear map using the eigsolve
function.
Utility functions
QuantumToolbox.versioninfo
— FunctionQuantumToolbox.versioninfo(io::IO=stdout)
Command line output of information on QuantumToolbox, dependencies, and system information, same as QuantumToolbox.about
.
QuantumToolbox.about
— FunctionQuantumToolbox.about(io::IO=stdout)
Command line output of information on QuantumToolbox, dependencies, and system information, same as QuantumToolbox.versioninfo
.
QuantumToolbox.gaussian
— Functiongaussian(x::Number, μ::Number, σ::Number)
Returns the gaussian function $\exp \left[- \frac{(x - \mu)^2}{2 \sigma^2} \right]$, where $\mu$ and $\sigma^2$ are the mean and the variance respectively.
QuantumToolbox.n_thermal
— Functionn_thermal(ω::Real, ω_th::Real)
Return the number of photons in thermal equilibrium for an harmonic oscillator mode with frequency $\omega$, at the temperature described by $\omega_{\textrm{th}} \equiv k_B T / \hbar$:
\[n(\omega, \omega_{\textrm{th}}) = \frac{1}{e^{\omega/\omega_{\textrm{th}}} - 1},\]
where $\hbar$ is the reduced Planck constant, and $k_B$ is the Boltzmann constant.
QuantumToolbox.PhysicalConstants
— Constantconst PhysicalConstants
A NamedTuple
which stores some constant values listed in CODATA recommended values of the fundamental physical constants: 2022
The current stored constants are:
c
: (exact) speed of light in vacuum with unit $[\textrm{m}\cdot\textrm{s}^{-1}]$G
: Newtonian constant of gravitation with unit $[\textrm{m}^3\cdot\textrm{kg}^{−1}\cdot\textrm{s}^{−2}]$h
: (exact) Planck constant with unit $[\textrm{J}\cdot\textrm{s}]$ħ
: reduced Planck constant with unit $[\textrm{J}\cdot\textrm{s}]$e
: (exact) elementary charge with unit $[\textrm{C}]$μ0
: vacuum magnetic permeability with unit $[\textrm{N}\cdot\textrm{A}^{-2}]$ϵ0
: vacuum electric permittivity with unit $[\textrm{F}\cdot\textrm{m}^{-1}]$k
: (exact) Boltzmann constant with unit $[\textrm{J}\cdot\textrm{K}^{-1}]$NA
: (exact) Avogadro constant with unit $[\textrm{mol}^{-1}]$
Examples
julia> PhysicalConstants.ħ
1.0545718176461565e-34
QuantumToolbox.convert_unit
— Functionconvert_unit(value::Real, unit1::Symbol, unit2::Symbol)
Convert the energy value
from unit1
to unit2
. The unit1
and unit2
can be either the following Symbol
:
:J
: Joule:eV
: electron volt:meV
: milli-electron volt:MHz
: Mega-Hertz multiplied by Planck constant $h$:GHz
: Giga-Hertz multiplied by Planck constant $h$:K
: Kelvin multiplied by Boltzmann constant $k$:mK
: milli-Kelvin multiplied by Boltzmann constant $k$
Note that we use the values stored in PhysicalConstants
to do the conversion.
Examples
julia> convert_unit(1, :eV, :J)
1.602176634e-19
julia> convert_unit(1, :GHz, :J)
6.62607015e-25
julia> convert_unit(1, :meV, :mK)
11604.518121550082
QuantumToolbox.row_major_reshape
— Functionrow_major_reshape(Q::AbstractArray, shapes...)
Reshapes Q
in the row-major order, as numpy.
QuantumToolbox.meshgrid
— Functionmeshgrid(x::AbstractVector, y::AbstractVector)
Equivalent to numpy meshgrid.