Cavity QED system

Cavity quantum electrodynamics (cavity QED) is an important topic for studying the interaction between atoms (or other particles) and light confined in a reflective cavity, under conditions where the quantum nature of photons is significant.

import QuantumToolbox
using HierarchicalEOM
using LaTeXStrings
import Plots

Hamiltonian

The Jaynes-Cummings model is a standard model in the realm of cavity QED. It illustrates the interaction between a two-level atom ($\textrm{A}$) and a quantized single-mode within a cavity ($\textrm{c}$).

\[\begin{aligned} H_{\textrm{s}}&=H_{\textrm{A}}+H_{\textrm{c}}+H_{\textrm{int}},\\ H_{\textrm{A}}&=\frac{\omega_A}{2}\sigma_z,\\ H_{\textrm{c}}&=\omega_{\textrm{c}} a^\dagger a,\\ H_{\textrm{int}}&=g (a^\dagger\sigma^-+a\sigma^+), \end{aligned}\]

where $\sigma^-$ ($\sigma^+$) is the annihilation (creation) operator of the atom, and $a$ ($a^\dagger$) is the annihilation (creation) operator of the cavity.

Furthermore, we consider the system is coupled to a bosonic reservoir ($\textrm{b}$). The total Hamiltonian is given by $H_{\textrm{Total}}=H_\textrm{s}+H_\textrm{b}+H_\textrm{sb}$, where $H_\textrm{b}$ and $H_\textrm{sb}$ takes the form

\[\begin{aligned} H_{\textrm{b}} &=\sum_{k}\omega_{k}b_{k}^{\dagger}b_{k},\\ H_{\textrm{sb}} &=(a+a^\dagger)\sum_{k}g_{k}(b_k + b_k^{\dagger}). \end{aligned}\]

Here, $H_{\textrm{b}}$ describes a bosonic reservoir where $b_{k}$ $(b_{k}^{\dagger})$ is the bosonic annihilation (creation) operator associated to the $k$th mode (with frequency $\omega_{k}$). Also, $H_{\textrm{sb}}$ illustrates the interaction between the cavity and the bosonic reservoir.

Now, we need to build the system Hamiltonian and initial state with the package QuantumToolbox.jl to construct the operators.

N = 3 ## system cavity Hilbert space cutoff
ωA = 2
ωc = 2
g = 0.1

# operators
a_c = destroy(N)
I_c = qeye(N)
σz_A = sigmaz()
σm_A = sigmam()
I_A = qeye(2)

# operators in tensor-space
a = tensor(a_c, I_A)
σz = tensor(I_c, σz_A)
σm = tensor(I_c, σm_A)

# Hamiltonian
H_A = 0.5 * ωA * σz
H_c = ωc * a' * a
H_int = g * (a' * σm + a * σm')

H_s = H_A + H_c + H_int

# initial state
ψ0 = tensor(basis(N, 0), basis(2, 0))
Quantum Object:   type=Ket   dims=[3, 2]   size=(6,)
6-element Vector{ComplexF64}:
 1.0 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im

Construct bath objects

We assume the bosonic reservoir to have a Drude-Lorentz Spectral Density, and we utilize the Padé decomposition. Furthermore, the spectral densities depend on the following physical parameters:

  • the coupling strength $\Gamma$ between system and reservoir
  • the band-width $W$
  • the product of the Boltzmann constant $k$ and the absolute temperature $T$ : $kT$
  • the total number of exponentials for the reservoir $(N + 1)$
Γ = 0.01
W = 1
kT = 0.025
N = 20
Bath = Boson_DrudeLorentz_Pade(a + a', Γ, W, kT, N)
BosonBath object with 21 exponential-expansion terms

Before incorporating the correlation function into the HEOMLS matrix, it is essential to verify (by using correlation_function) if the total number of exponentials for the reservoir sufficiently describes the practical situation.

tlist_test = 0:0.1:10;

Bath_test = Boson_DrudeLorentz_Pade(a + a', Γ, W, kT, 1000);
Ct = correlation_function(Bath, tlist_test);
Ct2 = correlation_function(Bath_test, tlist_test);

Plots.plot(tlist_test, real(Ct), label = "N=20 (real part )", linestyle = :dash, linewidth = 3)
Plots.plot!(tlist_test, real(Ct2), label = "N=1000 (real part)", linestyle = :solid, linewidth = 3)
Plots.plot!(tlist_test, imag(Ct), label = "N=20 (imag part)", linestyle = :dash, linewidth = 3)
Plots.plot!(tlist_test, imag(Ct2), label = "N=1000 (imag part)", linestyle = :solid, linewidth = 3)

Plots.xaxis!("t")
Plots.yaxis!("C(t)")
Example block output

Construct HEOMLS matrix

(see also HEOMLS Matrix for Bosonic Baths) Here, we consider an incoherent pumping to the atom, which can be described by an Lindblad dissipator (see here for more details).

Furthermore, we set the important threshold to be 1e-6.

pump = 0.01
J_pump = sqrt(pump) * σm'

tier = 2
M_Heom = M_Boson(H_s, tier, threshold = 1e-6, Bath)
M_Heom = addBosonDissipator(M_Heom, J_pump)
Boson type HEOMLS matrix acting on even-parity ADOs
system dims = [3, 2]
number of ADOs N = 97
data =
MatrixOperator(3492 × 3492)

Solve time evolution of ADOs

(see also Time Evolution)

t_list = 0:1:500
sol_H = HEOMsolve(M_Heom, ψ0, t_list; e_ops = [σz, a' * a])
Solution of hierarchical EOM
(return code: Success)
----------------------------
Btier = 2
Ftier = 0
num_states = 1
num_expect = 2
ODE alg.: OrdinaryDiffEqLowOrderRK.DP5{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}(OrdinaryDiffEqCore.trivial_limiter!, OrdinaryDiffEqCore.trivial_limiter!, static(false))
abstol = 1.0e-8
reltol = 1.0e-6

Solve stationary state of ADOs

(see also Stationary State)

steady_H = steadystate(M_Heom);
Solving steady state for ADOs by linear-solve method...[DONE]

Expectation values

observable of atom: $\sigma_z$

σz_evo_H = real(sol_H.expect[1, :])
σz_steady_H = expect(σz, steady_H)
-0.3731173931282956

observable of cavity: $a^\dagger a$ (average photon number)

np_evo_H = real(sol_H.expect[2, :])
np_steady_H = expect(a' * a, steady_H)

p1 = Plots.plot(
    t_list,
    [σz_evo_H, ones(length(t_list)) .* σz_steady_H],
    label = [L"\langle \sigma_z \rangle" L"\langle \sigma_z \rangle ~~(\textrm{steady})"],
    linewidth = 3,
    linestyle = [:solid :dash],
)
p2 = Plots.plot(
    t_list,
    [np_evo_H, ones(length(t_list)) .* np_steady_H],
    label = [L"\langle a^\dagger a \rangle" L"\langle a^\dagger a \rangle ~~(\textrm{steady})"],
    linewidth = 3,
    linestyle = [:solid :dash],
)
Plots.plot(p1, p2, layout = [1, 1])
Plots.xaxis!("t")
Example block output

Power spectrum

(see also Spectrum)

ω_list = 1:0.01:3
psd_H = PowerSpectrum(M_Heom, steady_H, a, ω_list)

Plots.plot(ω_list, psd_H, linewidth = 3)
Plots.xaxis!(L"\omega")
Example block output

Compare with Master Eq. approach

(see also HEOMLS for Master Equations)

The Lindblad master equations which describes the cavity couples to an extra bosonic reservoir with Drude-Lorentzian spectral density is given by

# Drude_Lorentzian spectral density
Drude_Lorentz(ω, Γ, W) = 4 * Γ * W * ω / ((ω)^2 + (W)^2)

# Bose-Einstein distribution
n_b(ω, kT) = 1 / (exp(ω / kT) - 1)

# build the jump operators
jump_op =
    [sqrt(Drude_Lorentz(ωc, Γ, W) * (n_b(ωc, kT) + 1)) * a, sqrt(Drude_Lorentz(ωc, Γ, W) * (n_b(ωc, kT))) * a', J_pump];

# construct the HEOMLS matrix for master equation
M_master = M_S(H_s)
M_master = addBosonDissipator(M_master, jump_op)

# time evolution
sol_M = HEOMsolve(M_master, ψ0, t_list; e_ops = [σz, a' * a]);

# steady state
steady_M = steadystate(M_master);

# expectation value of σz
σz_evo_M = real(sol_M.expect[1, :])
σz_steady_M = expect(σz, steady_M)

# average photon number
np_evo_M = real(sol_M.expect[2, :])
np_steady_M = expect(a' * a, steady_M)

p1 = Plots.plot(
    t_list,
    [σz_evo_M, ones(length(t_list)) .* σz_steady_M],
    label = [L"\langle \sigma_z \rangle" L"\langle \sigma_z \rangle ~~(\textrm{steady})"],
    linewidth = 3,
    linestyle = [:solid :dash],
)
p2 = Plots.plot(
    t_list,
    [np_evo_M, ones(length(t_list)) .* np_steady_M],
    label = [L"\langle a^\dagger a \rangle" L"\langle a^\dagger a \rangle ~~(\textrm{steady})"],
    linewidth = 3,
    linestyle = [:solid :dash],
)
Plots.plot(p1, p2, layout = [1, 1])
Plots.xaxis!("t")
Example block output

We can also calculate the power spectrum

ω_list = 1:0.01:3
psd_M = PowerSpectrum(M_master, steady_M, a, ω_list)

Plots.plot(ω_list, psd_M, linewidth = 3)
Plots.xaxis!(L"\omega")
Example block output

Due to the weak coupling between the system and an extra bosonic environment, the Master equation's outcome is expected to be similar to the results obtained from the HEOM method.


This page was generated using Literate.jl.