

QuTiP: Quantum Toolbox in Python Release 3.1.0

P.D. Nation and J.R. Johansson

December 31, 2014

Contents

C	ontents 2
1	Frontmatter51.1About This Documentation51.2Citing This Project51.3Funding51.4About QuTiP61.5Contributing to QuTiP6
2	Installation72.1General Requirements72.2Platform-independent installation72.3Get the source code72.4Installing from source82.5Installation on Ubuntu Linux82.6Installation on Mac OS X (10.8+)92.7Installation on Windows102.8Optional Installation102.9Verifying the Installation112.10Checking Version Information using the About Function11
3	Users Guide133.1Guide Overview133.2Basic Operations on Quantum Objects133.3Manipulating States and Operators203.4Using Tensor Products and Partial Traces323.5Time Evolution and Quantum System Dynamics363.6Solving for Steady-State Solutions703.7An Overview of the Eseries Class743.8Two-time correlation functions773.9Plotting on the Bloch Sphere843.10Visualization of quantum states and processes973.11Parallel computation1053.12Saving QuTiP Objects and Data Sets1083.13Generating Random Quantum States & Operators1113.14Modifying Internal QuTiP Settings112
4	API documentation 115 4.1 Classes 115 4.2 Functions 146
5	Change Log 219 5.1 Version 3.1.0 (January 1, 2015): 219 5.2 Version 3.0.1 (Aug 5, 2014): 220 5.3 Version 3.0.0 (July 17, 2014): 220 5.4 Version 2.2.0 (March 01, 2013): 221 5.5 Version 2.1.0 (October 05, 2012): 222

7 Version 1.1.4 (May 28, 2012):	222				
	223				
8 Version 1.1.3 (November 21, 2011):	223				
9 Version 1.1.2 (October 27, 2011)	224				
10 Version 1.1.1 (October 25, 2011)	224				
11 Version 1.1.0 (October 04, 2011)	224				
12 Version 1.0.0 (July 29, 2011)	225				
	227				
	227				
2 Contributors	227				
Bibliography					
8 Indices and tables					
3 Indices and tables					
Bibliography					
Python Module Index					
ndex 2					
	 9 Version 1.1.2 (October 27, 2011) 10 Version 1.1.1 (October 25, 2011) 11 Version 1.1.0 (October 04, 2011) 12 Version 1.0.0 (July 29, 2011) evelopers 1 Lead Developers 2 Contributors bliography dices and tables ography 				

FRONTMATTER

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version of this text is available at the documentation page.

For more information see the QuTiP project web page.

Author P.D. Nation
Address Department of Physics, Korea University, Seongbuk-gu Seoul, 136-713 South Korea
Author J.R. Johansson
Address iTHES Research Group, RIKEN, Wako-shi Saitama, 351-0198 Japan
version 3.1.0
status Released (January 1, 2015)
copyright This documentation is licensed under the Creative Commons Attribution 3.0 Unported License.

1.2 Citing This Project

If you find this project useful, then please cite:

J. R. Johansson, P.D. Nation, and F. Nori, "QuTiP 2: A Python framework for the dynamics of open quantum systems", Comp. Phys. Comm. **184**, 1234 (2013).

or

J. R. Johansson, P.D. Nation, and F. Nori, "QuTiP: An open-source Python framework for the dynamics of open quantum systems", Comp. Phys. Comm. **183**, 1760 (2012).

which may also be download from http://arxiv.org/abs/1211.6518 or http://arxiv.org/abs/1110.0573, respectively.

1.3 Funding

The development of QuTiP has been partially supported by the Japanese Society for the Promotion of Science Foreign Postdoctoral Fellowship Program under grants P11202 (PDN) and P11501 (JRJ). Additional funding comes from RIKEN, Kakenhi grant Nos. 2301202 (PDN), 2302501 (JRJ), and Korea University.

Japan Society for the Promotion of Science

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight, a coupling between the system of interest and the external world. In addition, any measurement performed on the system necessarily involves coupling to the measuring device, therefore introducing an additional source of external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account for the interactions between a system and its environment is an essential step in understanding the dynamics of quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is not possible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum computer, these simulations must be carried out using classical computing techniques, where the exponentially increasing dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently simulated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and most recently nanomechanical systems, it is possible to design systems using a small number of effective oscillator and spin components, excited by a limited number of quanta, that are amenable to classical simulation in a truncated Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is a fully open-source implementation of a framework written in the Python programming language designed for simulating the open quantum dynamics for systems such as those listed above. This framework distinguishes itself from the other available software solutions in providing the following advantages:

- QuTiP relies entirely on open-source software. You are free to modify and use it as you wish with no licensing fees or limitations.
- QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the need to compile after modification.
- The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy and Scipy libraries, and are based on many of the same algorithms used in propriety software.
- QuTiP allows for solving the dynamics of Hamiltonians with arbitrary time-dependence, including collapse operators.
- Time-dependent problems can be automatically compiled into C-code at run-time for increased performance.
- Takes advantage of the multiple processing cores found in essentially all modern computers.
- QuTiP was designed from the start to require a minimal learning curve for those users who have experience using the popular quantum optics toolbox by Sze M. Tan.
- Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.

1.5 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems. Anyone who contributes will be duly recognized. Even small contributions are noted. See *Contributors* for a list of people who have helped in one way or another. If you are interested, please drop us a line at the QuTiP discussion group webpage.

INSTALLATION

2.1 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language. The following packages are currently required:

Package	Version	Details
Python	2.7+	Version 3.3+ is highly recommended.
Numpy	1.7+	Not tested on lower versions.
Scipy	0.14+	Lower versions have missing features.
Matplotlib	1.2.0+	Some plotting does not work on lower versions.
Cython	0.15+	Needed for compiling some time-dependent Hamiltonians.
GCC	4.2+	Needed for compiling Cython files.
Compiler		
Fortran	Fortran 90	Needed for compiling the optional Fortran-based Monte Carlo solver.
Compiler		
BLAS library	1.2+	Optional, Linux & Mac only. Needed for installing Fortran Monte Carlo
		solver.
Mayavi	4.1+	Optional. Needed for using the Bloch3d class.
Python Headers	2.7+	Linux only. Needed for compiling Cython files.
LaTeX	TexLive	Optional. Needed if using LaTeX in figures.
	2009+	
nose	1.1.2+	Optional. For running tests.
scikits.umfpack	5.2.0+	Optional. Faster ($\sim 2-5x$) steady state calculations.

As of version 2.2, QuTiP includes an optional Fortran-based Monte Carlo solver that has some performance benefit over the Python-based solver when simulating small systems. In order to install this package you must have a Fortran compiler (for example gfortran) and BLAS development libraries. At present, these packages are tested only on the Linux and OS X platforms.

2.2 Platform-independent installation

Often the easiest way is to install QuTiP is to use the Python package manager pip.

```
pip install qutip
```

Or, optionally, to also include the Fortran-based Monte Carlo solver:

pip install qutip --install-option=--with-f90mc

More detailed platform-dependent installation alternatives are given below.

2.3 Get the source code

Official releases of QuTiP are available from the download section on the project's web pages

http://www.qutip.org/download.html

and the latest source code is available in our Github repository

http://github.com/qutip

In general we recommend users to use the latest stable release of QuTiP, but if you are interested in helping us out with development or wish to submit bug fixes, then use the latest development version from the Github repository.

2.4 Installing from source

Installing QuTiP from source requires that all the dependencies are satisfied. The installation of these dependencies is different on each platform, and detailed instructions for Linux (Ubuntu), Mac OS X and Windows are given below.

Regardless of platform, to install QuTiP from the source code run:

sudo python setup.py install

To also include the optional Fortran Monte Carlo solver, run:

sudo python setup.py install --with-f90mc

On Windows, omit sudo from the commands given above.

2.5 Installation on Ubuntu Linux

Using QuTiP's PPA

The easiest way to install QuTiP in Ubuntu (14.04 and later) is to use the QuTiP PPA

```
sudo add-apt-repository ppa:jrjohansson/qutip-releases
sudo apt-get update
sudo apt-get install python-qutip
```

A Python 3 version is also available, and can be installed using:

sudo apt-get install python3-qutip

With this method the most important dependencies are installed automatically, and when a new version of QuTiP is released it can be upgraded through the standard package management system. In addition to the required dependencies, it is also strongly recommended that you install the texlive-latex-extra package:

```
sudo apt-get install texlive-latex-extra
```

Manual installation of dependencies

First install the required dependencies using:

sudo apt-get install python-dev cython python-setuptools python-nose sudo apt-get install python-numpy python-scipy python-matplotlib

Then install QuTiP from source following the instructions given above. Alternatively (or additionally), to install a Python 3 environment, use:

sudo apt-get install python3-dev cython3 python3-setuptools python3-nose sudo apt-get install python3-numpy python3-scipy python3-matplotlib

and then do the installation from source using python3 instead of python. Optional, but recommended, dependencies can be installed using:

```
sudo apt-get install texlive-latex-extra # recommended for plotting
sudo apt-get install mayavi2 # optional, for Bloch3d only
sudo apt-get install libblas-dev # optional, for Fortran Monte Carlo solver
sudo apt-get install liblapack-dev # optional, for Fortran Monte Carlo solver
sudo apt-get install gfortran # optional, for Fortran Monte Carlo solver
```

2.6 Installation on Mac OS X (10.8+)

Setup Using Homebrew

The latest version of QuTiP can be quickly installed on OS X using Homebrew and the automated installation shell scripts

Python 2.7 installation script Python 3.4 installation script

Having downloaded the script corresponding to the version of Python you want to use, the installation script can be run from the terminal using (replacing X with 2 or 3)

```
sh install_qutip_pyX.sh
```

The script will then install Homebrew and the required QuTiP dependencies before installing QuTiP itself and running the built in test suite. Any errors in the homebrew configuration will be displayed at the end. Using Python 2.7 or 3.4, the python commend-line and IPython interpreter can be run by calling python and ipython or python3 and ipython3, respectively.

If you have installed other packages in the /usr/local/ directory, or have changed the permissions of any of its sub-directories, then this script may fail to install all the necessary tools automatically.

Setup Using Macports

If you have not done so already, install the Apple Xcode developer tools from the Apple App Store. After installation, open Xcode and go to: Preferences -> Downloads, and install the 'Command Line Tools'.

On the Mac OS, you can install the required libraries via MacPorts. After installation, the necessary "ports" for QuTiP may be installed via (Replace '34' with '27' if you want Python 2.7)

```
sudo port install py34-scipy
sudo port install py34-matplotlib +latex
sudo port install py34-cython
sudo port install py34-ipython +notebook+parallel
sudo port install py34-pip
```

Now, we want to tell OS X which Python and iPython we are going to use

```
sudo port select python python34
sudo port select ipython ipython34
sudo port select pip pip34
```

We now want to set the macports compiler to the vanilla GCC version. From the command line type

```
port select gcc
```

which will bring up a list of installed compilers, such as

```
Available versions for gcc:
mp-gcc48
none (active)
```

We want to set the the compiler to the gcc4x compiler, where x is the highest number available, in this case mp-gcc48 (the "mp-" does not matter). To do this type

```
sudo port select gcc mp-gcc48
```

Running port select again should give

```
Available versions for gcc:
mp-gcc48 (active)
none
```

To install QuTiP, run

sudo pip install qutip --install-option=--with-f90mc

Warning: Having both macports and homebrew installations on the same machine is not recommended, and can lead to QuTiP installation problems.

Setup via SciPy Superpack

A third option is to install the required Python packages using the SciPy Superpack. Further information on installing the superpack can be found on the SciPy Downloads page.

Anaconda CE Distribution

Finally, one can also use the Anaconda CE package to install all of QuTiP.

2.7 Installation on Windows

QuTiP is primarily developed for Unix-based platforms such as Linux an Mac OS X, but it can also be used on Windows. We have limited experience and ability to help troubleshoot problems on Windows, but the following installation steps have been reported to work:

- 1. Install the Python(X,Y) distribution (tested with version 2.7.3.1). Other Python distributions, such as Enthought Python Distribution or Anaconda CE have also been reported to work.
- 2. When installing Python(x,y), explicitly select to include the Cython package in the installation. This package is not selected by default.
- 3. Add the following content to the file *C:/Python27/Lib/distutils/distutils.cfg* (or create the file if it does not already exists):

```
[build]
compiler = mingw32
[build_ext]
compiler = mingw32
```

The directory where the distutils.cfg file should be placed might be different if you have installed the Python environment in a different location than in the example above.

4. Obtain the QuTiP source code and installed it following the instructions given above.

Note: In some cases, to get the dynamic compilation of Cython code to work, it might be necessary to edit the PATH variable and make sure that *C:\MinGW32-xy\bin* appears either *first* in the PATH list, or possibly *right after C:\Python27\Lib\site-packages\PyQt4*. This is to make sure that the right version of the MinGW compiler is used if more than one is installed (not uncommon under Windows, since many packages are distributed and installed with their own version of all dependencies).

2.8 Optional Installation Options

UMFPACK Linear Solver

As of SciPy 0.14+, the umfpack linear solver routines for solving large-scale sparse linear systems have been replaced due to licensing restrictions. The default method for all sparse linear problems is now the SuperLU library. However, scipy still includes the ability to call the umfpack library via the scikits.umfpack module. In our experience, the umfpack solver is 2-5x faster than the SuperLU routines, which is a very noticeable performance increase when used for solving steady state solutions. We have an updated scikits.umfpack module available at http://github.com/nonhermitian/umfpack that can be installed to have SciPy find and use the umfpack library.

Optimized BLAS Libraries

QuTiP is designed to take advantage of some of the optimized BLAS libraries that are available for NumPy. At present, this includes the OPENBLAS and MKL libraries. If NumPy is built against these libraries, then QuTiP will take advantage of the performance gained by using these optimized tools. As these libraries are multi-threaded, you can change the number of threads used in these packages by adding:

```
>>> import os
>>> os.environ['OPENBLAS_NUM_THREADS'] = '4'
>>> os.environ['MKL_NUM_THREADS'] = '4'
```

at the top of your Python script files, or iPython notebooks, and then loading the QuTiP framework. If these commands are not present, then QuTiP automatically sets the number of threads to one.

2.9 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite of tests scripts you must have the nose testing library. After installing QuTiP, leave the installation directory, run Python (or iPython), and call:

```
>>> import qutip.testing as qt
>>> qt.run()
```

If successful, these tests indicate that all of the QuTiP functions are working properly. If any errors occur, please check that you have installed all of the required modules. See the next section on how to check the installed versions of the QuTiP dependencies. If these tests still fail, then head on over to the QuTiP Discussion Board and post a message detailing your particular issue.

2.10 Checking Version Information using the About Function

QuTiP includes an "about" function for viewing information about QuTiP and the important dependencies installed on your system. To view this information:

```
In [1]: from qutip import *
In [2]: about()
QuTiP: Quantum Toolbox in Python
Copyright (c) 2011 and later.
Paul D. Nation & Robert J. Johansson
QuTiP Version:
                    3.1.0
                   1.9.1
Numpy Version:
Scipy Version:
                   0.14.0
Cython Version:
                   0.21.1
Matplotlib Version: 1.4.2
Fortran mcsolver: True
scikits.umfpack: False
Python Version: 2.7.9
Platform Info: Darwin (x86_64)
Installation path: /opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site
```

USERS GUIDE

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide is divided up into several sections, each highlighting a specific set of functionalities. In combination with the examples that can be found on the project web page http://qutip.org/tutorials.html, this guide should provide a more or less complete overview. In addition, the *API documentation* for each function is located at the end of this guide.

Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems composed of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever growing) library of functions and classes; from qutip.states.basis to qutip.wigner. The general organization of QuTiP, highlighting the important API available to the user, is shown in the *QuTiP tree-diagram of user accessible functions and classes*.

3.2 Basic Operations on Quantum Objects

First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, we must first call the import statement:

In [1]: from qutip import *

that will load all of the user available functions. Often, we also need to import the Numpy and Matplotlib libraries with:

In [2]: import numpy as np

Note that, in the rest of the documentation, functions are written using *qutip.module.function()* notation which links to the corresponding function in the QuTiP API: *Functions*. However, in calling *import* *, we have already loaded all of the QuTiP modules. Therefore, we will only need the function name and not the complete path when calling the function from the interpreter prompt or a Python script.

The quantum object class

Introduction

The key difference between classical and quantum mechanics lies in the use of operators instead of numbers as variables. Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics of quantum systems we need a data structure that is capable of encapsulating the properties of a quantum operator and ket/bra vectors. The quantum object class, qutip.Qobj, accomplishes this using matrix representation.

To begin, let us create a blank Qobj:

Figure 3.1: QuTiP tree-diagram of user accessible functions and classes.

```
In [3]: Qobj()
Out[3]:
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[ 0.]]
```

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1dimensional matrix consisting of a single zero entry.

Hint: By convention, Class objects in Python such as Qobj() differ from functions in the use of a beginning capital letter.

We can create a Qobj with a user defined data set by passing a list or array of data into the Qobj:

```
In [4]: Qobj([[1],[2],[3],[4],[5]])
Out[4]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 1.]
  [ 2.]
```

```
[ 3.]
 [ 4.]
 [ 5.]]
In [5]: x = np.array([[1, 2, 3, 4, 5]])
In [6]: Qobj(x)
Out[6]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra
Qobj data =
[[ 1. 2. 3. 4. 5.]]
In [7]: r = np.random.rand(4, 4)
In [8]: Qobj(r)
Out[8]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[ 0.13271688 0.96498406 0.6217972
                                       0.05120659]
 [ 0.95073525 0.4422577
                          0.93436513
                                      0.39684026]
 [ 0.14249098 0.57866168 0.75444556
                                      0.95474959]
 [ 0.43023463 0.67188093 0.42813227 0.53413365]]
```

Notice how both the dims and shape change according to the input data. Although dims and shape appear to have the same function, the difference will become quite clear in the section on tensor products and partial traces.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond to commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-level system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of states:

ics.		
States	Command (#	Inputs
	means optional)	
Fock state ket vector	<pre>basis(N,#m)/fock</pre>	(N =#mu)mber of levels in Hilbert space, m = level
		containing excitation (0 if no m given)
Fock density matrix (outer	fock_dm(N,#p)	same as basis(N,m) / fock(N,m)
product of basis)		
Coherent state	coherent(N,alph	a alpha = complex number (eigenvalue) for requested
		coherent state
Coherent density matrix	coherent_dm(N,a	sårne) as coherent(N,alpha)
(outer product)		
Thermal density matrix	thermal_dm(N,n)	n = particle number expectation value
(for n particles)		
and anarators:		·

and operators:

Operators	Command (# means	Inputs
	optional)	
Identity	qeye(N)	N = number of levels in Hilbert space.
Lowering (destruction)	destroy(N)	same as above
operator		
Raising (creation)	create(N)	same as above
operator		
Number operator	num(N)	same as above
Single-mode	displace(N,alpha)	N=number of levels in Hilbert space, alpha = complex
displacement operator		displacement amplitude.
Single-mode squeezing	squeeze(N, sp)	N=number of levels in Hilbert space, sp = squeezing
operator		parameter.
Sigma-X	sigmax()	
Sigma-Y	sigmay()	
Sigma-Z	sigmaz()	
Sigma plus	sigmap()	
Sigma minus	sigmam()	
Higher spin operators	jmat(j,#s)	j = integer or half-integer representing spin, s = 'x', 'y',
		'z', '+', or '-'

As an example, we give the output for a few of these functions:

```
In [9]: basis(5,3)
Out[9]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]]
In [10]: coherent(5,0.5-0.5j)
Out[10]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.77880170+0.j
[ 0.38939142-0.38939142j]
[ 0.00000000-0.27545895j]
[-0.07898617-0.07898617j]
[-0.04314271+0.j
                   ]]
In [11]: destroy(4)
Out[11]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
                          0.
                                         ]
              1.
[[ 0.
                                      0.
[ 0.
              0.
                          1.41421356 0.
                                              1
                                     1.73205081]
              0.
                          0.
[ 0.
              0.
                          Ο.
                                     0. ]]
[ 0.
In [12]: sigmaz()
Out[12]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]
In [13]: jmat(5/2.0, '+')
Out[13]:
Quantum object: dims = [[6], [6]], shape = [6, 6], type = oper, isherm = False
Qobj data =
```

[[0.	2.23606798	Ο.	0.	0.	0.]
[0.	0.	2.82842712	0.	0.	0.]
[0.	0.	0.	3.	0.	0.]
[0.	0.	0.	0.	2.82842712	0.]
[0.	0.	0.	0.	0.	2.2360679	8]
[0.	0.	0.	0.	0.	0.]]

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be accessed in the following way:

```
In [14]: q = destroy(4)
In [15]: q.dims
Out[15]: [[4], [4]]
In [16]: q.shape
Out[16]: [4, 4]
```

In general, the attributes (properties) of a Qobj object (or any Python class) can be retrieved using the *Q.attribute* notation. In addition to the attributes shown with the print function, the Qobj class also has the following:

Property	At-	Description		
	tribute			
Data	Q.data	Matrix representing state or operator		
Dimen-	Q.dims	List keeping track of shapes for individual components of a multipartite system (for		
sions		tensor products and partial traces).		
Shape	Q.shape	Dimensions of underlying data matrix.		
is Hermi-	Q.isher	nermIs the operator Hermitian or not?		
tian?				
Туре	Q.type	Is object of type 'ket, 'bra', 'oper', or 'super'?		

Figure 3.2: The Qobj Class viewed as a container for the properties need to characterize a quantum operator or state vector.

For the destruction operator above:

```
In [17]: q.type
Out[17]: 'oper'
In [18]: q.isherm
Out[18]: False
```

The data attribute returns a message stating that the data is a sparse matrix. All Qobj instances store their data as a sparse matrix to save memory. To access the underlying dense matrix one needs to use the qutip.Qobj.full function as described below.

Qobj Math

The rules for mathematical operations on Qobj instances are similar to standard matrix arithmetic:

```
In [20]: q = destroy(4)
In [21]: x = sigmax()
In [22]: q + 5
Out[22]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
[[ 5.
               1.
                           Ο.
                                       0.
                                                 ]
                           1.41421356 0.
[ 0.
               5.
                                                 1
[ 0.
                           5.
                                       1.73205081]
               0.
                           0.
                                       5.
[ 0.
               0.
                                            ]]
In [23]: x * x
Out[23]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. 1.]]
In [24]: q ** 3
Out [24]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isherm = False
Qobj data =
               0.
                           0.
                                       2.449489741
[[ 0.
[ 0.
               Ο.
                           Ο.
                                       0.
                                               1
[ 0.
               0.
                           0.
                                       0.
                                                 1
                           0.
                                       0.
                                                 11
 [ 0.
               0.
In [25]: x / np.sqrt(2)
Out [25]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.
               0.70710678]
[ 0.70710678 0.
                         ]]
```

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

In addition, the logic operators is equal == and is not equal != are also supported.

Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qobj class instances. For a general quantum object Q:

Function	Command	Description
Check	Q.check_herm()	Check if quantum object is Hermitian
Hermicity		
Conjugate	Q.conj()	Conjugate of quantum object.
Dagger	Q.dag()	Returns adjoint (dagger) of object.
(adjoint)		
Diagonal	Q.diag()	Returns the diagonal elements.
Eigenenergies	Q.eigenenergies()	Eigenenergies (values) of operator.
Eigenstates	Q.eigenstates()	Returns eigenvalues and eigenvectors.
Eliminate	Q.eliminate_states(ind	sReturns quantum object with states in list inds removed.
States		
Exponential	Q.expm()	Matrix exponential of operator.
Extract States	Q.extract_states(inds)	
Full	Q.full()	Returns full (not sparse) array of Q's data.
Groundstate	Q.groundstate()	Eigenval & eigket of Qobj groundstate.
Matrix	Q.matrix_element(bra,k	eMatrix element <bralqlket></bralqlket>
Element		
Norm	Q.norm()	Returns L2 norm for states, trace norm for operators.
Overlap	Q.overlap(state)	Overlap between current Qobj and a given state.
Partial Trace	Q.ptrace(sel)	Partial trace returning components selected using 'sel'
		parameter.
Permute	Q.permute(order)	Permutes the tensor structure of a composite object in the
		given order.
Sqrt	Q.sqrtm()	Matrix sqrt of operator.
Tidyup	Q.tidyup()	Removes small elements from Qobj.
Trace	Q.tr()	Returns trace of quantum object.
Transform	Q.transform(inpt)	A basis transformation defined by matrix or list of kets
		'inpt' .
Transpose	Q.trans()	Transpose of quantum object.
Unit	Q.unit()	Returns normalized (unit) vector Q/Q.norm().

```
In [27]: basis(5, 3)
Out[27]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 1.]
 [ 0.]]
In [28]: basis(5, 3).dag()
Out[28]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra
Qobj data =
[[ 0. 0. 0. 1. 0.]]
In [29]: coherent_dm(5, 1)
Out[29]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
```

```
[[ 0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]
 [ 0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
 [ 0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
 [ 0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]
 [ 0.08826704 0.08822695 0.06263061 0.035077
                                                 0.0211765 ]]
In [30]: coherent_dm(5, 1).diag()
Out[30]: array([ 0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 ])
In [31]: coherent_dm(5, 1).full()
Out[31]:
array([[ 0.36791117+0.j, 0.36774407+0.j, 0.26105441+0.j, 0.14620658+0.j,
        0.08826704+0.j],
       [ 0.36774407+0.j,
                         0.36757705+0.j, 0.26093584+0.j, 0.14614018+0.j,
        0.08822695+0.j],
       [ 0.26105441+0.j,
                         0.26093584+0.j, 0.18523331+0.j,
                                                          0.10374209+0.j,
        0.06263061+0.j],
                        0.14614018+0.j, 0.10374209+0.j, 0.05810197+0.j,
       [ 0.14620658+0.j,
        0.03507700+0.j],
                        0.08822695+0.j, 0.06263061+0.j, 0.03507700+0.j,
       [ 0.08826704+0.j,
        0.02117650+0.j]])
In [32]: coherent_dm(5, 1).norm()
Out[32]: 1.0
In [33]: coherent_dm(5, 1).sqrtm()
Out[33]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0.36791118 0.36774407 0.26105441 0.14620658 0.08826704]
 [ 0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
 [ 0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
 [ 0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]
 0.08826704 0.08822695 0.06263061 0.035077
                                                 0.0211765 ]]
In [34]: coherent_dm(5, 1).tr()
Out[34]: 1.0
In [35]: (basis(4, 2) + basis(4, 1)).unit()
Out[35]:
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
Qobj data =
[[ 0.
            1
 [ 0.70710678]
 [ 0.70710678]
            11
 [ 0.
```

3.3 Manipulating States and Operators

Introduction

In the previous guide section *Basic Operations on Quantum Objects*, we saw how to create states and operators, using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the examples on the tutorials web page.

State Vectors (kets or bras)

Here we begin by creating a Fock <code>qutip.states.basis</code> vacuum state vector $|0\rangle$ with in a Hilbert space with 5 number states, from 0 to 4:

```
In [1]: vac = basis(5, 0)
In [2]: vac
Out[2]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 1.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]
```

and then create a lowering operator (\hat{a}) corresponding to 5 number states using the qutip.operators.destroy function:

In [3]: a = destroy(5)

In [4]: a

```
Out[4]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = False
Qobj data =
                                                      0.
                1.
                            0.
                                          0.
[[ 0.
                                                                 ]
 [ 0.
                            1.41421356 0.
                                                      0.
                0.
                                                                 1
                            Ο.
                                         1.73205081
                                                      0.
 [ 0.
                0.
                                                                 ]
 [ 0.
                Ο.
                            0.
                                         0.
                                                      2.
                                                                 1
 [ 0.
                Ο.
                            0.
                                          0.
                                                      0.
                                                                 ]]
```

Now lets apply the destruction operator to our vacuum state vac,

```
In [5]: a * vac
Out[5]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
```

We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes from using the adjoint of the lowering operator, the raising operator \hat{a}^{\dagger} :

```
In [6]: a.dag() * vac
Out[6]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 1.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]
```

The raising operator has in indeed raised the state *vec* from the vacuum to the $|1\rangle$ state. Instead of using the dagger Qobj.dag() method to raise the state, we could have also used the built in qutip.operators.create function to make a raising operator:

```
In [7]: c = create(5)
In [8]: c * vac
Out[8]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
```

[1.] [0.] [0.] [0.]]

which does the same thing. We can raise the vacuum state more than once by successively apply the raising operator:

```
In [9]: c * c * vac
Out[9]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0. ]
[ 0. ]
[ 1.41421356]
[ 0. ]
[ 0. ]]
```

or just taking the square of the raising operator $(\hat{a}^{\dagger})^2$:

```
In [10]: c ** 2 * vac
Out[10]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0. ]
[ 0. ]
[ 1.41421356]
[ 0. ]
[ 0. ]]
```

Applying the raising operator twice gives the expected $\sqrt{n+1}$ dependence. We can use the product of c * a to also apply the number operator to the state vector vac:

```
In [11]: c * a * vac
Out[11]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]
```

or on the $|1\rangle$ state:

```
In [12]: c * a * (c * vac)
Out[12]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]
```

or the $|2\rangle$ state:

```
In [13]: c * a * (c**2 * vac)
Out[13]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[[ 0.      ]
      [ 0.      ]
```

```
[ 2.82842712]
[ 0. ]
[ 0. ]]
```

Notice how in this last example, application of the number operator does not give the expected value n = 2, but rather $2\sqrt{2}$. This is because this last state is not normalized to unity as $c |n\rangle = \sqrt{n+1} |n+1\rangle$. Therefore, we should normalize our vector first:

```
In [14]: c * a * (c**2 * vac).unit()
Out[14]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 2.]
[ 0.]
[ 0.]]
```

Since we are giving a demonstration of using states and operators, we have done a lot more work than we should have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state. Instead we can use the qutip.states.basis (or qutip.states.fock) function to directly obtain the required state:

```
In [15]: ket = basis(5, 2)
In [16]: print(ket)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]
[ 0.]
[ 0.]]
```

Notice how it is automatically normalized. We can also use the built in qutip.operators.num operator:

```
In [17]: n = num(5)
In [18]: print(n)
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0.]
[ 0. 0. 2. 0. 0.]
[ 0. 0. 2. 0. 0.]
[ 0. 0. 3. 0.]
[ 0. 0. 0. 4.]]
```

Therefore, instead of c * a * (c ** 2 * vac).unit() we have:

```
In [19]: n * ket
Out[19]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[[ 0.]
  [ 0.]
  [ 2.]
  [ 0.]
  [ 0.]
  [ 0.]]
```

We can also create superpositions of states:

```
In [20]: ket = (basis(5, 0) + basis(5, 1)).unit()
In [21]: print(ket)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.70710678]
[ 0.70710678]
[ 0. ]
[ 0. ]
[ 0. ]
[ 0. ]]
```

where we have used the qutip.Qobj.unit method to again normalize the state. Operating with the number function again:

We can also create coherent states and squeezed states by applying the qutip.operators.displace and qutip.operators.squeeze functions to the vacuum state:

```
In [23]: vac = basis(5, 0)
In [24]: d = displace(5, 1j)
In [25]: s = squeeze(5, 0.25 + 0.25j)
In [26]: d * vac
Out[26]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.60655682+0.j
 [ 0.0000000+0.60628133j]
 [-0.43038740+0.j
                         1
 [ 0.0000000-0.24104351j]
 [ 0.14552147+0.j
                         11
In [27]: d * s * vac
Out[27]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.65893786+0.08139381j]
 [ 0.10779462+0.51579735j]
 [-0.37567217-0.01326853j]
 [-0.02688063-0.23828775j]
```

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in qutip.states.coherent function.

Density matrices

[0.26352814+0.11512178j]]

One of the main purpose of QuTiP is to explore the dynamics of **open** quantum systems, where the most general state of a system is not longer a state vector, but rather a density matrix. Since operations on density matrices operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product $|\psi\rangle \langle \psi|$ of a ket vector:

```
In [28]: ket = basis(5, 2)
In [29]: ket * ket.dag()
Out [29]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0.
              Ο.
                  0.]
 [ 0.
      Ο.
          1.
              Ο.
                  0.1
 [ 0.
          Ο.
              Ο.
      Ο.
                  0.]
          Ο.
              Ο.
                 0.11
 [ 0. 0.
```

A similar task can also be accomplished via the qutip.states.fock_dm or qutip.states.ket2dm functions:

```
In [30]: fock_dm(5, 2)
Out[30]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 1. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
```

```
In [31]: ket2dm(ket)
Out[31]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 1. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
```

If we want to create a density matrix with equal classical probability of being found in the $|2\rangle$ or $|4\rangle$ number states we can do the following:

```
In [32]: 0.5 * ket2dm(basis(5, 4)) + 0.5 * ket2dm(basis(5, 2))
Out[32]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0. 0.
            0.
                 Ο.
                      0. ]
[ 0.
       0.
                 0.
                      0.1
            0.
ΓΟ.
            0.5 0.
                      0.1
       0.
ΓΟ.
       0.
            0. 0.
                      0.1
 [ 0.
       0.
            0.
                 0.
                      0.511
```

or use $0.5 * \text{fock}_dm(5, 2) + 0.5 * \text{fock}_dm(5, 4)$. There are also several other builtin functions for creating predefined density matrices, for example <code>qutip.states.coherent_dm</code> and <code>qutip.states.thermal_dm</code> which create coherent state and thermal state density matrices, respectively.

```
In [33]: coherent_dm(5, 1.25)
Out[33]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0.20980701  0.26141096  0.23509686  0.15572585  0.13390765]
[ 0.26141096  0.32570738  0.29292109  0.19402805  0.16684347]
[ 0.23509686  0.29292109  0.26343512  0.17449684  0.1500487 ]
[ 0.15572585  0.19402805  0.17449684  0.11558499  0.09939079]
[ 0.13390765  0.16684347  0.1500487   0.09939079  0.0854655 ]]
```

```
In [34]: thermal_dm(5, 1.25)
Out[34]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[ 0.46927974 0.
[[ 0.46927974 0. 0.
[ 0. 0.26071096 0.
                                               0.
                                  0.
                                                        1
                                               0.
                                    0.
                                                        1
             0.
                        0.14483942 0.
                                               0.
[ 0.
                                                        1
                                   0.08046635 0.
[ 0.
             0.
                        0.
                                                        1
 [ 0.
             0.
                        0.
                                   Ο.
                                               0.04470353]]
```

QuTiP also provides a set of distance metrics for determining how close two density matrix distributions are to each other. Included are the trace distance qutip.metrics.tracedist, fidelity qutip.metrics.fidelity, Hilbert-Schmidt distance qutip.metrics.hilbert_dist, Bures distance qutip.metrics.bures_dist, and Bures angle qutip.metrics.bures_angle.

```
In [35]: x = coherent_dm(5, 1.25)
In [36]: y = coherent_dm(5, 1.25j) # <-- note the 'j'
In [37]: z = thermal_dm(5, 0.125)
In [38]: fidelity(x, x)
Out[38]: 1.000000208397526
In [39]: tracedist(y, y)
Out[39]: 0.0</pre>
```

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by $T = \sqrt{1 - F^2}$.

```
In [40]: tracedist(y, x)
Out[40]: 0.9771565895267291
In [41]: np.sqrt(1 - fidelity(y, x) ** 2)
```

```
Out[41]: 0.97715657013508528
```

For a pure state and a mixed state, $1 - F^2 \leq T$ which can also be verified:

```
In [42]: 1 - fidelity(x, z) ** 2
Out[42]: 0.7782890497791632
In [43]: tracedist(x, z)
```

Out[43]: 0.8559028328862591

Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit system, we use the same qutip.states.basis, or qutip.states.fock, function with only two levels:

```
In [44]: spin = basis(2, 0)
```

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state truncated to two energy levels?

```
In [45]: vac = basis(2, 0)
```

At this stage, there is no difference. This should not be surprising as we called the exact same function twice. The difference between the two comes from the action of the spin operators qutip.operators.sigmax, qutip.operators.sigmay, qutip.operators.sigmaz, qutip.operators.sigmap, and qutip.operators.sigmam on these two-level states. For example, if vac corresponds to the vacuum state of a harmonic oscillator, then, as we have already seen, we can use the raising operator to get the $|1\rangle$ state:

```
In [46]: vac
Out[46]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 1.]
  [ 0.]]
In [47]: c = create(2)
In [48]: c * vac
Out[48]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 0.]
  [ 1.]]
```

For a spin system, the operator analogous to the raising operator is the sigma-plus operator qutip.operators.sigmap. Operating on the spin state gives:

```
In [49]: spin
Out[49]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 1.]
    [ 0.]]
In [50]: sigmap() * spin
Out[50]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 0.]
    [ 0.]]
```

Now we see the difference! The qutip.operators.sigmap operator acting on the spin state returns the zero vector. Why is this? To see what happened, let us use the qutip.operators.sigmaz operator:

```
In [51]: sigmaz()
Out[51]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
 [ 0. -1.]]
In [52]: sigmaz() * spin
Out[52]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 1.]
 [ 0.]]
In [53]: spin2 = basis(2, 1)
In [54]: spin2
Out [54]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 0.]
[ 1.]]
```

```
In [55]: sigmaz() * spin2
Out[55]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[[ 0.]
    [-1.]]
```

The answer is now apparent. Since the QuTiP qutip.operators.sigmaz function uses the standard z-basis representation of the sigma-z spin operator, the spin state corresponds to the $|\uparrow\rangle$ state of a two-level spin system while spin2 gives the $|\downarrow\rangle$ state. Therefore, in our previous example sigmap() * spin, we raised the qubit state out of the truncated two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin operators remain in the conventional form. Second, when the spin system is in the $|\uparrow\rangle$ state:

```
In [56]: sigmaz() * spin
Out[56]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 1.]
  [ 0.]]
```

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing, and matrices start with the zeroth element). The $|\downarrow\rangle$ state therefore has a non-zero entry in the first index position. This corresponds nicely with the quantum information definitions of qubit states, where the excited $|\uparrow\rangle$ state is label as $|0\rangle$, and the $|\downarrow\rangle$ state by $|1\rangle$.

If one wants to create spin operators for higher spin systems, then the qutip.operators.jmat function comes in handy.

Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore, in this section we demonstrate the use of the qutip.expect function. To begin:

```
In [57]: vac = basis(5, 0)
In [58]: one = basis(5, 1)
In [59]: c = create(5)
In [60]: N = num(5)
In [61]: expect(N, vac)
Out[61]: 0.0
In [62]: expect(N, one)
Out[62]: 1.0
In [63]: coh = coherent_dm(5, 1.0j)
In [64]: expect(N, coh)
Out[64]: 0.9970555745806599
In [65]: cat = (basis(5, 4) + 1.0j * basis(5, 3)).unit()
In [66]: expect(c, cat)
Out[66]: 0.999999999999999999999
```

The qutip.expect function also accepts lists or arrays of state vectors or density matrices for the second input:

Notice how in this last example, all of the return values are complex numbers. This is because the qutip.expect function looks to see whether the operator is Hermitian or not. If the operator is Hermitian, than the output will always be real. In the case of non-Hermitian operators, the return values may be complex. Therefore, the qutip.expect function will return an array of complex values for non-Hermitian operators when the input is a list/array of states or density matrices.

Of course, the qutip.expect function works for spin states and operators:

```
In [71]: up = basis(2, 0)
In [72]: down = basis(2, 1)
In [73]: expect(sigmaz(), up)
Out[73]: 1.0
In [74]: expect(sigmaz(), down)
Out[74]: -1.0
```

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:

```
In [75]: spin1 = basis(2, 0)
In [76]: spin2 = basis(2, 1)
In [77]: two_spins = tensor(spin1, spin2)
In [78]: sz1 = tensor(sigmaz(), qeye(2))
In [79]: sz2 = tensor(qeye(2), sigmaz())
In [80]: expect(sz1, two_spins)
Out[80]: 1.0
In [81]: expect(sz2, two_spins)
Out[81]: -1.0
```

Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the correspondance between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space, vec : $\mathcal{L}(\mathcal{H}) \rightarrow \mathcal{H} \otimes \mathcal{H}$ [Hav03], [Wat13].

This isomorphism is implemented in QuTiP by the <code>operator_to_vector</code> and <code>vector_to_operator</code> functions:

In [82]: psi = basis(2, 0)
In [83]: rho = ket2dm(psi)

```
In [84]: rho
Out[84]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. 0.]]
In [85]: vec_rho = operator_to_vector(rho)
In [86]: vec_rho
Out[86]:
Quantum object: dims = [[[2], [2]], [1]], shape = [4, 1], type = operator-ket
Qobj data =
[[ 1.]
[ 0.]
[ 0.]
 [ 0.]]
In [87]: rho2 = vector_to_operator(vec_rho)
In [88]: (rho - rho2).norm()
Out[88]: 0.0
```

The type attribute indicates whether a quantum object is a vector corresponding to an operator (operator-ket), or its Hermitian conjugate (operator-bra).

Note that QuTiP uses the *column-stacking* convention for the isomorphism between $\mathcal{L}(\mathcal{H})$ and $\mathcal{H} \otimes \mathcal{H}$:

```
In [89]: import numpy as np
In [90]: A = Qobj(np.arange(4).reshape((2, 2)))
In [91]: A
Out[91]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[ 0. 1.]
[ 2. 3.]]
In [92]: operator_to_vector(A)
Out[92]:
Quantum object: dims = [[[2], [2]], [1]], shape = [4, 1], type = operator-ket
Qobj data =
[[ 0.]
[ 2.]
[ 1.]
 [ 3.]]
```

Since $\mathcal{H} \otimes \mathcal{H}$ is a vector space, linear maps on this space can be represented as matrices, often called *supermatrices*. Using the Qobj, the spre and spost functions, supermatrices corresponding to left- and right-multiplication respectively can be quickly constructed.

```
In [93]: X = sigmax()
In [94]: S = spre(X) * spost(X.dag()) # Represents conjugation by X.
```

Note that this is done automatically by the to_super function when given type='oper' input.

```
In [95]: S2 = to_super(X)
In [96]: (S - S2).norm()
Out[96]: 0.0
```

Quantum objects representing superoperators are denoted by type=' super':

```
In [97]: S
Out[97]:
Quantum object: dims = [[[2], [2]], [[2], [2]], shape = [4, 4], type = super, isherm = True
Qobj data =
[[ 0. 0. 0. 1.]
[ 0. 0. 1. 0.]
[ 0. 1. 0. 0.]
[ 1. 0. 0. 0.]]
```

Information about superoperators, such as whether they represent completely positive maps, is exposed through the iscp, istp and iscptp attributes:

```
In [98]: S.iscp, S.istp, S.iscptp
Out[98]: (True, True, True)
```

In addition, dynamical generators on this extended space, often called *Liouvillian superoperators*, can be created using the liouvillian function. Each of these takes a Hamilonian along with a list of collapse operators, and returns a type="super" object that can be exponentiated to find the superoperator for that evolution.

```
In [99]: H = 10 * sigmaz()
In [100]: cl = destroy(2)
In [101]: L = liouvillian(H, [c1])
In [102]: L
Out[102]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4], type = super, isherm = False
Qobj data =
[[ 0.0 +0.j 0.0 +0.j 0.0 +0.j 1.0 +0.j]
[ 0.0 +0.j -0.5+20.j 0.0 +0.j 0.0 +0.j]
[ 0.0 +0.j 0.0 +0.j -0.5-20.j 0.0 +0.j]
[ 0.0 +0.j 0.0 +0.j 0.0 +0.j -1.0 +0.j]]
```

```
In [103]: S = (12 * L).expm()
```

Once a superoperator has been obtained, it can be converted between the supermatrix, Kraus and Choi formalisms by using the to_super, to_kraus and to_choi functions. The superrep attribute keeps track of what representation is a Qobj is currently using.

```
In [104]: J = to_choi(S)
In [105]: J
Out[105]:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4], type = super, isherm = True, sup
Qobj data =
[[ 1.0000000e+00+0.j
                                0.00000000e+00+0.j
                                                            0.00000000e+00+0.j
   8.07531120e-04-0.00234352j]
                                                            0.00000000e+00+0.j
 [ 0.0000000e+00+0.j
                                0.00000000e+00+0.j
    0.00000000e+00+0.j
                             ]
 [ 0.0000000e+00+0.j
                                0.00000000e+00+0.j
                                                            9.99993856e-01+0.j
    0.00000000e+00+0.j
                             ]
 [ 8.07531120e-04+0.00234352j 0.0000000e+00+0.j
                                                            0.00000000e+00+0.j
    6.14421235e-06+0.j
                         ]]
In [106]: K = to_kraus(J)
In [107]: K
Out[107]:
[Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[ 1.00000000e+00 +1.34376978e-22j 0.00000000e+00 +0.00000000e+00j]
```

```
[ 0.00000000e+00 +0.00000000e+00j 8.07531120e-04 +2.34352424e-03j]],
 Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
 Qobj data =
 [[ -1.11923759e-13 +6.02807402e-15] 0.0000000e+00 +0.0000000e+00]]
 [ 0.00000000e+00 +0.00000000e+00j 1.70093171e-11 +4.18976706e-11j]],
 Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
 Qobj data =
 [[ 0. 0.]
 [ 0. 0.]],
 Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
 Qobj data =
               0.999996931
 [[ 0.
  [ 0.
               0.
                         ]]]
```

3.4 Using Tensor Products and Partial Traces

Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator, etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function gutip.tensor.tensor is used to accomplish this task. This function takes as argument a collection:

of state vectors *or* operators and returns a composite quantum object for the combined Hilbert space. The function accepts an arbitray number of states or operators as argument. The type returned quantum object is the same as that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product of the two single-qubit ground state vectors:

```
In [1]: tensor(basis(2, 0), basis(2, 0))
Out[1]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[[ 1.]
  [ 0.]
  [ 0.]
  [ 0.]]
```

or equivalently using the list format:

```
In [2]: tensor([basis(2, 0), basis(2, 0)])
Out[2]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[ 1.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]]
```

This is straightforward to generalize to more qubits by adding more component state vectors in the argument list to the qutip.tensor.tensor function, as illustrated in the following example:

```
In [3]: tensor((basis(2, 0) + basis(2, 1)).unit(),
...: (basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))
...:
Out[3]:
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[ 0.5]
[ 0. ]
[ 0.5]
[ 0. ]
[ 0.5]
[ 0. ]
[ 0.5]
[ 0. ]
[ 0.5]
[ 0. ]]
```

This state is slightly more complicated, describing two qubits in a superposition between the up and down states, while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list of operators for each component system to the qutip.tensor.tensor function. For example, to form the operator that represents the simultaneous action of the σ_x operator on two qubits:

```
In [4]: tensor(sigmax(), sigmax())
Out[4]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[ 0. 0. 0. 1.]
[ 0. 0. 1. 0.]
[ 0. 1. 0. 0.]
[ 1. 0. 0. 0.]]
```

To create operators in a combined Hilbert space that only act only on a single component, we take the tensor product of the operator acting on the subspace of interest, with the identity operators corresponding to the components that are to be unchanged. For example, the operator that represents σ_z on the first qubit in a two-qubit system, while leaving the second qubit unaffected:

```
In [5]: tensor(sigmaz(), identity(2))
Out[5]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. -1. 0.]
[ 0. 0. -1. 0.]
[ 0. 0. 0. -1.]]
```

Example: Constructing composite Hamiltonians

The qutip.tensor.tensor function is extensively used when constructing Hamiltonians for composite systems. Here we'll look at some simple examples.

Two coupled qubits

First, let's consider a system of two coupled qubits. Assume that both qubit has equal energy splitting, and that the qubits are coupled through a $\sigma_x \otimes \sigma_x$ interaction with strength g = 0.05 (in units where the bare qubit energy splitting is unity). The Hamiltonian describing this system is:

```
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True

Qobj data =

[[ 2. 0. 0. 0.05]

[ 0. 0. 0.05 0. ]

[ 0. 0.05 0. 0. ]

[ 0.05 0. 0. -2. ]]
```

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

```
In [8]: H = (tensor(sigmaz(), identity(2), identity(2)) +
    tensor(identity(2), sigmaz(), identity(2)) +
    tensor(identity(2), identity(2), sigmaz()) +
    0.5 * tensor(sigmax(), sigmax(), identity(2)) +
    0.25 * tensor(identity(2), sigmax(), sigmax()))
...:
```

In [9]: H Out[9]:

```
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isherm = True
Qobj data =
```

[[3.	0.	0.	0.25	0.	0.	0.5	Ο.]	
[0.	1.	0.25	0.	0.	0.	Ο.	0.5]	
[0.	0.25	1.	0.	0.5	0.	Ο.	Ο.]	
[0.25	0.	0	-1.	0.	0.5	Ο.	Ο.]	
[0.	0.	0.5	0.	1.	0.	Ο.	0.2	5]	
[0.	0.	0.	0.5	0.	-1.	0.25	0.]	
[0.5	0.	0.	0.	0.	0.25	-1.	Ο.]	
[0.	0.5	0.	0.	0.25	0.	Ο.	-3.]]	

A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field (a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_c, respectively, and the atom-cavity interaction strength g, the Jaynes-Cumming Hamiltonian can be constructed as:

```
In [10]: N = 10
In [11]: omega_a = 1.0
In [12]: omega_c = 1.25
In [13]: g = 0.05
In [14]: a = tensor(identity(2), destroy(N))
In [15]: sm = tensor(destroy(2), identity(N))
In [16]: sz = tensor(sigmaz(), identity(N))
In [17]: H = 0.5 * omega_a * sz + omega_c * a.dag() * a + g * (a.dag() * sm + a * sm.dag())
```

Here N is the number of Fock states included in the cavity mode.

Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when one is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves tracing

over the environment leaving only the system of interest. In QuTiP the class method qutip.Qobj.ptrace is used to take partial traces. qutip.Qobj.ptrace acts on the qutip.Qobj instance for which it is called, and it takes one argument sel, which is a list of integers that mark the component systems that should be **kept**. All other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained via:

```
In [18]: psi = tensor(basis(2, 0), basis(2, 1))
In [19]: psi.ptrace(0)
Out[19]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. 0.]]
In [20]: psi.ptrace(1)
Out[20]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. 0.]
[ 0. 1.]]
```

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

```
In [21]:
           psi = tensor((basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))
In [22]:
            psi
Out [22]:
Quantum object: dims = [[2, 2], [1, 1]], shape = [4, 1], type = ket
Qobj data =
[[ 0.70710678]
 [ 0.
            1
 [ 0.70710678]
 [ 0.
           ]]
In [23]:
           psi.ptrace(0)
Out [23]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.5 0.5]
[ 0.5 0.5]]
In [24]:
            rho = tensor(ket2dm((basis(2, 0) + basis(2, 1)).unit()), fock_dm(2, 0))
In [25]:
            rho
Out [25]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[ 0.5 0.
            0.5 0.1
[0.0.
             Ο.
                 0. ]
 [ 0.5 0.
             0.5 0.]
 [0.0.
                0.]]
            Ο.
In [26]:
           rho.ptrace(0)
Out [26]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.5 0.5]
[ 0.5 0.5]]
```

Superoperators and Tensor Manipulations

As described in *Superoperators and Vectorized Operators*, *superoperators* are operators that act on Liouville space, the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec : $\mathcal{L}(\mathcal{H}) \rightarrow \mathcal{H} \otimes \mathcal{H}$ [Hav03], [Wat13]. To represent superoperators acting on $\mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ thus takes some tensor rearrangement to get the desired ordering $\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_1 \otimes \mathcal{H}_2$.

In particular, this means that qutip.tensor does not act as one might expect on the results of qutip.to_super:

```
In [27]: A = qeye([2])
In [28]: B = qeye([3])
In [29]: to_super(tensor(A, B)).dims
Out[29]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]
In [30]: tensor(to_super(A), to_super(B)).dims
```

Out[30]: [[[2], [2], [3], [3]], [[2], [2], [3], [3]]]

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter

case, however, each of the Hilbert space indices is listed independently and in the wrong order. The qutip.super_tensor function performs the needed rearrangement, providing the most direct analog to qutip.tensor on the underlying Hilbert space. In particular, for any two type="oper" Qobjs A and B, to_super(tensor(A, B)) == super_tensor(to_super(A), to_super(B)) and operator_to_vector(tensor(A, B)) == super_tensor(operator_to_vector(A), operator_to_vector(B)). Returning to the previous example:

```
In [31]: super_tensor(to_super(A), to_super(B)).dims
Out[31]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]
```

The qutip.composite function automatically switches between qutip.tensor and qutip.super_tensor based on the type of its arguments, such that composite (A, B) returns an appropriate Qobj to represent the composition of two systems.

```
In [32]: composite(A, B).dims
Out[32]: [[2, 3], [2, 3]]
In [33]: composite(to_super(A), to_super(B)).dims
Out[33]: [[[2, 3], [2, 3]], [[2, 3], [2, 3]]]
```

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator representations [WBC11]. In particular, the tensor_contract function allows for contracting one or more pairs of indices. As detailed in the channel contraction tutorial, this can be used to find superoperators that represent partial trace maps. Using this functionality, we can construct some quite exotic maps, such as a map from 3×3 operators to 2×2 operators:

```
In [34]: tensor_contract(composite(to_super(A), to_super(B)), (1, 3), (4, 6)).dims
Out[34]: [[[2], [2]], [[3], [3]]]
```

3.5 Time Evolution and Quantum System Dynamics

Dynamics Simulation Results

Important: In QuTiP 2, the results from all of the dynamics solvers are returned as Odedata objects. This unified and significantly simplified postprocessing of simulation results from different solvers, compared to QuTiP 1. However, this change also results in the loss of backward compatibility with QuTiP version 1.x. In QuTiP 3, the Odedata class has been renamed to Result, but for backwards compatibility an alias between Result and Odedata is provided.
The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used for returning the simulation results to the user. This object is a qutip.solver.Result class that stores all the crucial data needed for analyzing and plotting the results of a simulation. Like the qutip.Qobj class, the Result class has a collection of properties for storing information. However, in contrast to the Qobj class, this structure contains no methods, and is therefore nothing but a container object. A generic Result object result contains the following properties for storing simulation data:

Property	Description	
result.solver	String indicating which solver was used to generate the data.	
result.times	List/array of times at which simulation data is calculated.	
result.expect	List/array of expectation values, if requested.	
result.states	List/array of state vectors/density matrices calculated at times, if requested.	
result.num_exped	The number of expectation value operators in the simulation.	
result.num_collap The number of collapse operators in the simulation .		
result.ntraj	ult.ntraj Number of Monte Carlo trajectories run.	
result.col_times	Times at which state collapse occurred. Only for Monte Carlo solver.	
result.col_which	Which collapse operator was responsible for each collapse in in col_times. Only	
	used by Monte Carlo solver.	
result.seeds	Seeds used in generating random numbers for Monte Carlo solver.	

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not worry about the simulation details at this stage. Like all solvers, the Monte Carlo solver used in this example returns an Result object, here called simply result. To see what is contained inside result we can use the print function:

```
>>> print(result)
    Result object with mcsolve data.
    ------
    expect = True
    num_expect = 2, num_collapse = 2, ntraj = 500
```

The first line tells us that this data object was generated from the Monte Carlo solver mcsolve (discussed in *Monte Carlo Solver*). The next line (not the --- line of course) indicates that this object contains expectation value data. Finally, the last line gives the number of expectation value and collapse operators used in the simulation, along with the number of Monte Carlo trajectories run. Note that the number of trajectories ntraj is only displayed when using the Monte Carlo solver.

Now we have all the information needed to analyze the simulation results. To access the data for the two expectation values one can do:

```
>>> expt0 = result.expect[0]
>>> expt1 = result.expect[1]
```

Recall that Python uses C-style indexing that begins with zero (i.e., $[0] \Rightarrow 1$ st collapse operator data). Together with the array of times at which these expectation values are calculated:

```
>>> times = result.times
```

we can plot the resulting expectation values:

```
>>> plot(times, expt0, times, expt1)
>>> show()
```

State vectors, or density matrices, as well as col_times and col_which, are accessed in a similar manner, although typically one does not need an index (i.e [0]) since there is only one list for each of these components. The one exception to this rule is if you choose to output state vectors from the Monte Carlo solver, in which case there are ntraj number of state vector arrays.

Saving and Loading Result Objects

The main advantage in using the Result class as a data storage object comes from the simplicity in which simulation data can be stored and later retrieved. The qutip.fileio.qsave and qutip.fileio.qload functions are designed for this task. To begin, let us save the data object from the previous section into a file called "cavity+qubit-data" in the current working directory by calling:

>>> qsave(result, 'cavity+qubit-data')

All of the data results are then stored in a single file of the same name with a ".qu" extension. Therefore, everything needed to later this data is stored in a single file. Loading the file is just as easy as saving:

where stored_result is the new name of the Result object. We can then extract the data and plot in the same manner as before:

```
expt0 = stored_result.expect[0]
expt1 = stored_result.expect[1]
times = stored_result.times
plot(times, expt0, times, expt1)
show()
```

Also see Saving QuTiP Objects and Data Sets for more information on saving quantum objects, as well as arrays for use in other programs.

Lindblad Master Equation Solver

Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi,\tag{3.1}$$

where Ψ is the wave function, \hat{H} the Hamiltonian, and \hbar is Planck's constant. In general, the Schrödinger equation is a partial differential equation (PDE) where both Ψ and \hat{H} are functions of space and time. For computational purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian, and to write the equation in matrix and vector form

$$i\hbar \frac{d}{dt} \left|\psi\right\rangle = H \left|\psi\right\rangle$$

where $|\psi\rangle$ is the state vector and H is the matrix representation of the Hamiltonian. This matrix equation can, in principle, be solved by diagonalizing the Hamiltonian matrix H. In practice, however, it is difficult to perform this diagonalization unless the size of the Hilbert space (dimension of the matrix H) is small. Analytically, it is a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and accessible tools for this task.

The Schrödinger equation, which governs the time-evolution of closed quantum systems, is defined by its Hamiltonian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how Hamiltonians and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-dissipative) time-evolution of an arbitrary state vector $|\psi_0\rangle$ (psi0) using the QuTiP function qutip.mesolve. It evolves the state vector and evaluates the expectation values for a set of operators expt_ops at the points in time in the list times, using an ordinary differential equation solver. Alternatively, we can use the function qutip.essolve, which uses the exponential-series technique to calculate the time evolution of a system. The

qutip.mesolve and qutip.essolve functions take the same arguments and it is therefore easy switch between the two solvers.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up state is calculated, and the expectation values of the σ_z operator evaluated, with the following code

```
In [1]: H = 2 * np.pi * 0.1 * sigmax()
In [2]: psi0 = basis(2, 0)
In [3]: times = np.linspace(0.0, 10.0, 20.0)
In [4]: result = mesolve(H, psi0, times, [], [sigmaz()])
```

The brackets in the fourth argument is an empty list of collapse operators, since we consider unitary evolution in this example. See the next section for examples on how dissipation is included by defining a list of collapse operators.

The function returns an instance of qutip.solver.Result, as described in the previous section *Dynamics Simulation Results*. The attribute expect in result is a list of expectation values for the operators that are included in the list in the fifth argument. Adding operators to this list results in a larger output list returned by the function (one array of numbers, corresponding to the times in times, for each operator)

```
In [5]: result = mesolve(H, psi0, times, [], [sigmaz(), sigmay()])
In [6]: result.expect
Out[6]:
[array([ 1.
                   0.78914057, 0.24548559, -0.40169513, -0.8794735,
       -0.98636142, -0.67728219, -0.08258023, 0.54694721, 0.94581685,
        0.94581769, 0.54694945, -0.08257765, -0.67728015, -0.98636097,
       -0.87947476, -0.40169736, 0.24548326, 0.78913896, 1.
                                                                     ]),
array([ 0.0000000e+00, -6.14212640e-01, -9.69400240e-01,
        -9.15773457e-01, -4.75947849e-01, 1.64593874e-01,
         7.35723339e-01, 9.96584419e-01, 8.37167094e-01,
                                           -8.37165632e-01,
         3.24700624e-01, -3.24698160e-01,
        -9.96584633e-01, -7.35725221e-01, -1.64596567e-01,
         4.75945525e-01, 9.15772479e-01,
                                            9.69400830e-01,
         6.14214701e-01,
                         2.77159958e-06])]
```

The resulting list of expectation values can easily be visualized using matplotlib's plotting functions:

```
In [7]: H = 2 * np.pi * 0.1 * sigmax()
In [8]: psi0 = basis(2, 0)
In [9]: times = np.linspace(0.0, 10.0, 100)
In [10]: result = mesolve(H, psi0, times, [], [sigmaz(), sigmay()])
In [11]: fig, ax = subplots()
In [12]: ax.plot(result.times, result.expect[0]);
In [13]: ax.plot(result.times, result.expect[1]);
In [14]: ax.set_xlabel('Time');
In [15]: ax.set_ylabel('Expectation values');
In [16]: ax.legend(("Sigma-Z", "Sigma-Y"));
In [17]: show()
```


If an empty list of operators is passed as fifth parameter, the qutip.mesolve function returns a qutip.solver.Result instance that contains a list of state vectors for the times specified in times

```
In [18]: times = [0.0, 1.0]
In [19]: result = mesolve(H, psi0, times, [], [])
In [20]: result.states
Out[20]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 1.]
[ 0.]], Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 0.80901699+0.j ]
[ 0.00000000-0.58778526j]]]
```

Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions between energy levels, and to introduce uncertainty in the phase difference between states of the system. The state of an open quantum system is therefore described in terms of ensemble averaged states using the density matrix formalism. A density matrix ρ describes a probability distribution of quantum states $|\psi_n\rangle$, in a matrix representation $\rho = \sum_n p_n |\psi_n\rangle \langle \psi_n|$, where p_n is the classical probability that the system is in the quantum state $|\psi_n\rangle$. The time evolution of a density matrix ρ is the topic of the remaining portions of this section.

The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to expand the scope of the system to include the environment. The combined quantum system is then closed, and its evolution is governed by the von Neumann equation

$$\dot{\rho}_{\rm tot}(t) = -\frac{i}{\hbar} [H_{\rm tot}, \rho_{\rm tot}(t)], \qquad (3.2)$$

the equivalent of the Schrödinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian

$$H_{\rm tot} = H_{\rm sys} + H_{\rm env} + H_{\rm int},$$

includes the original system Hamiltonian H_{sys} , the Hamiltonian for the environment H_{env} , and a term representing the interaction between the system and its environment H_{int} . Since we are only interested in the dynamics of the system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and thereby obtain a master equation for the motion of the original system density matrix. The most general tracepreserving and completely positive form of this evolution is the Lindblad master equation for the reduced density matrix $\rho = \text{Tr}_{\text{env}}[\rho_{\text{tot}}]$

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H(t), \rho(t)] + \sum_{n} \frac{1}{2} \left[2C_n \rho(t) C_n^+ - \rho(t) C_n^+ C_n - C_n^+ C_n \rho(t) \right]$$
(3.3)

where the $C_n = \sqrt{\gamma_n} A_n$ are collapse operators, and A_n are the operators through which the environment couples to the system in H_{int} , and γ_n are the corresponding rates. The derivation of Eq. (3.3) may be found in several sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at the master equation in the form of Eq. (3.3) from physical arguments, and hence perform a calculation in QuTiP:

- Separability: At t = 0 there are no correlations between the system and its environment such that the total density matrix can be written as a tensor product ρ^I_{tot}(0) = ρ^I(0) ⊗ ρ^I_{env}(0).
- Born approximation: Requires: (1) that the state of the environment does not significantly change as a result of the interaction with the system; (2) The system and the environment remain separable throughout the evolution. These assumptions are justified if the interaction is weak, and if the environment is much larger than the system. In summary, ρ_{tot}(t) ≈ ρ(t) ⊗ ρ_{env}.
- Markov approximation The time-scale of decay for the environment τ_{env} is much shorter than the smallest time-scale of the system dynamics $\tau_{sys} \gg \tau_{env}$. This approximation is often deemed a "short-memory environment" as it requires that environmental correlation functions decay on a time-scale fast compared to those of the system.
- Secular approximation Stipulates that elements in the master equation corresponding to transition frequencies satisfy $|\omega_{ab} \omega_{cd}| \ll 1/\tau_{sys}$, i.e., all fast rotating terms in the interaction picture can be neglected. It also ignores terms that lead to a small renormalization of the system energy levels. This approximation is not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is required for arriving at the Lindblad form (3.3) which is used in qutip.mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.3) governs the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In order to ensure that these approximations are not violated, it is important that the decay rates γ_n be smaller than the minimum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include, for example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate energy levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as relaxation and dephasing, it is common to use master equations. In QuTiP, the same function (qutip.mesolve) is used for evolution both according to the Schrödinger equation and to the master equation, even though these two equations of motion are very different. The qutip.mesolve function automatically determines if it is sufficient to use the Schrödinger equation (if no collapse operators were given) or if it has to use the master equation (if collapse operators were given). Note that to calculate the time evolution according to the Schrödinger equation is easier and much faster (for large systems) than using the master equation, so if possible the solver will fall back on using the Schrödinger equation.

What is new in the master equation compared to the Schrödinger equation are processes that describe dissipation in the quantum system due to its interaction with an environment. These environmental interactions are defined by the operators through which the system couples to the environment, and rates that describe the strength of the processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process is called a collapse operator. A list of collapse operators (c_{ops}) is passed as the fourth argument to the qutip.mesolve function in order to define the dissipation processes in the master equation. When the c_{ops} isn't empty, the qutip.mesolve function will use the master equation instead of the unitary Schrödinger equation.

Using the example with the spin dynamics from the previous section, we can easily add a relaxation process (describing the dissipation of energy from the spin to its environment), by adding np.sqrt(0.05) \star sigmax() to the previously empty list in the fourth parameter to the qutip.mesolve function:

```
In [21]: times = np.linspace(0.0, 10.0, 100)
```

- In [22]: result = mesolve(H, psi0, times, [np.sqrt(0.05) * sigmax()], [sigmaz(), sigmay()])
- In [23]: fig, ax = subplots()
- In [24]: ax.plot(times, result.expect[0]);
- In [25]: ax.plot(times, result.expect[1]);
- In [26]: ax.set_xlabel('Time');
- In [27]: ax.set_ylabel('Expectation values');
- In [28]: ax.legend(("Sigma-Z", "Sigma-Y"));
- In [29]: show(fig)

Here, 0.05 is the rate and the operator σ_x (qutip.operators.sigmax) describes the dissipation process. Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity through a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the atom initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines following code

```
In [30]: times = np.linspace(0.0, 10.0, 200)
In [31]: psi0 = tensor(fock(2,0), fock(10, 5))
In [32]: a = tensor(qeye(2), destroy(10))
In [33]: sm = tensor(destroy(2), qeye(10))
In [34]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)
```

```
....:

In [35]: result = mesolve(H, psi0, times, [np.sqrt(0.1)*a], [a.dag()*a, sm.dag()*sm])

In [36]: figure()

Out[36]: <matplotlib.figure.Figure at 0x107ea3d50>

In [37]: plot(times, result.expect[0])

Out[37]: [<matplotlib.lines.Line2D at 0x10d300450>]

In [38]: plot(times, result.expect[1])

Out[38]: [<matplotlib.lines.Line2D at 0x10d300c90>]

In [39]: xlabel('Time')

Out[39]: <matplotlib.text.Text at 0x10d28d9d0>

In [40]: ylabel('Expectation values')

Out[40]: <matplotlib.text.Text at 0x10d2a16d0>

In [41]: legend(("cavity photon number", "atom excitation probability"))

Out[41]: <matplotlib.legend.Legend at 0x10d300b10>
```

```
In [42]: show()
```


Monte Carlo Solver

Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quantum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a series of quantum jumps in the system wave function, conditioned on the increase in information gained about the state of the system via the environmental measurements. In general, this evolution is governed by the Schrödinger equation with a **non-Hermitian** effective Hamiltonian

$$H_{\rm eff} = H_{\rm sys} - \frac{i\hbar}{2} \sum_{i} C_n^+ C_n, \qquad (3.4)$$

where again, the C_n are collapse operators, each corresponding to a separate irreversible process with rate γ_n . Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave function, that to first-order in a small time δt , is given by $\langle \psi(t + \delta t) | \psi(t + \delta t) \rangle = 1 - \delta p$ where

$$\delta p = \delta t \sum_{n} \left\langle \psi(t) | C_n^+ C_n | \psi(t) \right\rangle, \qquad (3.5)$$

and δt is such that $\delta p \ll 1$. With a probability of remaining in the state $|\psi(t + \delta t)\rangle$ given by $1 - \delta p$, the corresponding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave function undergoes a jump into a state defined by projecting $|\psi(t)\rangle$ using the collapse operator C_n corresponding to the measurement

$$\left|\psi(t+\delta t)\right\rangle = C_n \left|\psi(t)\right\rangle / \left\langle\psi(t)\right|C_n^+ C_n \left|\psi(t)\right\rangle^{1/2}.$$
(3.6)

If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the *i*th-operator C_i is given by

$$P_i(t) = \left\langle \psi(t) | C_i^+ C_i | \psi(t) \right\rangle / \delta p.$$
(3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to simulate a single realization of a quantum system. Starting from a pure state $|\psi(0)\rangle$:

- I: Choose a random number r between zero and one, representing the probability that a quantum jump occurs.
- II: Integrate the Schrödinger equation, using the effective Hamiltonian (3.4) until a time τ such that the norm of the wave function satisfies $\langle \psi(\tau) | \psi(\tau) \rangle = r$, at which point a jump occurs.
- III: The resultant jump projects the system at time τ into one of the renormalized states given by Eq. (3.6). The corresponding collapse operator C_n is chosen such that n is the smallest integer satisfying:

$$\sum_{i=1}^{n} P_n(\tau) \ge r \tag{3.8}$$

where the individual P_n are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition, normalized to unity.

• IV: Using the renormalized state from step III as the new initial condition at time τ , draw a new random number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the qutip.mcsolve function. It takes nearly the same arguments as the qutip.mesolve function for master-equation evolution, except that the initial state must be a ket vector, as oppose to a density matrix, and there is an optional keyword parameter ntraj that defines the number of stochastic trajectories to be simulated. By default, ntraj=500 indicating that 500 Monte Carlo trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let's again consider the case of a two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this case we invoke the qutip.mcsolve function instead of qutip.mesolve

```
In [1]: times = np.linspace(0.0, 10.0, 200)
In [2]: psi0 = tensor(fock(2, 0), fock(10, 5))
In [3]: a = tensor(qeye(2), destroy(10))
In [4]: sm = tensor(destroy(2), qeye(10))
In [5]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + 2 * np.pi * 0.25 * (sm * a.dag()
```

```
In [6]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])
10.0%. Run time: 1.27s. Est. time left: 00:00:00:11
                  2.44s. Est. time left: 00:00:00:09
20.0%. Run time:
30.0%. Run time:
                 3.64s. Est. time left: 00:00:00:08
40.0%. Run time:
                  4.82s. Est. time left: 00:00:00:07
50.0%. Run time:
                  5.98s. Est. time left: 00:00:00:05
60.0%. Run time: 7.13s. Est. time left: 00:00:00:04
70.0%. Run time: 8.31s. Est. time left: 00:00:00:03
80.0%. Run time: 9.44s. Est. time left: 00:00:02
90.0%. Run time: 10.60s. Est. time left: 00:00:00:01
100.0%. Run time: 11.74s. Est. time left: 00:00:00:00
Total run time: 11.76s
In [7]: figure()
Out[7]: <matplotlib.figure.Figure at 0x10b2fa810>
In [8]: plot(times, data.expect[0], times, data.expect[1])
Out[8]:
[<matplotlib.lines.Line2D at 0x107d97a90>,
<matplotlib.lines.Line2D at 0x107b5e9d0>]
In [9]: title('Monte Carlo time evolution')
Out[9]: <matplotlib.text.Text at 0x1079c9cd0>
In [10]: xlabel('Time')
Out[10]: <matplotlib.text.Text at 0x107d51a50>
In [11]: ylabel('Expectation values')
Out[11]: <matplotlib.text.Text at 0x10b5fda90>
In [12]: legend(("cavity photon number", "atom excitation probability"))
Out[12]: <matplotlib.legend.Legend at 0x107cd67d0>
In [13]: show()
```


The advantage of the Monte Carlo method over the master equation approach is that only the state vector is required to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system this becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such

systems. For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and initial states takes almost 7 times longer using the master equation rather than Monte Carlo approach with the default number of trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory as well. However, for small systems, the added overhead of averaging a large number of stochastic trajectories to obtain the open system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit of the minor (in this case) memory saving. Master equation methods are therefore generally more efficient when Hilbert space sizes are on the order of a couple of hundred states or smaller.

Like the master equation solver qutip.mesolve, the Monte Carlo solver returns a qutip.solver.Result object consisting of expectation values, if the user has defined expectation value operators in the 5th argument to mcsolve, or state vectors if no expectation value operators are given. If state vectors are returned, then the qutip.solver.Result returned by qutip.mcsolve will be an array of length ntraj, with each element containing an array of ket-type qobjs with the same number of elements as times. Furthermore, the output qutip.solver.Result object will also contain a list of times at which collapse occurred, and which collapse operators did the collapse, in the col_times and col_which properties, respectively.

Changing the Number of Trajectories

As mentioned earlier, by default, the mcsolve function runs 500 trajectories. This value was chosen because it gives good accuracy, Monte Carlo errors scale as 1/n where n is the number of trajectories, and simultaneously does not take an excessive amount of time to run. However, like many other options in QuTiP you are free to change the number of trajectories to fit your needs. If we want to run 1000 trajectories in the above example, we can simply modify the call to mcsolve like:

```
In [14]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], ntraj=1
10.0%. Run time: 2.57s. Est. time left: 00:00:00:23
20.0%. Run time: 4.90s. Est. time left: 00:00:00:19
30.0%. Run time: 7.20s. Est. time left: 00:00:00:16
40.0%. Run time: 9.68s. Est. time left: 00:00:00:14
50.0%. Run time: 11.98s. Est. time left: 00:00:00:11
60.0%. Run time: 14.43s. Est. time left: 00:00:00:09
70.0%. Run time: 16.91s. Est. time left: 00:00:00:07
80.0%. Run time: 19.25s. Est. time left: 00:00:00:04
90.0%. Run time: 21.87s. Est. time left: 00:00:00:02
100.0%. Run time: 24.21s. Est. time left: 00:00:00:00
Total run time: 24.27s
```

where we have added the keyword argument ntraj=1000 at the end of the inputs. Now, the Monte Carlo solver will calculate expectation values for both operators, a.dag() * a, sm.dag() * sm averaging over 1000 trajectories. Sometimes one is also interested in seeing how the Monte Carlo trajectories converge to the master equation solution by calculating expectation values over a range of trajectory numbers. If, for example, we want to average over 1, 10, 100, and 1000 trajectories, then we can input this into the solver using:

In [15]: ntraj = [1, 10, 100, 1000]

Keep in mind that the input list must be in ascending order since the total number of trajectories run by mcsolve will be calculated using the last element of ntraj. In this case, we need to use an extra index when getting the expectation values from the qutip.solver.Result object returned by mcsolve. In the above example using:

```
In [16]: data = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], ntraj=[
10.0%. Run time: 2.47s. Est. time left: 00:00:00:22
20.0%. Run time: 4.83s. Est. time left: 00:00:00:19
30.0%. Run time: 7.15s. Est. time left: 00:00:00:16
40.0%. Run time: 9.51s. Est. time left: 00:00:00:14
50.0%. Run time: 11.84s. Est. time left: 00:00:00:11
60.0%. Run time: 14.18s. Est. time left: 00:00:00:09
70.0%. Run time: 16.65s. Est. time left: 00:00:00:07
80.0%. Run time: 18.97s. Est. time left: 00:00:00:04
90.0%. Run time: 21.36s. Est. time left: 00:00:00:02
```

100.0%. Run time: 23.81s. Est. time left: 00:00:00:00 Total run time: 23.88s

we can extract the relevant expectation values using:

```
In [17]: expt10 = data.expect[1]  # <- expectation values avg. over 10 trajectories
In [18]: expt100 = data.expect[2]  # <- expectation values avg. over 100 trajectories
In [19]: expt1000 = data.expect[3]  # <- expectation values avg. over 1000 trajectories</pre>
```

The Monte Carlo solver also has many available options that can be set using the qutip.solver.Options class as discussed in *Setting Options for the Dynamics Solvers*.

Reusing Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In order to solve a given simulation as fast as possible, the solvers in QuTiP take the given input operators and break them down into simpler components before passing them on to the ODE solvers. Although these operations are reasonably fast, the time spent organizing data can become appreciable when repeatedly solving a system over, for example, many different initial conditions. In cases such as this, the Hamiltonian and other operators may be reused after the initial configuration, thus speeding up calculations. Note that, unless you are planning to reuse the data many times, this functionality will not be very useful.

To turn on the "reuse" functionality we must set the rhs_reuse=True flag in the qutip.solver.Options:

```
In [20]: options = Options(rhs_reuse=True)
```

A full account of this feature is given in *Setting Options for the Dynamics Solvers*. Using the previous example, we will calculate the dynamics for two different initial states, with the Hamiltonian data being reused on the second call

```
In [21]: psi0 = tensor(fock(2, 0), fock(10, 5))
In [22]: a = tensor(qeye(2), destroy(10))
In [23]: sm = tensor(destroy(2), qeye(10))
In [24]: H = 2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + \
   ....: 2 * np.pi * 0.25 * (sm * a.dag() + sm.dag() * a)
   . . . . :
In [25]: data1 = mcsolve(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])
10.0%. Run time: 1.20s. Est. time left: 00:00:00:10
                  2.49s. Est. time left: 00:00:00:09
20.0%. Run time:
30.0%. Run time:
                  3.78s. Est. time left: 00:00:00:08
40.0%. Run time:
                 4.97s. Est. time left: 00:00:00:07
50.0%. Run time:
                 6.06s. Est. time left: 00:00:00:06
60.0%. Run time: 7.25s. Est. time left: 00:00:00:04
70.0%. Run time: 8.36s. Est. time left: 00:00:00:03
80.0%. Run time: 9.55s. Est. time left: 00:00:02
90.0%. Run time: 10.73s. Est. time left: 00:00:00:01
100.0%. Run time: 11.89s. Est. time left: 00:00:00:00
Total run time: 11.95s
In [26]: psi1 = tensor(fock(2, 0), coherent(10, 2 - 1j))
In [27]: opts = Options(rhs_reuse=True) # Run a second time, reusing RHS
In [28]: data2 = mcsolve(H, psil, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm], option
```

10.0%. Run time: 2.30s. Est. time left: 00:00:00:20 20.0%. Run time: 4.70s. Est. time left: 00:00:00:18 30.0%. Run time: 7.00s. Est. time left: 00:00:00:16 40.0%. Run time: 9.57s. Est. time left: 00:00:00:14 50.0%. Run time: 12.10s. Est. time left: 00:00:00:12 60.0%. Run time: 14.45s. Est. time left: 00:00:00:09 70.0%. Run time: 16.79s. Est. time left: 00:00:00:07 80.0%. Run time: 18.99s. Est. time left: 00:00:00:04 90.0%. Run time: 21.26s. Est. time left: 00:00:00:02 100.0%. Run time: 23.43s. Est. time left: 00:00:00:00 Total run time: 23.47s In [29]: figure() Out[29]: <matplotlib.figure.Figure at 0x107d48210> In [30]: plot(times, data1.expect[0], times, data1.expect[1], lw=2) Out[30]: [<matplotlib.lines.Line2D at 0x10ab737d0>, <matplotlib.lines.Line2D at 0x10ab73a50>] In [31]: plot(times, data2.expect[0], '--', times, data2.expect[1], '--', lw=2) Out[31]: [<matplotlib.lines.Line2D at 0x1096d45d0>, <matplotlib.lines.Line2D at 0x1096d47d0>] In [32]: title('Monte Carlo time evolution') Out[32]: <matplotlib.text.Text at 0x107db4790> In [33]: xlabel('Time', fontsize=14) Out[33]: <matplotlib.text.Text at 0x1078fcd10> In [34]: ylabel('Expectation values', fontsize=14) Out[34]: <matplotlib.text.Text at 0x107df7150> In [35]: legend(("cavity photon number", "atom excitation probability")) **Out[35]:** <matplotlib.legend.Legend at 0x107a31b90> In [36]: show()

In addition to the initial state, one may reuse the Hamiltonian data when changing the number of trajectories ntraj or simulation times times. The reusing of Hamiltonian data is also supported for time-dependent Hamiltonians. See *Solving Problems with Time-dependent Hamiltonians* for further details.

Fortran Based Monte Carlo Solver

Note: In order to use the Fortran Monte Carlo solver, you must have the blas development libraries, and installed QuTiP using the flag: --with-f90mc.

In performing time-independent Monte Carlo simulations with QuTiP, systems with small Hilbert spaces suffer from poor performance as the ODE solver must exit the ODE solver at each time step and check for the state vector norm. To correct this, QuTiP now includes an optional Fortran based Monte Carlo solver that has enhanced performance for systems with small Hilbert space dimensionality. Using the Fortran based solver is extremely simple; one just needs to replace mcsolve with mcsolve_f90. For example, from our previous demonstration

In [37]: data1 = mcsolve_f90(H, psi0, times, [np.sqrt(0.1) * a], [a.dag() * a, sm.dag() * sm])

In using the Fortran solver, there are a few limitations that must be kept in mind. First, this solver only works for time-independent systems. Second, you can not pass a list of trajectories to ntraj.

Bloch-Redfield master equation

Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the density matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlaying microscopic physical model. The Lindblad operators (collapse operators) describe phenomenological processes, such as for example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model. In many situations the collapse operators and their corresponding rates have clear physical interpretation, such as dephasing and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple to an environment in some well-defined manner (through a physically motivated system-environment interaction operator), it is often desirable to derive the master equation from more fundamental physical principles, and relate it to for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It starts from a combined system-environment perspective, and derives a perturbative master equation for the system

alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in a sense more robust – it always results in a physical density matrix – although some collapse operators might not be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02]. Here we present only a brief version of the derivation, with the intention of introducing the notation and how it relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment (bath): $H = H_{\rm S} + H_{\rm B} + H_{\rm I}$, where H is the total system+bath Hamiltonian, $H_{\rm S}$ and $H_{\rm B}$ are the system and bath Hamiltonians, respectively, and $H_{\rm I}$ is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from the von-Neumann equation of motion for the combined system ($\dot{\rho} = -i\hbar^{-1}[H,\rho]$). In the interaction picture the result is

$$\frac{d}{dt}\rho_S(t) = -\hbar^{-2} \int_0^t d\tau \operatorname{Tr}_B[H_I(t), [H_I(\tau), \rho_S(\tau) \otimes \rho_B]],$$
(3.9)

where the additional assumption that the total system-bath density matrix can be factorized as $\rho(t) \approx \rho_S(t) \otimes \rho_B$. This assumption is known as the Born approximation, and it implies that there never is any entanglement between the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak system-bath interaction.

The master equation (3.9) is non-Markovian, i.e., the change in the density matrix at a time t depends on states at all times $\tau < t$, making it intractable to solve both theoretically and numerically. To make progress towards a manageable master equation, we now introduce the Markovian approximation, in which $\rho(s)$ is replaced by $\rho(t)$ in Eq. (3.9). The result is the Redfield equation

$$\frac{d}{dt}\rho_S(t) = -\hbar^{-2} \int_0^t d\tau \operatorname{Tr}_B[H_I(t), [H_I(\tau), \rho_S(t) \otimes \rho_B]],$$
(3.10)

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit dependence on the initial state. By extending the integration to infinity and substituting $\tau \rightarrow t - \tau$, a fully Markovian master equation is obtained:

$$\frac{d}{dt}\rho_S(t) = -\hbar^{-2} \int_0^\infty d\tau \operatorname{Tr}_B[H_I(t), [H_I(t-\tau), \rho_S(t) \otimes \rho_B]].$$
(3.11)

The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a "short-memory" bath, which results in Markovian system dynamics).

The master equation (3.11) is still on a too general form to be suitable for numerical implementation. We therefore assume that the system-bath interaction takes the form $H_I = \sum_{\alpha} A_{\alpha} \otimes B_{\alpha}$ and where A_{α} are system operators and B_{α} are bath operators. This allows us to write master equation in terms of system operators and bath correlation functions:

$$\frac{d}{dt}\rho_{S}(t) = -\hbar^{-2}\sum_{\alpha\beta}\int_{0}^{\infty} d\tau \left\{g_{\alpha\beta}(\tau)\left[A_{\alpha}(t)A_{\beta}(t-\tau)\rho_{S}(t) - A_{\alpha}(t-\tau)\rho_{S}(t)A_{\beta}(t)\right]\right\}$$
$$g_{\alpha\beta}(-\tau)\left[\rho_{S}(t)A_{\alpha}(t-\tau)A_{\beta}(t) - A_{\alpha}(t)\rho_{S}(t)A_{\beta}(t-\tau)\right]\right\},$$

where $g_{\alpha\beta}(\tau) = \text{Tr}_B \left[B_{\alpha}(t) B_{\beta}(t-\tau) \rho_B \right] = \langle B_{\alpha}(\tau) B_{\beta}(0) \rangle$, since the bath state ρ_B is a steady state.

In the eigenbasis of the system Hamiltonian, where $A_{mn}(t) = A_{mn}e^{i\omega_{mn}t}$, $\omega_{mn} = \omega_m - \omega_n$ and ω_m are the eigenfrequencies corresponding the eigenstate $|m\rangle$, we obtain in matrix form in the Schrödinger picture

$$\begin{aligned} \frac{d}{dt}\rho_{ab}(t) &= -i\omega_{ab}\rho_{ab}(t) - \hbar^{-2}\sum_{\alpha,\beta}\sum_{c,d}^{sec}\int_{0}^{\infty}d\tau \left\{g_{\alpha\beta}(\tau)\left[\delta_{bd}\sum_{n}A_{an}^{\alpha}A_{nc}^{\beta}e^{i\omega_{cn}\tau} - A_{ac}^{\alpha}A_{db}^{\beta}e^{i\omega_{ca}\tau}\right]\right. \\ &+ g_{\alpha\beta}(-\tau)\left[\delta_{ac}\sum_{n}A_{dn}^{\alpha}A_{nb}^{\beta}e^{i\omega_{nd}\tau} - A_{ac}^{\alpha}A_{db}^{\beta}e^{i\omega_{bd}\tau}\right]\right\}\rho_{cd}(t),\end{aligned}$$

where the "sec" above the summation symbol indicate summation of the secular terms which satisfy $|\omega_{ab} - \omega_{cd}| \ll \tau_{decay}$. This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function $g(\tau)$ in terms of the noise-power spectrum of the environment $S(\omega) = \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} g(\tau)$:

$$\int_0^\infty d\tau \ g_{\alpha\beta}(\tau)e^{i\omega\tau} = \frac{1}{2}S_{\alpha\beta}(\omega) + i\lambda_{\alpha\beta}(\omega), \tag{3.12}$$

where $\lambda_{ab}(\omega)$ is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is

$$\frac{d}{dt}\rho_{ab}(t) = -i\omega_{ab}\rho_{ab}(t) + \sum_{c,d}^{\text{sec}} R_{abcd}\rho_{cd}(t), \qquad (3.13)$$

where

$$R_{abcd} = -\frac{\hbar^{-2}}{2} \sum_{\alpha,\beta} \left\{ \delta_{bd} \sum_{n} A^{\alpha}_{an} A^{\beta}_{nc} S_{\alpha\beta}(\omega_{cn}) - A^{\alpha}_{ac} A^{\beta}_{db} S_{\alpha\beta}(\omega_{ca}) + \delta_{ac} \sum_{n} A^{\alpha}_{dn} A^{\beta}_{nb} S_{\alpha\beta}(\omega_{dn}) - A^{\alpha}_{ac} A^{\beta}_{db} S_{\alpha\beta}(\omega_{db}) \right\},$$

is the Bloch-Redfield tensor.

The Bloch-Redfield master equation in the form Eq. (3.13) is suitable for numerical implementation. The input parameters are the system Hamiltonian H, the system operators through which the environment couples to the system A_{α} , and the noise-power spectrum $S_{\alpha\beta}(\omega)$ associated with each system-environment interaction term.

To simplify the numerical implementation we assume that A_{α} are Hermitian and that cross-correlations between different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is implemented in QuTiP is

$$R_{abcd} = -\frac{\hbar^{-2}}{2} \sum_{\alpha} \left\{ \delta_{bd} \sum_{n} A^{\alpha}_{an} A^{\alpha}_{nc} S_{\alpha}(\omega_{cn}) - A^{\alpha}_{ac} A^{\alpha}_{db} S_{\alpha}(\omega_{ca}) + \delta_{ac} \sum_{n} A^{\alpha}_{dn} A^{\alpha}_{nb} S_{\alpha}(\omega_{dn}) - A^{\alpha}_{ac} A^{\alpha}_{db} S_{\alpha}(\omega_{db}) \right\}.$$

Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.5) can be calculated using the function $qutip.bloch_redfield.bloch_redfield_tensor$. It takes three mandatory arguments: The system Hamiltonian H, a list of operators through which to the bath A_{α} , and a list of corresponding spectral density functions $S_{\alpha}(\omega)$. The spectral density functions are callback functions that takes the (angular) frequency as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let's consider a two-level atom

$$H = -\frac{1}{2}\Delta\sigma_x - \frac{1}{2}\epsilon_0\sigma_z \tag{3.14}$$

that couples to an Ohmic bath through the σ_x operator. The corresponding Bloch-Redfield tensor can be calculated in QuTiP using the following code

```
In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; gamma1 = 0.5
In [2]: H = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
In [3]: def ohmic_spectrum(w):
    ...: if w == 0.0: # dephasing inducing noise
    ...: return gamma1
    ...: else: # relaxation inducing noise
    ...: return gamma1 / 2 * (w / (2 * np.pi)) * (w > 0.0)
    ...:
```

```
In [4]: R, ekets = bloch_redfield_tensor(H, [sigmax()], [ohmic_spectrum])
In [5]: np.real(R.full())
Out[5]:
                                         , 0.24514517],
                 , 0.
                             , 0.
array([[ 0.
                 , -0.16103412, 0.
      [ 0.
                                         , 0. ],
                 , 0. , -0.16103412, 0.
      [ 0.
                                                    ],
      [ 0.
                   0.
                             , 0.
                                         , -0.24514517]])
                 ,
```

For convenience, the function qutip.bloch_redfield.bloch_redfield_tensor also returns a list of eigenkets *ekets*, since they are calculated in the process of calculating the Bloch-Redfield tensor *R*, and the *ekets* are usually needed again later when transforming operators between the computational basis and the eigenbasis.

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.13), can be calculated using the QuTiP function $qutip.bloch_redfield.bloch_redfield_solve$. It takes five mandatory arguments: the Bloch-Redfield tensor R, the list of eigenkets ekets, the initial state psi0 (as a ket or density matrix), a list of times tlist for which to evaluate the expectation values, and a list of operators e_ops for which to evaluate the expectation values at each time step defined by *tlist*. For example, to evaluate the expectation values of the σ_x , σ_y , and σ_z operators for the example above, we can use the following code:

```
In [6]: import matplotlib.pyplot as plt
In [7]: tlist = np.linspace(0, 15.0, 1000)
In [8]: psi0 = rand_ket(2)
In [9]: e_ops = [sigmax(), sigmay(), sigmaz()]
In [10]: expt_list = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops)
In [11]: sphere = Bloch()
In [12]: sphere.add_points([expt_list[0], expt_list[1], expt_list[2]])
In [13]: sphere.vector_color = ['r']
In [14]: sphere.add_vectors(np.array([delta, 0, eps0]) / np.sqrt(delta ** 2 + eps0 ** 2))
In [15]: sphere.make_sphere()
In [16]: plt.show()
```


The two steps of calculating the Bloch-Redfield tensor and evolve the corresponding master equation can be combined into one by using the function qutip.bloch_redfield.brmesolve, which takes same arguments as qutip.mesolve and qutip.mesolve, expect for the additional list of spectral callback functions.

In [17]: output = brmesolve(H, psi0, tlist, [sigmax()], e_ops, [ohmic_spectrum])

where the resulting *output* is an instance of the class gutip.solver.Result.

Solving Problems with Time-dependent Hamiltonians

Methods for Writing Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described by time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamiltonian, or the collapse operators describing coupling to the environment, and sometimes both components might depend on time. The two main evolution solvers in QuTiP, qutip.mesolve and qutip.mcsolve, discussed in *Lindblad Master Equation Solver* and *Monte Carlo Solver* respectively, are capable of handling time-dependent Hamiltonians and collapse terms. There are, in general, three different ways to implement time-dependent problems in QuTiP:

- 1. **Function based**: Hamiltonian / collapse operators expressed using [qobj, func] pairs, where the timedependent coefficients of the Hamiltonian (or collapse operators) are expressed in the Python functions.
- 2. String (Cython) based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, string] pairs, where the time-dependent coefficients are represented as strings. The resulting Hamiltonian is then compiled into C code using Cython and executed.
- 3. **Hamiltonian function (outdated)**: The Hamiltonian is itself a Python function with time-dependence. Collapse operators must be time independent using this input format.

Give the multiple choices of input style, the first question that arrises is which option to choose? In short, the function based method (option #1) is the most general, allowing for essentially arbitrary coefficients expressed via user defined functions. However, by automatically compiling your system into C code, the second option (string based) tends to be more efficient and will run faster. Of course, for small system sizes and evolution times, the difference will be minor. Although this method does not support all time-dependent coefficients that one can think of, it does support essentially all problems that one would typically encounter. Time-dependent coefficients

using any of the following functions, or combinations thereof (including constants) can be compiled directly into C-code:

```
'abs', 'acos', 'acosh', 'arg', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'conj',
'cos', 'cosh','exp', 'imag', 'log', 'pow', 'proj, 'real', 'sin', 'sinh', 'sqrt',
'tan', 'tanh'
```

If you require mathematical functions other than those listed above, than it is possible to call any of the functions in the numpy math library using the prefix np. before the function name in the string, i.e ' np.sin(t)'. The available functions can be found using

Finally option #3, expressing the Hamiltonian as a Python function, is the original method for time dependence in QuTiP 1.x. However, this method is somewhat less efficient then the previously mentioned methods, and does not allow for time-dependent collapse operators. However, in contrast to options #1 and #2, this method can be used in implementing time-dependent Hamiltonians that cannot be expressed as a function of constant operators with time-dependent coefficients.

A collection of examples demonstrating the simulation of time-dependent problems can be found on the tutorials web page.

Function Based Time Dependence

A very general way to write a time-dependent Hamiltonian or collapse operator is by using Python functions as the time-dependent coefficients. To accomplish this, we need to write a Python function that returns the time-dependent coefficient. Additionally, we need to tell QuTiP that a given Hamiltonian or collapse operator should be associated with a given Python function. To do this, one needs to specify operator-function pairs in list format: [Op, py_coeff], where Op is a given Hamiltonian or collapse operator and py_coeff is the name of the Python function representing the coefficient. With this format, the form of the Hamiltonian for both mesolve and mcsolve is:

>>> H = [H0, [H1, py_coeff1], [H2, py_coeff2], ...]

where H0 is a time-independent Hamiltonian, while H1, "H2", are time dependent. The same format can be used for collapse operators:

>>> c_ops = [[C0, py_coeff0], C1, [C2, py_coeff2], ...]

Here we have demonstrated that the ordering of time-dependent and time-independent terms does not matter. In addition, any or all of the collapse operators may be time dependent.

Note: While, in general, you can arrange time-dependent and time-independent terms in any order you like, it is best to place all time-independent terms first.

As an example, we will look at an example that has a time-dependent Hamiltonian of the form $H = H_0 - f(t)H_1$ where f(t) is the time-dependent driving strength given as $f(t) = A \exp\left[-(t/\sigma)^2\right]$. The follow code sets up the problem

In [3]: ustate = basis(3, 0)

```
In [4]: excited = basis(3, 1)
```

```
In [5]: ground = basis(3, 2)
In [6]: N = 2 # Set where to truncate Fock state for cavity
In [7]: sigma_ge = tensor(qeye(N), ground * excited.dag()) # /g><e/pre>
In [8]: sigma_ue = tensor(qeye(N), ustate * excited.dag()) # |u><e/</pre>
In [9]: a = tensor(destroy(N), qeye(3))
In [10]: ada = tensor(num(N), qeye(3))
In [11]: c_ops = [] # Build collapse operators
In [12]: kappa = 1.5 # Cavity decay rate
In [13]: c_ops.append(np.sqrt(kappa) * a)
In [14]: gamma = 6 # Atomic decay rate
In [15]: c_ops.append(np.sqrt(5*gamma/9) * sigma_ue) # Use Rb branching ratio of 5/9 e->u
In [16]: c_ops.append(np.sqrt(4*gamma/9) * sigma_ge) # 4/9 e->g
In [17]: t = np.linspace(-15, 15, 100) # Define time vector
In [18]: psi0 = tensor(basis(N, 0), ustate) # Define initial state
In [19]: state_GG = tensor(basis(N, 1), ground) # Define states onto which to project
In [20]: sigma_GG = state_GG * state_GG.dag()
In [21]: state_UU = tensor(basis(N, 0), ustate)
In [22]: sigma_UU = state_UU * state_UU.dag()
In [23]: g = 5 # coupling strength
In [24]: H0 = -g * (sigma_ge.dag() * a + a.dag() * sigma_ge) # time-independent term
In [25]: H1 = (sigma_ue.dag() + sigma_ue) # time-dependent term
```

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify a single Python function for the coefficient f(t). In this case, one can simply do

```
In [26]: def H1_coeff(t, args):
    ....: return 9 * np.exp(-(t / 5.) ** 2)
    ....:
```

In this case, the return value dependents only on time. However, when specifying Python functions for coefficients, **the function must have (t,args) as the input variables, in that order**. Having specified our coefficient function, we can now specify the Hamiltonian in list format and call the solver (in this case qutip.mesolve)

```
In [27]: H = [H0,[H1,H1_coeff]]
In [28]: output = mesolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])
```

We can call the Monte Carlo solver in the exact same way (if using the default ntraj=500):

```
In [29]: output = mcsolve(H, psi0, t, c_ops, [ada, sigma_UU, sigma_GG])
10.0%. Run time: 0.56s. Est. time left: 00:00:00:05
20.0%. Run time: 1.08s. Est. time left: 00:00:00:04
```

```
30.0%. Run time:1.64s. Est. time left: 00:00:00:0340.0%. Run time:2.31s. Est. time left: 00:00:00:0350.0%. Run time:2.90s. Est. time left: 00:00:00:0260.0%. Run time:3.49s. Est. time left: 00:00:00:0270.0%. Run time:4.10s. Est. time left: 00:00:00:0180.0%. Run time:4.65s. Est. time left: 00:00:00:0190.0%. Run time:5.22s. Est. time left: 00:00:00:00100.0%. Run time:5.80s. Est. time left: 00:00:00:00Total run time:5.92s
```

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

Using the args variable

In the previous example we hardcoded all of the variables, driving amplitude A and width σ , with their numerical values. This is fine for problems that are specialized, or that we only want to run once. However, in many cases, we would like to change the parameters of the problem in only one location (usually at the top of the script), and not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this using the keyword args as an input to the solvers. For instance, instead of explicitly writing 9 for the amplitude and 5 for the width of the gaussian driving term, we can make us of the args variable

```
In [39]: def H1_coeff(t, args):
    ....: return args['A'] * np.exp(-(t/args['sigma'])**2)
    ....:
```

or equivalently,

```
In [40]: def H1_coeff(t, args):
    ....: A = args['A']
    ....: sig = args['sigma']
    ....: return A * np.exp(-(t / sig) ** 2)
    ....:
```

where args is a Python dictionary of key: value pairs $args = \{'A': a, 'sigma': b\}$ where a and b are the two parameters for the amplitude and width, respectively. Of course, we can always hardcode the values in the dictionary as well $args = \{'A': 9, 'sigma': 5\}$, but there is much more flexibility by using variables in args. To let the solvers know that we have a set of args to pass we append the args to the end of the solver input:

In [41]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args={'A': 9, 'sigma': 5})

or to keep things looking pretty

In [42]: args = {'A': 9, 'sigma': 5}

In [43]: output = mesolve(H, psi0, times, c_ops, [a.dag() * a], args=args)

Once again, the Monte Carlo solver qutip.mcsolve works in an identical manner.

String Format Method

Note: You must have Cython installed on your computer to use this format. See *Installation* for instructions on installing Cython.

The string-based time-dependent format works in a similar manner as the previously discussed Python function method. That being said, the underlying code does something completely different. When using this format, the strings used to represent the time-dependent coefficients, as well as Hamiltonian and collapse operators, are rewritten as Cython code using a code generator class and then compiled into C code. The details of this meta-programming will be published in due course. however, in short, this can lead to a substantial reduction in time for complex time-dependent problems, or when simulating over long intervals.

Like the previous method, the string-based format uses a list pair format [Op, str] where str is now a string representing the time-dependent coefficient. For our first example, this string would be '9 * $\exp(-(t / 5.)$ ** 2)'. The Hamiltonian in this format would take the form:

In [44]: H = [H0, [H1, '9 * exp(-(t / 5) ** 2)']]

Notice that this is a valid Hamiltonian for the string-based format as exp is included in the above list of suitable functions. Calling the solvers is the same as before:

In [45]: output = mesolve(H, psi0, t, c_ops, [a.dag() * a])

We can also use the args variable in the same manner as before, however we must rewrite our string term to read: 'A $* \exp(-(t / sig) * 2)$ '

```
In [46]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]
In [47]: args = {'A': 9, 'sig': 5}
In [48]: output = mesolve(H, psi0, times, c_ops, [a.dag()*a], args=args)
```

Important: Naming your args variables e, j or pi will cause errors when using the string-based format.

Collapse operators are handled in the exact same way.

Reusing Time-Dependent Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

When repeatedly simulating a system where only the time-dependent variables, or initial state change, it is possible to reuse the Hamiltonian data stored in QuTiP and there by avoid spending time needlessly preparing the Hamiltonian and collapse terms for simulation. To turn on the the reuse features, we must pass a qutip.Options object with the rhs_reuse flag turned on. Instructions on setting flags are found in *Setting Options for the Dynamics Solvers*. For example, we can do

```
In [49]: H = [H0, [H1, 'A * exp(-(t / sig) ** 2)']]
In [50]: args = {'A': 9, 'sig': 5}
```

```
In [51]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args)
10.0%. Run time: 0.36s. Est. time left: 00:00:00:03
20.0%. Run time: 0.64s. Est. time left: 00:00:00:02
30.0%. Run time: 0.93s. Est. time left: 00:00:00:02
40.0%. Run time: 1.21s. Est. time left: 00:00:00:01
50.0%. Run time: 1.48s. Est. time left: 00:00:00:01
60.0%. Run time: 1.76s. Est. time left: 00:00:00:01
70.0%. Run time: 2.00s. Est. time left: 00:00:00:00
80.0%. Run time: 2.23s. Est. time left: 00:00:00:00
90.0%. Run time: 2.46s. Est. time left: 00:00:00:00
100.0%. Run time: 2.71s. Est. time left: 00:00:00:00
Total run time:
                 2.81s
In [52]: opts = Options(rhs_reuse=True)
In [53]: args = {'A': 10, 'sig': 3}
In [54]: output = mcsolve(H, psi0, times, c_ops, [a.dag()*a], args=args, options=opts)
                 0.28s. Est. time left: 00:00:00:02
10.0%. Run time:
                  0.53s. Est. time left: 00:00:00:02
20.0%. Run time:
                0.78s. Est. time left: 00:00:00:01
30.0%. Run time:
40.0%. Run time: 1.09s. Est. time left: 00:00:00:01
50.0%. Run time: 1.37s. Est. time left: 00:00:00:01
60.0%. Run time: 1.67s. Est. time left: 00:00:00:01
70.0%. Run time: 1.96s. Est. time left: 00:00:00:00
80.0%. Run time: 2.35s. Est. time left: 00:00:00:00
90.0%. Run time: 2.72s. Est. time left: 00:00:00:00
100.0%. Run time: 2.99s. Est. time left: 00:00:00:00
Total run time: 3.03s
```

The second call to qutip.mcsolve does not reorganize the data, and in the case of the string format, does not recompile the Cython code. For the small system here, the savings in computation time is quite small, however, if you need to call the solvers many times for different parameters, this savings will obviously start to add up.

Running String-Based Time-Dependent Problems using Parfor

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In this section we discuss running string-based time-dependent problems using the qutip.parfor function. As the qutip.mcsolve function is already parallelized, running string-based time dependent problems inside of parfor loops should be restricted to the qutip.mesolve function only. When using the string-based format, the system Hamiltonian and collapse operators are converted into C code with a specific file name that is automatically genrated, or supplied by the user via the rhs_filename property of the qutip.Options class. Because the qutip.parfor function uses the built-in Python multiprocessing functionality, in calling the solver inside a parfor loop, each thread will try to generate compiled code with the same file name, leading to a crash. To get around this problem you can call the qutip.rhs_generate function to compile simulation into C code before calling parfor. You **must** then set the qutip.Odedata object rhs_reuse=True for all solver calls inside the parfor loop that indicates that a valid C code file already exists and a new one should not be generated. As an example, we will look at the Landau-Zener-Stuckelberg interferometry example that can be found in the notebook "Time-dependent master equation: Landau-Zener-Stuckelberg inteferometry" in the tutorials section of the QuTiP web site.

To set up the problem, we run the following code:

<pre>In [55]: delta = 0.1 * 2 * np.pi</pre>	<pre># qubit sigma_x coefficient</pre>
In [56]: w = 2.0 * 2 * np.pi	<pre># driving frequency</pre>
In [57]: T = 2 * np.pi / w	# driving period
In [58]: gamma1 = 0.00001	<pre># relaxation rate</pre>

In [59]: gamma2 = 0.005 # dephasing rate
In [60]: eps_list = np.linspace(-10.0, 10.0, 51) * 2 * np.pi # epsilon
In [61]: A_list = np.linspace(0.0, 20.0, 51) * 2 * np.pi # Amplitude
In [62]: sx = sigmax(); sz = sigmaz(); sm = destroy(2); sn = num(2)
In [63]: c_ops = [np.sqrt(gamma1) * sm, np.sqrt(gamma2) * sz] # relaxation and dephasing
In [64]: H0 = -delta / 2.0 * sx
In [65]: H1 = [sz, '-eps / 2.0 + A / 2.0 * sin(w * t)']
In [66]: H_td = [H0, H1]
In [67]: Hargs = {'w': w, 'eps': eps_list[0], 'A': A_list[0]}

where the last code block sets up the problem using a string-based Hamiltonian, and Hargs is a dictionary of arguments to be passed into the Hamiltonian. In this example, we are going to use the qutip.propagator and qutip.propagator.propagator_steadystate to find expectation values for different values of ϵ and A in the Hamiltonian $H = -\frac{1}{2}\Delta\sigma_x - \frac{1}{2}\epsilon\sigma_z - \frac{1}{2}A\sin(\omega t)$.

We must now tell the qutip.mesolve function, that is called by qutip.propagator to reuse a pregenerated Hamiltonian constructed using the qutip.rhs_generate command:

```
In [68]: opts = Options(rhs_reuse=True)
```

In [69]: rhs_generate(H_td, c_ops, Hargs, name='lz_func')

Here, we have given the generated file a custom name lz_func , however this is not necessary as a generic name will automatically be given. Now we define the function task that is called by $qutip.parallel.parfor with the m-index parallelized in loop over the elements of <math>p_mat[m,n]$:

```
In [70]: def task(args):
```

```
....:
          m, eps = args
. . . . :
           p_mat_m = np.zeros(len(A_list))
           for n, A in enumerate(A_list):
....
                # change args sent to solver, w is really a constant though.
. . . . :
               Hargs = { 'w': w, 'eps': eps, 'A': A}
. . . . :
               U = propagator(H_td, T, c_ops, Hargs, opts) #<- IMPORTANT LINE
. . . . :
               rho_ss = propagator_steadystate(U)
. . . . :
               p_mat_m[n] = expect(sn, rho_ss)
. . . . :
           return [m, p_mat_m]
. . . . :
. . . . :
```

Notice the Options opts in the call to the qutip.propagator function. This is tells the qutip.mesolve function used in the propagator to call the pre-generated file lz_func. If this were missing then the routine would fail.

Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly by numerical integration of the Schrödinger or Master equation, using the time-dependent Hamiltonian. But they can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing the system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms of these master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians. However, in many relevant cases, in particular for weak driving, the standard master equations still turns out to be useful for many time-dependent problems. But a more rigorous approach would be to rederive the master equation taking the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master equation is one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).

Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving timedependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give a brief summary of quantum Floquet theory.

Floquet theory for unitary evolution

The Schrödinger equation with a time-dependent Hamiltonian H(t) is

$$H(t)\Psi(t) = i\hbar\frac{\partial}{\partial t}\Psi(t), \qquad (3.15)$$

where $\Psi(t)$ is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e., the Hamiltonian satisfies H(t) = H(t + T) where T is the period. According to the Floquet theorem, there exist solutions to (3.15) on the form

$$\Psi_{\alpha}(t) = \exp(-i\epsilon_{\alpha}t/\hbar)\Phi_{\alpha}(t), \qquad (3.16)$$

where $\Psi_{\alpha}(t)$ are the *Floquet states* (i.e., the set of wave function solutions to the Schrödinger equation), $\Phi_{\alpha}(t) = \Phi_{\alpha}(t+T)$ are the periodic *Floquet modes*, and ϵ_{α} are the *quasienergy levels*. The quasienergy levels are constants in time, but only uniquely defined up to multiples of $2\pi/T$ (i.e., unique value in the interval $[0, 2\pi/T]$).

If we know the Floquet modes (for $t \in [0,T]$) and the quasienergies for a particular H(t), we can easily decompose any initial wavefunction $\Psi(t = 0)$ in the Floquet states and immediately obtain the solution for arbitrary t

$$\Psi(t) = \sum_{\alpha} c_{\alpha} \Psi_{\alpha}(t) = \sum_{\alpha} c_{\alpha} \exp(-i\epsilon_{\alpha} t/\hbar) \Phi_{\alpha}(t), \qquad (3.17)$$

where the coefficients c_{α} are determined by the initial wavefunction $\Psi(0) = \sum_{\alpha} c_{\alpha} \Psi_{\alpha}(0)$.

This formalism is useful for finding $\Psi(t)$ for a given H(t) only if we can obtain the Floquet modes $\Phi_a(t)$ and quasienergies ϵ_{α} more easily than directly solving (3.15). By substituting (3.16) into the Schrödinger equation (3.15) we obtain an eigenvalue equation for the Floquet modes and quasienergies

$$\mathcal{H}(t)\Phi_{\alpha}(t) = \epsilon_{\alpha}\Phi_{\alpha}(t), \tag{3.18}$$

where $\mathcal{H}(t) = H(t) - i\hbar\partial_t$. This eigenvalue problem could be solved analytically or numerically, but in QuTiP we use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield et al., Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrödinger equation (3.15), which by definition satisfies

$$U(T+t,t)\Psi(t) = \Psi(T+t).$$

Inserting the Floquet states from (3.16) into this expression results in

$$U(T+t,t)\exp(-i\epsilon_{\alpha}t/\hbar)\Phi_{\alpha}(t) = \exp(-i\epsilon_{\alpha}(T+t)/\hbar)\Phi_{\alpha}(T+t),$$

or, since $\Phi_{\alpha}(T+t) = \Phi_{\alpha}(t)$,

$$U(T+t,t)\Phi_{\alpha}(t) = \exp(-i\epsilon_{\alpha}T/\hbar)\Phi_{\alpha}(t) = \eta_{\alpha}\Phi_{\alpha}(t),$$

which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the Floquet modes and quasienergies $\epsilon_{\alpha} = -\hbar \arg(\eta_{\alpha})/T$ by numerically calculating U(T + t, t) and diagonalizing it. In particular this method is useful to find $\Phi_{\alpha}(0)$ by calculating and diagonalize U(T, 0).

The Floquet modes at arbitrary time t can then be found by propagating $\Phi_{\alpha}(0)$ to $\Phi_{\alpha}(t)$ using the wave function propagator $U(t,0)\Psi_{\alpha}(0) = \Psi_{\alpha}(t)$, which for the Floquet modes yields

$$U(t,0)\Phi_{\alpha}(0) = \exp(-i\epsilon_{\alpha}t/\hbar)\Phi_{\alpha}(t),$$

so that $\Phi_{\alpha}(t) = \exp(i\epsilon_{\alpha}t/\hbar)U(t,0)\Phi_{\alpha}(0)$. Since $\Phi_{\alpha}(t)$ is periodic we only need to evaluate it for $t \in [0,T]$, and from $\Phi_{\alpha}(t \in [0,T])$ we can directly evaluate $\Phi_{\alpha}(t)$, $\Psi_{\alpha}(t)$ and $\Psi(t)$ for arbitrary large t.

Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state decomposition, etc., given a time-dependent Hamiltonian on the *callback format*, *list-string format* and *list-callback format* (see, e.g., qutip.mesolve for details).

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

$$H(t) = -\frac{1}{2}\Delta\sigma_x - \frac{1}{2}\epsilon_0\sigma_z + \frac{1}{2}A\sin(\omega t)\sigma_z.$$
(3.19)

In QuTiP we can define this Hamiltonian as follows:

```
In [1]: delta = 0.2 * 2*np.pi; eps0 = 1.0 * 2*np.pi; A = 2.5 * 2*np.pi; omega = 1.0 * 2*np.pi
In [2]: H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
In [3]: H1 = A/2.0 * sigmaz()
In [4]: args = {'w': omega}
In [5]: H = [H0, [H1, 'sin(w * t)']]
```

The t = 0 Floquet modes corresponding to the Hamiltonian (3.19) can then be calculated using the qutip.floquet.floquet_modes function, which returns lists containing the Floquet modes and the quasienergies

```
In [6]: T = 2*pi / omega
In [7]: f_modes_0, f_energies = floquet_modes(H, T, args)
In [8]: f_energies
Out[8]: array([-2.83131212, 2.83131212])
In [9]: f_modes_0
Out[9]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
 Qobj data =
 [[ 0.72964231+0.j
                        1
  [-0.39993746+0.554682j]],
 Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
 Qobj data =
 [[ 0.39993746+0.554682j]
  [ 0.72964231+0.j
                       ]]]
```

For some problems interesting observations can be draw from the quasienergy levels alone. Consider for example the quasienergies for the driven two-level system introduced above as a function of the driving amplitude, calculated and plotted in the following example. For certain driving amplitudes the quasienergy levels cross. Since the the quasienergies can be associated with the time-scale of the long-term dynamics due that the driving, degenerate quasienergies indicates a "freezing" of the dynamics (sometimes known as coherent destruction of tunneling).

In [10]: delta = 0.2 * 2*np.pi; eps0 = 0.0 * 2*np.pi
In [11]: omega = 1.0 * 2*np.pi; A_vec = np.linspace(0, 10, 100) * omega;
In [12]: T = (2*pi)/omega
In [13]: tlist = np.linspace(0.0, 10 * T, 101)
In [14]: psi0 = basis(2,0)
In [15]: q_energies = np.zeros((len(A_vec), 2))

```
In [16]: H0 = delta/2.0 * sigmaz() - eps0/2.0 * sigmax()
In [17]: args = omega
In [18]: for idx, A in enumerate(A_vec):
             H1 = A/2.0 \times sigmax()
   . . . . :
             H = [H0, [H1, lambda t, w: sin(w*t)]]
   . . . . :
             f_modes, f_energies = floquet_modes(H, T, args, True)
   . . . . :
             q_energies[idx,:] = f_energies
   . . . . :
   . . . . :
In [19]: figure()
Out[19]: <matplotlib.figure.Figure at 0x10b198b90>
In [20]: plot(A_vec/omega, q_energies[:,0] / delta, 'b', A_vec/omega, q_energies[:,1] / delta, 'r
Out[20]:
[<matplotlib.lines.Line2D at 0x107b30ed0>,
 <matplotlib.lines.Line2D at 0x107b30610>]
In [21]: xlabel(r'$A/\omega$')
Out[21]: <matplotlib.text.Text at 0x107c75b10>
In [22]: ylabel(r'Quasienergy / $\Delta$')
Out[22]: <matplotlib.text.Text at 0x107b30050>
In [23]: title(r'Floquet quasienergies')
Out[23]: <matplotlib.text.Text at 0x105dd4590>
In [24]: show()
```


Given the Floquet modes at t = 0, we obtain the Floquet mode at some later time t using the function qutip.floquet.floquet_mode_t:

```
In [25]: f_modes_t = floquet_modes_t(f_modes_0, f_energies, 2.5, H, T, args)
In [26]: f_modes_t
Out[26]:
[Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
```

```
Qobj data =
[[-0.89630512-0.23191946j]
[ 0.37793106-0.00431336j]],
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[-0.37793106-0.00431336j]
[-0.89630512+0.23191946j]]]
```

The purpose of calculating the Floquet modes is to find the wavefunction solution to the original problem (3.19) given some initial state $|\psi_0\rangle$. To do that, we first need to decompose the initial state in the Floquet states, using the function qutip.floquet.floquet_state_decomposition

```
In [27]: psi0 = rand_ket(2)
In [28]: f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)
In [29]: f_coeff
Out[29]:
[(-0.46270277543605265+0.49439762918280311j),
   (-0.56466987689016934+0.47183159707149747j)]
```

and given this decomposition of the initial state in the Floquet states we can easily evaluate the wavefunction that is the solution to (3.19) at an arbitrary time t using the function $qutip.floquet.floquet_wavefunction_t$

```
In [30]: t = 10 * np.random.rand()
In [31]: psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args)
In [32]: psi_t
Out[32]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket
Qobj data =
[[ 0.60556819-0.05015488j]
[ 0.63266806+0.48010705j]]
```

The following example illustrates how to use the functions introduced above to calculate and plot the timeevolution of (3.19).

```
from qutip import *
from scipy import *
delta = 0.2 * 2*pi; eps0 = 1.0 * 2*pi
     = 0.5 * 2*pi; omega = 1.0 * 2*pi
А
      = (2*pi)/omega
Т
tlist = linspace(0.0, 10 * T, 101)
psi0 = basis(2, 0)
H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 \times sigmaz()
args = {'w': omega}
H = [H0, [H1, lambda t, args: sin(args['w'] * t)]]
# find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)
# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)
# calculate the wavefunctions using the from the floquet modes
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):
psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args)
```

```
p_ex[n] = expect(num(2), psi_t)
# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]
# plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
```


Pre-computing the Floquet modes for one period

When evaluating the Floquet states or the wavefunction at many points in time it is useful to pre-compute the Floquet modes for the first period of the driving with the required resolution. In QuTiP the function <code>qutip.floquet.floquet_modes_table</code> calculates a table of Floquet modes which later can be used together with the function <code>qutip.floquet.floquet_modes_t_lookup</code> to efficiently lookup the Floquet mode at an arbitrary time. The following example illustrates how the example from the previous section can be solved more efficiently using these functions for pre-computing the Floquet modes.

```
from qutip import *
from scipy import *
delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
A = 0.25 * 2*pi; omega = 1.0 * 2*pi
T = (2*pi)/omega
tlist = linspace(0.0, 10 * T, 101)
```

```
psi0 = basis(2, 0)
H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 \times sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t,args: sin(args['w'] * t)]]
# find the floquet modes for the time-dependent hamiltonian
f_modes_0,f_energies = floquet_modes(H, T, args)
# decompose the inital state in the floquet modes
f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0)
# calculate the wavefunctions using the from the floquet modes
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args)
p_ex = zeros(len(tlist))
for n, t in enumerate(tlist):
    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
    psi_t = floquet_wavefunction(f_modes_t, f_energies, f_coeff, t)
    p_ex[n] = expect(num(2), psi_t)
# For reference: calculate the same thing with mesolve
p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0]
# plot the results
from pylab import *
plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex),
                                                          'bo')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
```


Note that the parameters and the Hamiltonian used in this example is not the same as in the previous section, and hence the different appearance of the resulting figure.

For convenience, all the steps described above for calculating the evolution of a quantum system using the Floquet formalisms are encapsulated in the function qutip.floquet.fsesolve. Using this function, we could have achieved the same results as in the examples above using:

```
output = fsesolve(H, psi0, times, [num(2)], args)
p_ex = output.expect[0]
```

Floquet theory for dissipative evolution

A driven system that is interacting with its environment is not necessarily well described by the standard Lindblad master equation, since its dissipation process could be time-dependent due to the driving. In such cases a rigorious approach would be to take the driving into account when deriving the master equation. This can be done in many different ways, but one way common approach is to derive the master equation in the Floquet basis. That approach results in the so-called Floquet-Markov master equation, see Grifoni et al., Physics Reports 304, 299 (1998) for details.

The Floquet-Markov master equation in QuTiP

The QuTiP function qutip.floquet.fmmesolve implements the Floquet-Markov master equation. It calculates the dynamics of a system given its initial state, a time-dependent hamiltonian, a list of operators through which the system couples to its environment and a list of corresponding spectral-density functions that describes the environment. In contrast to the qutip.mesolve and qutip.mcsolve, and the qutip.floquet.fmmesolve does characterize the environment with dissipation rates, but extract the strength of the coupling to the environment from the noise spectral-density functions and the instantaneous Hamiltonian parameters (similar to the Bloch-Redfield master equation solver qutip.bloch_redfield.brmesolve).

Note: Currently the qutip.floquet.fmmesolve can only accept a single environment coupling operator

and spectral-density function.

The noise spectral-density function of the environment is implemented as a Python callback function that is passed to the solver. For example:

```
>>> gamma1 = 0.1
>>> def noise_spectrum(omega):
>>> return 0.5 * gamma1 * omega/(2*pi)
```

The other parameters are similar to the qutip.mesolve and qutip.mcsolve, and the same format for the return value is used qutip.solver.Result. The following example extends the example studied above, and uses qutip.floquet.fmmesolve to introduce dissipation into the calculation

```
from qutip import *
from scipy import *
delta = 0.0 * 2*pi; eps0 = 1.0 * 2*pi
     = 0.25 * 2*pi; omega = 1.0 * 2*pi
А
      = (2*pi)/omega
Т
tlist = linspace(0.0, 20 * T, 101)
     = basis(2,0)
psi0
H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
H1 = A/2.0 \times sigmax()
args = {'w': omega}
H = [H0, [H1, lambda t, args: sin(args['w'] * t)]]
# noise power spectrum
gammal = 0.1
def noise_spectrum(omega):
    return 0.5 * gamma1 * omega/(2*pi)
# find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes(H, T, args)
# precalculate mode table
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                      linspace(0, T, 500 + 1), H, T, args)
# solve the floquet-markov master equation
output = fmmesolve(H, psi0, tlist, [sigmax()], [], [noise_spectrum], T, args)
# calculate expectation values in the computational basis
p_ex = zeros(shape(tlist), dtype=complex)
for idx, t in enumerate(tlist):
   f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
    p_ex[idx] = expect(num(2), output.states[idx].transform(f_modes_t, True))
# For reference: calculate the same thing with mesolve
output = mesolve(H, psi0, tlist, [sqrt(gammal) * sigmax()], [num(2)], args)
p_ex_ref = output.expect[0]
# plot the results
from pylab import *
plot(tlist, real(p_ex), 'r--', tlist, 1-real(p_ex), 'b--')
plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b')
xlabel('Time')
ylabel('Occupation probability')
legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$"))
show()
```


Alternatively, we can let the qutip.floquet.fmmesolve function transform the density matrix at each time step back to the computational basis, and calculating the expectation values for us, but using:

```
output = fmmesolve(H, psi0, times, [sigmax()], [num(2)], [noise_spectrum], T, args)
p_ex = output.expect[0]
```

Setting Options for the Dynamics Solvers

Occasionally it is necessary to change the built in parameters of the dynamics solvers used by for example the qutip.mesolve and qutip.mesolve functions. The options for all dynamics solvers may be changed by using the Options class qutip.solver.Options.

```
In [1]: options = Options()
```

the properties and default values of this class can be view via the print function:

```
In [2]: print (options)
Options:
                    1e-08
atol:
rtol:
                    1e-06
                    adams
method:
order:
                    12
                    1000
nsteps:
                    0
first_step:
min_step:
                    0
max_step:
                    0
tidy:
                    True
num_cpus:
                    0
                    0.001
norm_tol:
norm_steps:
                    5
```

rhs_filename:	None
rhs_reuse:	False
seeds:	0
rhs_with_state:	False
average_expect:	True
average_states:	False
ntraj:	500
store_states:	False
<pre>store_final_state:</pre>	False

These properties are detailed in the following table. Assuming options = Options():

Property	Default setting	Description
options.atol	1e-8	Absolute tolerance
options.rtol	1e-6	Relative tolerance
options.method	'adams'	Solver method. Can be 'adams' (non-stiff) or 'bdf' (stiff)
options.order	12	Order of solver. Must be <=12 for 'adams' and <=5 for 'bdf'
options.nsteps	1000	Max. number of steps to take for each interval
options.first_step	0	Size of initial step. $0 =$ determined automatically by solver.
options.min_step	0	Minimum step size. $0 =$ determined automatically by solver.
options.max_step	0	Maximum step size. $0 =$ determined automatically by
		solver.
options.tidy	True	Whether to run tidyup function on time-independent
		Hamiltonian.
options.num_cpus	installed num of	Integer number of cpu's used by mcsolve.
	processors	
op-	None	RHS filename when using compiled time-dependent
tions.rhs_filename		Hamiltonians.
options.rhs_reuse	False	Reuse compiled RHS function. Useful for repeatative tasks.
options.gui	True (if GUI)	Use the mcsolve progessbar. Defaults to False on Windows.
options.mc_avg	True	Average over trajectories for expectation values from mcsolve.

As an example, let us consider changing the number of processors used, turn the GUI off, and strengthen the absolute tolerance. There are two equivalent ways to do this using the Options class. First way,

or one can use an inline method,

Note that the order in which you input the options does not matter. Using either method, the resulting *options* variable is now:

<pre>In [3]: print(options)</pre>	
Options:	
atol:	1e-08
rtol:	1e-06
method:	adams
order:	12
nsteps:	1000
first_step:	0
min_step:	0
max_step:	0
tidy:	True
num_cpus:	0
norm_tol:	0.001
norm_steps:	5
rhs_filename:	None
rhs_reuse:	False
seeds:	0
rhs_with_state:	False
average_expect:	True
average_states:	False
ntraj:	500

store_states: False
store_final_state: False

To use these new settings we can use the keyword argument options in either the func: *qutip.mesolve* and qutip.mcsolve function. We can modify the last example as:

```
>>> mesolve(H0, psi0, tlist, c_op_list, [sigmaz()], options=options)
>>> mesolve(hamiltonian_t, psi0, tlist, c_op_list, [sigmaz()], H_args, options=options)
```

or:

```
>>> mcsolve(H0, psi0, tlist, ntraj,c_op_list, [sigmaz()], options=options)
>>> mcsolve(hamiltonian_t, psi0, tlist, ntraj, c_op_list, [sigmaz()], H_args, options=options)
```

3.6 Solving for Steady-State Solutions

Introduction

For time-independent open quantum systems with decay rates larger than the corresponding excitation rates, the system will tend toward a steady state as $t \to \infty$ that satisfies the equation

$$\frac{d\hat{\rho}_{ss}}{dt} = \mathcal{L}\hat{\rho}_{ss} = 0.$$

Although the requirement for time-independence seems quite resitrictive, one can often employ a transformation to the interaction picture that yields a time-independent Hamiltonian. For many these systems, solving for the asymptotic density matrix $\hat{\rho}_{ss}$ can be achieved using direct or iterative solution methods faster than using master equation or Monte Carlo simulations. Although the steady state equation has a simple mathematical form, the properties of the Liouvillian operator are such that the solutions to this equation are anything but straightforward to find.

Steady State Solutions for Arbitrary Systems

Steady State solvers in QuTiP

In QuTiP, the steady-state solution for a system Hamiltonian or Liouvillian is given by qutip.steadystate.steadystate. This function implements a number of different methods for finding the steady state, each with their own pros and cons, where the method used can be chosen using the method keyword argument.

Method	Keyword	Description
Direct	'direct'	Direct solution solving $Ax = b$ via sparse LU decomposition.
(default)		
Eigenvalue	'eigen'	Iteratively find the eigenvector corresponding to the zero eigenvalue of \mathcal{L} .
Inverse-	'power'	Iteratively solve for the steady-state solution using the inverse-power method.
Power		
GMRES	'iterative-	Iteratively solve for the steady-state solution using the GMRES method and
	gmres'	optional preconditioner.
LGMRES	'iterative-	Iteratively solve for the steady-state solution using the LGMRES method and
	lgmres'	optional preconditioner.
BICGSTAB	'iterative-	Iteratively solve for the steady-state solution using the BICGSTAB method
	bicgstab'	and optional preconditioner.
SVD	'svd'	Steady-state solution via the SVD of the Liouvillian represented by a dense
		matrix.

Available Steady-State Methods:

The function qutip.steadystate.steadystate can take either a Hamiltonian and a list of collapse operators as input, generating internally the corresponding Liouvillian super operator in Lindblad form, or alternatively, an arbitrary Liouvillian passed by the user. When possible, we recommend passing the Hamiltonian and collapse operators to qutip.steadystate.steadystate, and letting the function automatically build the Liouvillian for the system.

Using the Steadystate Solver

Solving for the steady state solution to the Lindblad master equation for a general system with qutip.steadystate.steadystate can be accomplished using:

```
>>> rho_ss = steadystate(H, c_ops)
```

where H is a quantum object representing the system Hamiltonian, and c_ops is a list of quantum objects for the system collapse operators. The output, labeled as rho_ss, is the steady-state solution for the systems. If no other keywords are passed to the solver, the default 'direct' method is used, generating a solution that is exact to machine precision at the expense of a large memory requirement. The large amount of memory need for the direct LU decomposition method stems from the large bandwidth of the system Liouvillian and the correspondingly large fill-in (extra nonzero elements) generated in the LU factors. This fill-in can be reduced by using bandwidth minimization algorithms such as those discussed in *Additional Solver Arguments*. Additional parameters may be used by calling the steady-state solver as:

>>> rho_ss = steadystate(H, c_ops, method='power', use_rcm=True)

where method='power' indicates that we are using the inverse-power solution method, and use_rcm=True turns on the bandwidth minimization routine.

Although it is not obvious, the 'direct', eigen, and 'power' methods all use an LU decomposition internally and thus suffer from a large memory overhead. In contrast, iterative methods such as the 'iterative-gmres', 'iterative-lgmres', and 'iterative-bicgstab' methods do not factor the matrix and thus take less memory than these previous methods and allowing, in principle, for extremely large system sizes. The downside is that these methods can take much longer than the direct method as the condition number of the Liouvillian matrix is large, indicating that these iterative methods require a large number of iterations for convergence. To overcome this, one can use a preconditioner M that solves for an approximate inverse for the (modified) Liouvillian, thus better conditioning the problem, leading to faster convergence. The use of a preconditioner can actually make these iterative methods faster than the other solution methods. The problem with precondioning is that it is only well defined for Hermitian matrices. Since the Liouvillian is non-Hermitian, the ability to find a good preconditioner is not guaranteed. And moreover, if a preconditioner is found, it is not guaranteed to have a good condition number. QuTiP can make use of an incomplete LU preconditioner when using the iterative 'gmres', 'lgmres', and 'bicgstab' solvers by setting use precond=True. The preconditioner optionally makes use of a combination of symmetric and anti-symmetric matrix permutations that attempt to improve the preconditioning process. These features are discussed in the Additional Solver Arguments section. Even with these state-of-the-art permutations, the generation of a successful preconditoner for non-symmetric matrices is currently a trial-and-error process due to the lack of mathematical work done in this area. It is always recommended to begin with the direct solver with no additional arguments before selecting a different method.

Finding the steady-state solution is not limited to the Lindblad form of the master equation. Any timeindependent Liouvillian constructed from a Hamiltonian and collapse operators can be used as an input:

>>> rho_ss = steadystate(L)

where L is the Louvillian. All of the additional arguments can also be used in this case.

Additional Solver Arguments

The following additional solver arguments are available for the steady-state solver:

Key- word	Options (default listed first)	Description
method	'direct', 'eigen', 'power', 'iterative-gmres','iterative- lgmres', 'svd'	Method used for solving for the steady-state density matrix.
sparse	True, False	Use sparse version of direct solver.
weight	None	Allows the user to define the weighting factor used in the 'direct', 'GMRES', and 'LGMRES' solvers.
permc_s	etCOLAMD', 'NATURAL'	Column ordering used in the sparse LU decomposition.
use_rcm	False, True	Use a Reverse Cuthill-Mckee reordering to minimize the bandwidth of the modified Liouvillian used in the LU decomposition. If use_rcm=True then the column ordering is set to 'Natural' automatically unless explicitly set.
use_umfj	pacadse, True	Use the umfpack solver rather than the default superLU. on SciPy 0.14+, this option requires installing the scikits.umfpack extension.
use_prec	onfailse, True	Attempt to generate a preconditioner when using the 'iterative-gmres' and 'iterative-lgmres' methods.
М	None, sparse_matrix, LinearOperator	A user defined preconditioner, if any.
use_wbm	1 False, True	Use a Weighted Bipartite Matching algorithm to attempt to make the modified Liouvillian more diagonally dominate, and thus for favorable for preconditioning. Set to True automatically when using a iterative method, unless explicitly set.
tol	1e-9	Tolerance used in finding the solution for all methods expect 'direct' and 'svd'.
max- iter	10000	Maximum number of iterations to perform for all methods expect 'direct' and 'svd'.
fill_facto	r 10	Upper-bound on the allowed fill-in for the approximate inverse preconditioner. This value may need to be set much higher than this in some cases.
drop_tol	1e-3	Sets the threshold for the relative magnitude of preconditioner elements that should be dropped. A lower number yields a more accurate approximate inverse at the expense of fill-in and increased runtime.
diag_piv	ot <u>N</u> dnesh	Sets the threshold between $[0, 1]$ for which diagonal elements are considered acceptable pivot points when using a preconditioner.
ILU_MI	_Usmilu_2'	Selects the incomplete LU decomposition method algorithm used.

Further information can be found in the qutip.steadystate.steadystate docstrings.

Example: Harmonic Oscillator in Thermal Bath

A simple example of a system that reaches a steady state is a harmonic oscillator coupled to a thermal environment. Below we consider a harmonic oscillator, initially in the $|10\rangle$ number state, and weakly coupled to a thermal environment characterized by an average particle expectation value of $\langle n \rangle = 2$. We calculate the evolution via master equation and Monte Carlo methods, and see that they converge to the steady-state solution. Here we choose to perform only a few Monte Carlo trajectories so we can distinguish this evolution from the master-equation solution.

```
In [1]: N = 20 # number of basis states to consider
In [2]: a = destroy(N)
In [3]: H = a.dag() * a
In [4]: psi0 = basis(N, 10) # initial state
In [5]: kappa = 0.1 # coupling to oscillator
```
```
In [6]: c_op_list = []
In [7]: n_th_a = 2 # temperature with average of 2 excitations
In [8]: rate = kappa * (1 + n_th_a)
In [9]: c_op_list.append(sqrt(rate) * a) # decay operators
In [10]: rate = kappa * n_th_a
In [11]: c_op_list.append(sqrt(rate) * a.dag()) # excitation operators
In [12]: final_state = steadystate(H, c_op_list)
In [13]: fexpt = expect(a.dag() * a, final_state)
In [14]: tlist = linspace(0, 50, 100)
In [15]: mcdata = mcsolve(H, psi0, tlist, c_op_list, [a.dag() * a], ntraj=100)
10.0%. Run time:0.41s. Est. time left:00:00:00:0320.0%. Run time:0.82s. Est. time left:00:00:00:03
                  0.41s. Est. time left: 00:00:00:03
30.0%. Run time: 1.17s. Est. time left: 00:00:00:02
40.0%. Run time: 1.61s. Est. time left: 00:00:00:02
50.0%. Run time: 2.01s. Est. time left: 00:00:00:02
60.0%. Run time: 2.35s. Est. time left: 00:00:00:01
70.0%. Run time: 2.65s. Est. time left: 00:00:00:01
80.0%. Run time: 3.01s. Est. time left: 00:00:00:00
90.0%. Run time: 3.43s. Est. time left: 00:00:00:00
100.0%. Run time: 3.82s. Est. time left: 00:00:00:00
Total run time: 3.87s
In [16]: medata = mesolve(H, psi0, tlist, c_op_list, [a.dag() * a])
In [17]: figure()
Out[17]: <matplotlib.figure.Figure at 0x10dad5910>
In [18]: plot(tlist, mcdata.expect[0], tlist, medata.expect[0], lw=2)
Out[18]:
[<matplotlib.lines.Line2D at 0x10db8d750>,
<matplotlib.lines.Line2D at 0x10db8d9d0>]
In [19]: axhline(y=fexpt, color='r', lw=1.5) # ss expt. value as horiz line (= 2)
Out[19]: <matplotlib.lines.Line2D at 0x10da59150>
In [20]: ylim([0, 10])
Out[20]: (0, 10)
In [21]: xlabel('Time', fontsize=14)
Out[21]: <matplotlib.text.Text at 0x10da59cd0>
In [22]: ylabel('Number of excitations', fontsize=14)
Out[22]: <matplotlib.text.Text at 0x10da88a50>
In [23]: legend(('Monte-Carlo', 'Master Equation', 'Steady State'))
Out[23]: <matplotlib.legend.Legend at 0x10d932fd0>
In [24]: title('Decay of Fock state $\left|10\\rangle\\right.$' +
   ....: ' in a thermal environment with \lambda = 1
   . . . . :
Out[24]: <matplotlib.text.Text at 0x10da84550>
In [25]: show()
```


3.7 An Overview of the Eseries Class

Exponential-series representation of time-dependent quantum objects

The eseries object in QuTiP is a representation of an exponential-series expansion of time-dependent quantum objects (a concept borrowed from the quantum optics toolbox).

An exponential series is parameterized by its amplitude coefficients c_i and rates r_i , so that the series takes the form $E(t) = \sum_i c_i e^{r_i t}$. The coefficients are typically quantum objects (type Qobj: states, operators, etc.), so that the value of the eseries also is a quantum object, and the rates can be either real or complex numbers (describing decay rates and oscillation frequencies, respectively). Note that all amplitude coefficients in an exponential series must be of the same dimensions and composition.

In QuTiP, an exponential series object is constructed by creating an instance of the class qutip.eseries:

```
In [1]: es1 = eseries(sigmax(), 1j)
```

where the first argument is the amplitude coefficient (here, the sigma-X operator), and the second argument is the rate. The eseries in this example represents the time-dependent operator $\sigma_x e^{it}$.

To add more terms to an qutip.eseries object we simply add objects using the + operator:

The qutip.eseries in this example represents the operator $0.5\sigma_x e^{i\omega t} + 0.5\sigma_x e^{-i\omega t}$, which is the exponential series representation of $\sigma_x \cos(\omega t)$. Alternatively, we can also specify a list of amplitudes and rates when the qutip.eseries is created:

```
In [4]: es2 = eseries([0.5 * sigmax(), 0.5 * sigmax()], [1j * omega, -1j * omega])
```

We can inspect the structure of an qutip.eseries object by printing it to the standard output console:

```
In [5]: es2
Out[5]:
ESERIES object: 2 terms
```

```
Hilbert space dimensions: [[2], [2]]
Exponent #0 = -1j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.     0.5]
[ 0.5     0. ]]
Exponent #1 = 1j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.     0.5]
[ 0.5     0. ]]
```

and we can evaluate it at time *t* by using the qutip.eseries.esval function:

In [6]: esval(es2, 0.0) # equivalent to es2.value(0.0)
Out[6]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[0. 1.]
[1. 0.]]

or for a list of times [0.0, 1.0 * pi, 2.0 * pi]:

```
In [7]: times = [0.0, 1.0 * pi, 2.0 * pi]
```

```
In [8]: esval(es2, times)  # equivalent to es2.value(times)
Out[8]:
array([ Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. 1.]
        [ 1. 0.]],
        Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. -1.]
        [-1. 0.]],
        Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. -1.]
        [-1. 0.]],
        Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. -1.]
        [-1. 0.]],
        Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. -1.]
        [-1. 0.]],
        [ 1. 0.]],
        [ 1. 0.]]], dtype=object)
```

To calculate the expectation value of an time-dependent operator represented by an qutip.eseries, we use the qutip.expect function. For example, consider the operator $\sigma_x \cos(\omega t) + \sigma_z \sin(\omega t)$, and say we would like to know the expectation value of this operator for a spin in its excited state (rho = fock_dm(2, 1) produce this state):

```
In [9]: es3 = (eseries([0.5*sigmaz(), 0.5*sigmaz()], [1j, -1j]) +
...: eseries([-0.5j*sigmax(), 0.5j*sigmax()], [1j, -1j]))
...:
In [10]: rho = fock_dm(2, 1)
In [11]: es3_expect = expect(rho, es3)
In [12]: es3_expect
Out[12]:
ESERIES object: 2 terms
Hilbert space dimensions: [[1, 1]]
Exponent #0 = -1j
(-0.5+0j)
Exponent #1 = 1j
(-0.5+0j)
```

```
In [13]: es3_expect.value([0.0, pi/2])
Out[13]: array([ -1.00000000e+00,  -6.12323400e-17])
```

Note the expectation value of the qutip.eseries object, expect(rho, es3), itself is an qutip.eseries, but with amplitude coefficients that are C-numbers instead of quantum operators. To evaluate the C-number qutip.eseries at the times times we use esval(es3_expect, times), or, equivalently, es3_expect.value(times).

Applications of exponential series

The exponential series formalism can be useful for the time-evolution of quantum systems. One approach to calculating the time evolution of a quantum system is to diagonalize its Hamiltonian (or Liouvillian, for dissipative systems) and to express the propagator (e.g., $\exp(-iHt)\rho\exp(iHt)$) as an exponential series.

The QuTiP function qutip.essolve.ode2es and qutip.essolve use this method to evolve quantum systems in time. The exponential series approach is particularly suitable for cases when the same system is to be evolved for many different initial states, since the diagonalization only needs to be performed once (as opposed to e.g. the ode solver that would need to be ran independently for each initial state).

As an example, consider a spin-1/2 with a Hamiltonian pointing in the σ_z direction, and that is subject to noise causing relaxation. For a spin originally is in the up state, we can create an qutip.eseries object describing its dynamics by using the qutip.es2ode function:

```
In [14]: psi0 = basis(2,1)
In [15]: H = sigmaz()
In [16]: L = liouvillian(H, [sqrt(1.0) * destroy(2)])
In [17]: es = ode2es(L, psi0)
```

The qutip.essolve.ode2es function diagonalizes the Liouvillian L and creates an exponential series with the correct eigenfrequencies and amplitudes for the initial state ψ_0 (*psi0*).

We can examine the resulting qutip.eseries object by printing a text representation:

```
In [18]: es
Out[18]:
ESERIES object: 2 terms
Hilbert space dimensions: [[2], [2]]
Exponent #0 = (-1+0j)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[-1. 0.]
[ 0. 1.]]
Exponent #1 = 0j
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. 0.]]
```

or by evaluating it and arbitrary points in time (here at 0.0 and 1.0):

```
In [19]: es.value([0.0, 1.0])
Out[19]:
array([ Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0. 0.]
    [ 0. 1.]],
        Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 0.63212056 0. ]
    [ 0. 0.36787944]]], dtype=object)
```

and the expectation value of the exponential series can be calculated using the qutip.expect function:

In [20]: es_expect = expect(sigmaz(), es)

The result *es_expect* is now an exponential series with c-numbers as amplitudes, which easily can be evaluated at arbitrary times:

```
In [21]: es_expect.value([0.0, 1.0, 2.0, 3.0])
Out[21]: array([-1. , 0.26424112, 0.72932943, 0.90042586])
In [22]: times = linspace(0.0, 10.0, 100)
In [23]: sz_expect = es_expect.value(times)
In [24]: from pylab import *
In [25]: plot(times, sz_expect, lw=2);
In [26]: xlabel("Time", fontsize=16)
    ...: ylabel("Expectation value of sigma-z", fontsize=16);
    ...:
```

In [28]: title("The expectation value of the \$\sigma_{z}\$ operator", fontsize=16);

3.8 Two-time correlation functions

With the QuTiP time-evolution functions (for example qutip.mesolve and qutip.mcsolve), a state vector or density matrix can be evolved from an initial state at t_0 to an arbitrary time t, $\rho(t) = V(t, t_0) \{\rho(t_0)\}$, where $V(t, t_0)$ is the propagator defined by the equation of motion. The resulting density matrix can then be used to evaluate the expectation values of arbitrary combinations of *same-time* operators.

To calculate *two-time* correlation functions on the form $\langle A(t + \tau)B(t)\rangle$, we can use the quantum regression theorem (see, e.g., [Gar03]) to write

$$\langle A(t+\tau)B(t)\rangle = \operatorname{Tr}\left[AV(t+\tau,t)\left\{B\rho(t)\right\}\right] = \operatorname{Tr}\left[AV(t+\tau,t)\left\{BV(t,0)\left\{\rho(0)\right\}\right\}\right]$$

We therefore first calculate $\rho(t) = V(t,0) \{\rho(0)\}$ using one of the QuTiP evolution solvers with $\rho(0)$ as initial state, and then again use the same solver to calculate $V(t + \tau, t) \{B\rho(t)\}$ using $B\rho(t)$ as initial state.

Note that if the initial state is the steady state, then $\rho(t) = V(t, 0) \{\rho_{ss}\} = \rho_{ss}$ and

$$\langle A(t+\tau)B(t)\rangle = \operatorname{Tr}\left[AV(t+\tau,t)\left\{B\rho_{\rm ss}\right\}\right] = \operatorname{Tr}\left[AV(\tau,0)\left\{B\rho_{\rm ss}\right\}\right] = \langle A(\tau)B(0)\rangle,$$

which is independent of t, so that we only have one time coordinate τ .

QuTiP provides a family of functions that assists in the process of calculating two-time correlation functions. The available functions and their usage is show in the table below. Each of these functions can use one of the following evolution solvers: Master-equation, Exponential series and the Monte-Carlo. The choice of solver is defined by the optional argument solver.

QuTiP function	Correlation function
qutip.correlation.correlation or	$\langle A(t+\tau)B(t)\rangle$ or
<pre>qutip.correlation.correlation_2op_2t</pre>	$\langle A(t)B(t+\tau)\rangle.$
qutip.correlation.correlation_ss or	$\langle A(\tau)B(0)\rangle$ or
<pre>qutip.correlation.correlation_2op_1t</pre>	$\langle A(0)B(\tau)\rangle.$
qutip.correlation.correlation_4op_1t	$\langle A(0)B(\tau)C(\tau)D(0)\rangle.$
<pre>qutip.correlation.correlation_4op_2t</pre>	$\langle A(t)B(t+\tau)C(t+\tau)D(t)\rangle$

The most common use-case is to calculate correlation functions of the kind $\langle A(\tau)B(0)\rangle$, in which case we use the correlation function solvers that start from the steady state, e.g., the qutip.correlation.correlation_2op_1t function. These correlation function solvers return a vector or matrix (in general complex) with the correlations as a function of the delays times.

Steadystate correlation function

The following code demonstrates how to calculate the $\langle x(t)x(0)\rangle$ correlation for a leaky cavity with three different relaxation rates.

```
In [1]: times = np.linspace(0,10.0,200)
In [2]: a = destroy(10)
In [3]: x = a.dag() + a
In [4]: H = a.dag() * a
In [5]: corr1 = correlation_ss(H, times, [np.sqrt(0.5) * a], x, x)
In [6]: corr2 = correlation_ss(H, times, [np.sqrt(1.0) * a], x, x)
In [7]: corr3 = correlation_ss(H, times, [np.sqrt(2.0) * a], x, x)
In [8]: figure()
Out[8]: <matplotlib.figure.Figure at 0x10b2196d0>
In [9]: plot(times, np.real(corr1), times, np.real(corr2), times, np.real(corr3))
Out[9]:
[<matplotlib.lines.Line2D at 0x10b4a3490>,
<matplotlib.lines.Line2D at 0x10b4a33d0>,
<matplotlib.lines.Line2D at 0x10b4fddd0>]
In [10]: legend(['0.5','1.0','2.0'])
Out[10]: <matplotlib.legend.Legend at 0x10df0d310>
In [11]: xlabel(r'Time $t$')
Out[11]: <matplotlib.text.Text at 0x10d29b1d0>
In [12]: ylabel(r'Correlation $\left<x(t)x(0)\right>$')
Out[12]: <matplotlib.text.Text at 0x10d263f90>
In [13]: show()
```


Emission spectrum

Given a correlation function $\langle A(\tau)B(0)\rangle$ we can define the corresponding power spectrum as

$$S(\omega) = \int_{-\infty}^{\infty} \left\langle A(\tau) B(0) \right\rangle e^{-i\omega\tau} d\tau.$$

In QuTiP, we can calculate $S(\omega)$ using either qutip.correlation.spectrum_ss, which first calculates the correlation function using the qutip.essolve.essolve solver and then performs the Fourier transform semi-analytically, or we can use the function qutip.correlation.spectrum_correlation_fft to numerically calculate the Fourier transform of a given correlation data using FFT.

The following example demonstrates how these two functions can be used to obtain the emission power spectrum.

```
import numpy as np
from qutip import *
import pylab as plt
N = 4
                        # number of cavity fock states
wc = wa = 1.0 * 2 * np.pi # cavity and atom frequency
g = 0.1 * 2 * np.pi
                           # coupling strength
kappa = 0.75
                        # cavity dissipation rate
gamma = 0.25
                        # atom dissipation rate
# Jaynes-Cummings Hamiltonian
a = tensor(destroy(N), qeye(2))
sm = tensor(qeye(N), destroy(2))
H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag())
# collapse operators
n_{th} = 0.25
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag(), np.sqrt(gamma) * sm]
# calculate the correlation function using the mesolve solver, and then fft to
# obtain the spectrum. Here we need to make sure to evaluate the correlation
# function for a sufficient long time and sufficiently high sampling rate so
# that the discrete Fourier transform (FFT) captures all the features in the
```

```
# resulting spectrum.
tlist = np.linspace(0, 100, 5000)
corr = correlation_ss(H, tlist, c_ops, a.dag(), a)
wlist1, spec1 = spectrum_correlation_fft(tlist, corr)
# calculate the power spectrum using spectrum, which internally uses essolve
# to solve for the dynamics (by default)
wlist2 = np.linspace(0.25, 1.75, 200) * 2 * np.pi
spec2 = spectrum(H, wlist2, c_ops, a.dag(), a)
# plot the spectra
fig, ax = plt.subplots(1, 1)
ax.plot(wlist1 / (2 * np.pi), spec1, 'b', lw=2, label='eseries method')
ax.plot(wlist2 / (2 * np.pi), spec2, 'r--', lw=2, label='me+fft method')
ax.legend()
ax.set_xlabel('Frequency')
ax.set_ylabel('Power spectrum')
ax.set_title('Vacuum Rabi splitting')
ax.set_xlim(wlist2[0]/(2*np.pi), wlist2[-1]/(2*np.pi))
plt.show()
```


Non-steadystate correlation function

More generally, we can also calculate correlation functions of the kind $\langle A(t_1 + t_2)B(t_1)\rangle$, i.e., the correlation function of a system that is not in its steadystate. In QuTiP, we can evoluate such correlation functions using the function qutip.correlation.correlation_2op_2t. The default behavior of this function is to return a matrix with the correlations as a function of the two time coordinates $(t_1 \text{ and } t_2)$.

```
import numpy as np
from qutip import *
```

```
from pylab import *

times = np.linspace(0, 10.0, 200)
a = destroy(10)
x = a.dag() + a
H = a.dag() * a
alpha = 2.5
rho0 = coherent_dm(10, alpha)
corr = correlation_2op_2t(H, rho0, times, times, [np.sqrt(0.25) * a], x, x)

pcolor(corr)
xlabel(r'Time $t_2$')
ylabel(r'Time $t_1$')
title(r'Correlation $\left<x(t)x(0)\right>$')
show()
```


However, in some cases we might be interested in the correlation functions on the form $\langle A(t_1 + t_2)B(t_1)\rangle$, but only as a function of time coordinate t_2 . In this case we can also use the qutip.correlation.correlation_2op_2t function, if we pass the density matrix at time t_1 as second argument, and *None* as third argument. The qutip.correlation.correlation_2op_2t function then returns a vector with the correlation values corresponding to the times in *taulist* (the fourth argument).

Example: first-order optical coherence function

This example demonstrates how to calculate a correlation function on the form $\langle A(\tau)B(0)\rangle$ for a non-steady initial state. Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the first-order optical coherence function $g^{(1)}(\tau) = \frac{\langle a^{\dagger}(\tau)a(0)\rangle}{\sqrt{\langle a^{\dagger}(\tau)a(\tau)\rangle\langle a^{\dagger}(0)a(0)\rangle}}$. For a coherent state $|g^{(1)}(\tau)| = 1$, and for a completely incoherent (thermal) state $g^{(1)}(\tau) = 0$. The following code calculates and plots $g^{(1)}(\tau)$ as a function of τ .

```
import numpy as np
from qutip import *
from pylab import *
N = 15
taus = np.linspace(0, 10.0, 200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a
# collapse operator
G1 = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sqrt(G1 * (1 + n_th)) * a, np.sqrt(G1 * n_th) * a.dag()]
# start with a coherent state
rho0 = coherent_dm(N, 2.0)
# first calculate the occupation number as a function of time
n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]
# calculate the correlation function G1 and normalize with n to obtain q1
G1 = correlation_2op_2t(H, rho0, None, taus, c_ops, a.dag(), a)
g1 = G1 / np.sqrt(n[0] * n)
plot(taus, g1, 'b')
plot(taus, n, 'r')
title('Decay of a coherent state to an incoherent (thermal) state')
xlabel(r'$\tau$')
legend((r'First-order coherence function $g^{(1)}(\tau)$',
        r'occupation number $n(\tau)$'))
show()
```


For convenience, the steps for calculating the first-order coherence function have been collected in the function <code>qutip.correlation.coherence_function_g1</code>.

Example: second-order optical coherence function

The second-order optical coherence function, with time-delay τ , is defined as

$$g^{(2)}(\tau) = \frac{\langle a^{\dagger}(0)a^{\dagger}(\tau)a(\tau)a(0)\rangle}{\langle a^{\dagger}(0)a(0)\rangle^2}$$

For a coherent state $g^{(2)}(\tau) = 1$, for a thermal state $g^{(2)}(\tau = 0) = 2$ and it decreases as a function of time (bunched photons, they tend to appear together), and for a Fock state with n photons $g^{(2)}(\tau = 0) = n(n-1)/n^2 < 1$ and it increases with time (anti-bunched photons, more likely to arrive separated in time).

To calculate this type of correlation function with QuTiP, we can use $qutip.correlation.correlation_4op_1t$, which computes a correlation function on the form $\langle A(0)B(\tau)C(\tau)D(0)\rangle$ (four operators, one delay-time vector).

The following code calculates and plots $g^{(2)}(\tau)$ as a function of τ for a coherent, thermal and fock state.

```
import numpy as np
from qutip import *
import pylab as plt
N = 25
taus = np.linspace(0, 25.0, 200)
a = destroy(N)
H = 2 * np.pi * a.dag() * a
kappa = 0.25
n_th = 2.0 # bath temperature in terms of excitation number
c_ops = [np.sqrt(kappa * (1 + n_th)) * a, np.sqrt(kappa * n_th) * a.dag()]
states = [{'state': coherent_dm(N, np.sqrt(2)), 'label': "coherent state"},
          {'state': thermal_dm(N, 2), 'label': "thermal state"},
          {'state': fock_dm(N, 2), 'label': "Fock state"}]
fig, ax = plt.subplots(1, 1)
for state in states:
   rho0 = state['state']
    # first calculate the occupation number as a function of time
    n = mesolve(H, rho0, taus, c_ops, [a.dag() * a]).expect[0]
    # calculate the correlation function G2 and normalize with n(0)n(t) to
    # obtain g2
   G2 = correlation_4op_1t(H, rho0, taus, c_ops, a.dag(), a.dag(), a, a)
    g2 = G2 / (n[0] * n)
    ax.plot(taus, np.real(g2), label=state['label'], lw=2)
ax.legend(loc=0)
ax.set_xlabel(r'$\tau$')
ax.set_ylabel(r'$g^{(2)}(\tau)$')
plt.show()
```


For convenience, the steps for calculating the second-order coherence function have been collected in the function qutip.correlation.coherence_function_g2.

3.9 Plotting on the Bloch Sphere

Important: Updated in QuTiP version 3.0.

Introduction

When studying the dynamics of a two-level system, it is often convent to visualize the state of the system by plotting the state-vector or density matrix on the Bloch sphere. In QuTiP, we have created two different classes to allow for easy creation and manipulation of data sets, both vectors and data points, on the Bloch sphere. The qutip.Bloch class, uses Matplotlib to render the Bloch sphere, where as qutip.Bloch3d uses the Mayavi rendering engine to generate a more faithful 3D reconstruction of the Bloch sphere.

The Bloch and Bloch3d Classes

In QuTiP, creating a Bloch sphere is accomplished by calling either:

In [1]: b = Bloch()

which will load an instance of the qutip.Bloch class, or using:

>>> b3d = Bloch3d()

that loads the qutip.Bloch3d version. Before getting into the details of these objects, we can simply plot the blank Bloch sphere associated with these instances via:

or

In addition to the show() command, the Bloch class has the following functions:

Name	Input Parameters (#=optional)	Description
add_points(pnts,#meth)	pnts list/array of (x,y,z) points, meth='m' (default	Adds a single or set of data points to be
	meth='s') will plot a collection of points as multi-	plotted on the sphere.
	colored data points.	
add_states(state,#kind)	state Qobj or list/array of Qobj's representing state	Input multiple states as a list or array
	or density matrix of a two-level system, kind (op-	
	tional) string specifying if state should be plotted	
	as point ('point') or vector (default).	
add_vectors(vec)	<i>vec</i> list/array of (x,y,z) points giving direction and	adds single or multiple vectors to plot.
	length of state vectors.	
clear()		Removes all data from Bloch sphere.
		Keeps customized figure properties.
<pre>save(#format,#dirc)</pre>	format format (default='png') of output file, dirc	Saves Bloch sphere to a file.
	(default=cwd) output directory	
show()		Generates Bloch sphere with given data.
As an example, we can add	a single data point:	

In [3]: pnt = [1/np.sqrt(3),1/np.sqrt(3),1/np.sqrt(3)]

- In [4]: b.add_points(pnt)
- In [5]: b.show()

and then a single vector:

In	[6]:	vec	=	[0,1,	0]
----	------	-----	---	-------	----

- In [7]: b.add_vectors(vec)
- In [8]: b.show()

and then add another vector corresponding to the $|up\rangle$ state:

- In [9]: up = basis(2,0)
- In [10]: b.add_states(up)
- In [11]: b.show()

Notice that when we add more than a single vector (or data point), a different color will automatically be applied to the later data set (mod 4). In total, the code for constructing our Bloch sphere with one vector, one state, and a single data point is:

In [12]: pnt = [1/np.sqrt(3),1/np.sqrt(3),1/np.sqrt(3)]
In [13]: b.add_points(pnt)
In [14]: b.add_vectors(vec)

In [15]: b.add_states(up)

In [16]: b.show()

where we have removed the extra show() commands. Replacing b=Bloch() with b=Bloch3d() in the above code generates the following 3D Bloch sphere.

We can also plot multiple points, vectors, and states at the same time by passing list or arrays instead of individual elements. Before giving an example, we can use the *clear()* command to remove the current data from our Bloch sphere instead of creating a new instance:

In [17]: b.clear()
In [18]: b.show()

Now on the same Bloch sphere, we can plot the three states associated with the x, y, and z directions:

- In [19]: x = (basis(2,0)+(1+0j)*basis(2,1)).unit()
- In [20]: y = (basis(2,0)+(0+1j)*basis(2,1)).unit()
- In [21]: z = (basis(2,0)+(0+0j)*basis(2,1)).unit()
- In [22]: b.add_states([x,y,z])
- In [23]: b.show()

a similar method works for adding vectors:

In [24]: b.clear()

In [25]: vec = [[1,0,0],[0,1,0],[0,0,1]]

In [26]: b.add_vectors(vec)

In [27]: b.show()

Adding multiple points to the Bloch sphere works slightly differently than adding multiple states or vectors. For example, lets add a set of 20 points around the equator (after calling *clear()*):

```
In [28]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]
In [29]: yp = [np.sin(th) for th in np.linspace(0, 2*pi, 20)]
In [30]: zp = np.zeros(20)
In [31]: pnts = [xp, yp, zp]
In [32]: b.add_points(pnts)
In [33]: b.show()
```


Notice that, in contrast to states or vectors, each point remains the same color as the initial point. This is because adding multiple data points using the add_points function is interpreted, by default, to correspond to a single data point (single qubit state) plotted at different times. This is very useful when visualizing the dynamics of a qubit. An example of this is given in the example. If we want to plot additional qubit states we can call additional *add_points* functions:

```
In [34]: xz = np.zeros(20)
In [35]: yz = [np.sin(th) for th in np.linspace(0, pi, 20)]
In [36]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]
In [37]: b.add_points([xz, yz, zz])
In [38]: b.show()
```


The color and shape of the data points is varied automatically by the Bloch class. Notice how the color and point markers change for each set of data. Again, we have had to call add_points twice because adding more than one set of multiple data points is *not* supported by the add_points function.

What if we want to vary the color of our points. We can tell the qutip.Bloch class to vary the color of each point according to the colors listed in the b.point_color list (see *Configuring the Bloch sphere* below). Again after clear():

```
In [39]: xp = [np.cos(th) for th in np.linspace(0, 2*pi, 20)]
```

```
In [40]: yp = [sin(th) for th in np.linspace(0, 2*pi, 20)]
```

In [41]: zp = np.zeros(20)

```
In [42]: pnts = [xp, yp, zp]
```

In [43]: b.add_points(pnts,'m') # <-- add a 'm' string to signify 'multi' colored points</pre>

```
In [44]: b.show()
```


Now, the data points cycle through a variety of predefined colors. Now lets add another set of points, but this time we want the set to be a single color, representing say a qubit going from the $|up\rangle$ state to the $|down\rangle$ state in the y-z plane:

```
In [45]: xz = np.zeros(20)
In [46]: yz = [np.sin(th) for th in np.linspace(0, pi ,20)]
In [47]: zz = [np.cos(th) for th in np.linspace(0, pi, 20)]
In [48]: b.add_points([xz, yz, zz]) # no 'm'
In [49]: b.show()
```


Again, the same plot can be generated using the qutip.Bloch3d class by replacing Bloch with Bloch3d:

A more slick way of using this 'multi' color feature is also given in the example, where we set the color of the markers as a function of time.

Differences Between Bloch and Bloch3d

While in general the Bloch and Bloch3d classes are interchangeable, there are some important differences to consider when choosing between them.

• The Bloch class uses Matplotlib to generate figures. As such, the data plotted on the sphere is in reality just a 2D object. In contrast the Bloch3d class uses the 3D rendering engine from VTK via mayavi to generate the sphere and the included data. In this sense the Bloch3d class is much more advanced, as objects are rendered in 3D leading to a higher quality figure.

- Only the Bloch class can be embedded in a Matplotlib figure window. Thus if you want to combine a Bloch sphere with another figure generated in QuTiP, you can not use Bloch3d. Of course you can always post-process your figures using other software to get the desired result.
- Due to limitations in the rendering engine, the Bloch3d class does not support LaTex for text. Again, you can get around this by post-processing.
- The user customizable attributes for the Bloch and Bloch3d classes are not identical. Therefore, if you change the properties of one of the classes, these changes will cause an exception if the class is switched.

Configuring the Bloch sphere

Bloch Class Options

At the end of the last section we saw that the colors and marker shapes of the data plotted on the Bloch sphere are automatically varied according to the number of points and vectors added. But what if you want a different choice of color, or you want your sphere to be purple with different axes labels? Well then you are in luck as the Bloch class has 22 attributes which one can control. Assuming b=Bloch():

Attribute	Function	Default Setting
b.axes	Matplotlib axes instance for animations. Set by	None
	axes keyword arg.	
b.fig	User supplied Matplotlib Figure instance. Set by	None
	fig keyword arg.	
b.font_color	Color of fonts	'black'
b.font_size	Size of fonts	20
b.frame_alpha	Transparency of wireframe	0.1
b.frame_color	Color of wireframe	'gray'
b.frame_width	Width of wireframe	1
b.point_color	List of colors for Bloch point markers to cycle	['b','r','g','#CC6600']
	through	
b.point_marker	List of point marker shapes to cycle through	['o','s','d','^']
b.point_size	List of point marker sizes (not all markers look the	[55,62,65,75]
	same size when plotted)	
b.sphere_alpha	Transparency of Bloch sphere	0.2
b.sphere_color	Color of Bloch sphere	'#FFDDDD'
b.size	Sets size of figure window	[7,7] (700x700 pixels)
b.vector_color	List of colors for Bloch vectors to cycle through	['g','#CC6600','b','r']
b.vector_width	Width of Bloch vectors	4
b.view	Azimuthal and Elevation viewing angles	[-60,30]
b.xlabel	Labels for x-axis	['\$x\$',''] +x and $-x$ (labels use LaTeX)
b.xlpos	Position of x-axis labels	[1.1,-1.1]
b.ylabel	Labels for y-axis	['\$y\$',''] +y and -y (labels use LaTeX)
b.ylpos	Position of y-axis labels	[1.2,-1.2]
b.zlabel	Labels for z-axis	[' $left 0\right>$ ',' $left 1\right>$ '] +z and -z (la
		bels use LaTeX)
b.zlpos	Position of z-axis labels	[1.2,-1.2]

Bloch3d Class Options

The Bloch3d sphere is also customizable. Note however that the attributes for the Bloch3d class are not in one-to-one correspondence to those of the Bloch class due to the different underlying rendering engines. Assuming b=Bloch3d():

Attribute	Function	Default Setting
b.fig	User supplied Mayavi Figure instance. Set by	None
	fig keyword arg.	
b.font_color	Color of fonts	'black'
b.font_scale	Scale of fonts	0.08
b.frame	Draw wireframe for sphere?	True
b.frame_alpha	Transparency of wireframe	0.05
b.frame_color	Color of wireframe	'gray'
b.frame_num	Number of wireframe elements to draw	8
b.frame_radius	Radius of wireframe lines	0.005
b.point_color	List of colors for Bloch point markers to cycle	['r', 'g', 'b', 'y']
	through	
b.point_mode	Type of point markers to draw	sphere
b.point_size	Size of points	0.075
b.sphere_alpha	Transparency of Bloch sphere	0.1
b.sphere_color	Color of Bloch sphere	ʻ#808080'
b.size	Sets size of figure window	[500,500] (500x500 pixels)
b.vector_color	List of colors for Bloch vectors to cycle through	['r', 'g', 'b', 'y']
b.vector_width	Width of Bloch vectors	3
b.view	Azimuthal and Elevation viewing angles	[45,65]
b.xlabel	Labels for x-axis	[' x>', ''] + x and -x
b.xlpos	Position of x-axis labels	[1.07,-1.07]
b.ylabel	Labels for y-axis	['\$y\$',`'] +y and -y
b.ylpos	Position of y-axis labels	[1.07,-1.07]
b.zlabel	Labels for z-axis	[' 0>', ' 1>'] +z and -z
b.zlpos	Position of z-axis labels	[1.07,-1.07]

These properties can also be accessed via the print command:

```
In [50]: b = Bloch()
```

```
In [51]: print(b)
Bloch data:
Number of points: 0
Number of vectors: 0
Bloch sphere properties:
____
font_color: black
                 20
font_size:
frame_alpha: 0.2
frame_color: gray
frame_width: 1
point_color: ['b', 'r', 'g', '#CC6600']
point_marker: ['o', 's', 'd', '^']
point_size: [25, 32, 35, 45]
sphere_alpha: 0.2
sphere_color: #FFDDDD
figsize: [5, 5]
vector_color: ['g', '#CC6600', 'b', 'r']
vector_width: 3
vector_style:
                   - | >
vector_mutation: 20
         [-60, 30]
view:
xlabel:
                  ['$x$', '']
                [1.2, -1.2]
xlpos:
                  ['$y$', '']
[1.2, -1.2]
ylabel:
ylpos:
                    ['$\\left|0\\right>$', '$\\left|1\\right>$']
zlabel:
                    [1.2, -1.2]
zlpos:
```

Animating with the Bloch sphere

The Bloch class was designed from the outset to generate animations. To animate a set of vectors or data points the basic idea is: plot the data at time t1, save the sphere, clear the sphere, plot data at t2,... The Bloch sphere will automatically number the output file based on how many times the object has been saved (this is stored in b.savenum). The easiest way to animate data on the Bloch sphere is to use the save() method and generate a series of images to convert into an animation. However, as of Matplotlib version 1.1, creating animations is built-in. We will demonstrate both methods by looking at the decay of a qubit on the bloch sphere.

Example: Qubit Decay

The code for calculating the expectation values for the Pauli spin operators of a qubit decay is given below. This code is common to both animation examples.

```
from qutip import
from scipy import *
def qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist):
     # operators and the hamiltonian
    sx = sigmax(); sy = sigmay(); sz = sigmaz(); sm = sigmam()
    H = w * (\cos(theta) * sz + sin(theta) * sx)
     # collapse operators
    c_op_list = []
    n_th = 0.5 # temperature
    rate = gamma1 + (n_th + 1)
    if rate > 0.0: c_op_list.append(sqrt(rate) * sm)
    rate = gamma1 * n_th
    if rate > 0.0: c_op_list.append(sqrt(rate) * sm.dag())
    rate = gamma2
    if rate > 0.0: c_op_list.append(sqrt(rate) * sz)
    # evolve and calculate expectation values
    output = mesolve(H, psi0, tlist, c_op_list, [sx, sy, sz])
    return output.expect[0], output.expect[1], output.expect[2]
## calculate the dynamics
w = 1.0 * 2 * pi  # qubit angular frequency
theta = 0.2 * pi  # qubit angle from sigma_z axis (toward sigma_x axis)
gamma1 = 0.5  # qubit relaxation rate
gamma2 = 0.2  # qubit dephasing rate
# initial state
a = 1.0
psi0 = (a* basis(2,0) + (1-a)*basis(2,1))/(sqrt(a**2 + (1-a)**2))
tlist = linspace(0, 4, 250)
#expectation values for ploting
sx, sy, sz = qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist)
```

Generating Images for Animation

An example of generating images for generating an animation outside of Python is given below:

```
b = Bloch()
b.vector_color = ['r']
b.view = [-40,30]
for i in range(len(sx)):
    b.clear()
    b.add_vectors([np.sin(theta),0,np.cos(theta)])
    b.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
    b.save(dirc='temp') #saving images to temp directory in current working directory
```

Generating an animation using ffmpeg (for example) is fairly simple:

ffmpeg -r 20 -b 1800 -i bloch_%01d.png bloch.mp4

Directly Generating an Animation

Important: Generating animations directly from Matplotlib requires installing either mencoder or ffmpeg. While either choice works on linux, it is best to choose ffmpeg when running on the Mac. If using macports just do: sudo port install ffmpeg.

The code to directly generate an mp4 movie of the Qubit decay is as follows:

```
from pylab import *
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D
fig = figure()
ax = Axes3D(fig,azim=-40,elev=30)
sphere = Bloch(axes=ax)
def animate(i):
    sphere.clear()
    sphere.add_vectors([np.sin(theta),0,np.cos(theta)])
    sphere.add_points([sx[:i+1],sy[:i+1],sz[:i+1]])
    sphere.make_sphere()
    return ax
def init():
    sphere.vector_color = ['r']
    return ax
ani = animation.FuncAnimation(fig, animate, np.arange(len(sx)),
                            init_func=init, blit=True, repeat=False)
ani.save('bloch_sphere.mp4', fps=20, clear_temp=True)
```

The resulting movie may be viewed here: Bloch_Decay.mp4

3.10 Visualization of quantum states and processes

Visualization is often an important complement to a simulation of a quantum mechanical system. The first method of visualization that come to mind might be to plot the expectation values of a few selected operators. But on top of that, it can often be instructive to visualize for example the state vectors or density matices that describe the state of the system, or how the state is transformed as a function of time (see process tomography below). In this section we demonstrate how QuTiP and matplotlib can be used to perform a few types of visualizations that often can provide additional understanding of quantum system.

Fock-basis probability distribution

In quantum mechanics probability distributions plays an important role, and as in statistics, the expectation values computed from a probability distribution does not reveal the full story. For example, consider an quantum harmonic oscillator mode with Hamiltonian $H = \hbar \omega a^{\dagger} a$, which is in a state described by its density matrix ρ , and which on average is occupied by two photons, $\text{Tr}[\rho a^{\dagger} a] = 2$. Given this information we cannot say whether the oscillator is in a Fock state, a thermal state, a coherent state, etc. By visualizing the photon distribution in the Fock state basis important clues about the underlying state can be obtained.

One convenient way to visualize a probability distribution is to use histograms. Consider the following histogram visualization of the number-basis probability distribution, which can be obtained from the diagonal of the density matrix, for a few possible oscillator states with on average occupation of two photons.

First we generate the density matrices for the coherent, thermal and fock states.

In [1]: N = 20

- In [2]: rho_coherent = coherent_dm(N, np.sqrt(2))
- In [3]: rho_thermal = thermal_dm(N, 2)
- In [4]: rho_fock = fock_dm(N, 2)

Next, we plot histograms of the diagonals of the density matrices:

```
In [5]: fig, axes = plt.subplots(1, 3, figsize=(12,3))
```

In [6]: bar0 = axes[0].bar(np.arange(0, N)-.5, rho_coherent.diag())

```
In [7]: lbl0 = axes[0].set_title("Coherent state")
```

- In [8]: lim0 = axes[0].set_xlim([-.5, N])
- In [9]: bar1 = axes[1].bar(np.arange(0, N)-.5, rho_thermal.diag())
- In [10]: lbl1 = axes[1].set_title("Thermal state")
- In [11]: lim1 = axes[1].set_xlim([-.5, N])
- In [12]: bar2 = axes[2].bar(np.arange(0, N)-.5, rho_fock.diag())
- In [13]: lbl2 = axes[2].set_title("Fock state")

```
In [14]: lim2 = axes[2].set_xlim([-.5, N])
```

```
In [15]: plt.show()
```


All these states correspond to an average of two photons, but by visualizing the photon distribution in Fock basis the differences between these states are easily appreciated.

One frequently need to visualize the Fock-distribution in the way described above, so QuTiP provides a convenience function for doing this, see qutip.visualization.plot_fock_distribution, and the following example:

```
In [16]: fig, axes = plt.subplots(1, 3, figsize=(12,3))
In [17]: plot_fock_distribution(rho_coherent, fig=fig, ax=axes[0], title="Coherent state");
In [18]: plot_fock_distribution(rho_thermal, fig=fig, ax=axes[1], title="Thermal state");
In [19]: plot_fock_distribution(rho_fock, fig=fig, ax=axes[2], title="Fock state");
In [20]: fig.tight_layout()
In [21]: plt.show()
```


Quasi-probability distributions

The probability distribution in the number (Fock) basis only describes the occupation probabilities for a discrete set of states. A more complete phase-space probability-distribution-like function for harmonic modes are the Wigner and Husumi Q-functions, which are full descriptions of the quantum state (equivalent to the density matrix). These are called quasi-distribution functions because unlike real probability distribution functions they can for example be negative. In addition to being more complete descriptions of a state (compared to only the occupation probabilities plotted above), these distributions are also great for demonstrating if a quantum state is quantum mechanical, since for example a negative Wigner function is a definite indicator that a state is distinctly nonclassical.

Wigner function

In QuTiP, the Wigner function for a harmonic mode can be calculated with the function qutip.wigner.wigner. It takes a ket or a density matrix as input, together with arrays that define the ranges of the phase-space coordinates (in the x-y plane). In the following example the Wigner functions are calculated and plotted for the same three states as in the previous section.

In [22]: xvec = np.linspace(-5,5,200)
In [23]: W_coherent = wigner(rho_coherent, xvec, xvec)
In [24]: W_thermal = wigner(rho_thermal, xvec, xvec)
In [25]: W_fock = wigner(rho_fock, xvec, xvec)
In [26]: # plot the results
In [27]: fig, axes = plt.subplots(1, 3, figsize=(12,3))
In [28]: cont0 = axes[0].contourf(xvec, xvec, W_coherent, 100)
In [29]: lb10 = axes[0].set_title("Coherent state")
In [30]: cont1 = axes[1].contourf(xvec, xvec, W_thermal, 100)
In [31]: lb11 = axes[1].set_title("Thermal state")
In [32]: cont0 = axes[2].contourf(xvec, xvec, W_fock, 100)
In [33]: lb12 = axes[2].set_title("Fock state")
In [34]: plt.show()

Custom Color Maps

The main objective when plotting a Wigner function is to demonstrate that the underlying state is nonclassical, as indicated by negative values in the Wigner function. Therefore, making these negative values stand out in a figure is helpful for both analysis and publication purposes. Unfortunately, all of the color schemes used in Matplotlib (or any other plotting software) are linear colormaps where small negative values tend to be near the same color as the zero values, and are thus hidden. To fix this dilemma, QuTiP includes a nonlinear colormap function qutip.visualization.wigner_cmap that colors all negative values differently than positive or zero values. Below is a demonstration of how to use this function in your Wigner figures:

```
In [35]: import matplotlib as mpl
In [36]: from matplotlib import cm
In [37]: psi = (basis(10, 0) + basis(10, 3) + basis(10, 9)).unit()
In [38]: xvec = np.linspace(-5, 5, 500)
In [39]: W = wigner(psi, xvec, xvec)
In [40]: wmap = wigner_cmap(W) # Generate Wigner colormap
In [41]: nrm = mpl.colors.Normalize(-W.max(), W.max())
In [42]: fig, axes = plt.subplots(1, 2, figsize=(10, 4))
In [43]: plt1 = axes[0].contourf(xvec, xvec, W, 100, cmap=cm.RdBu, norm=nrm)
In [44]: axes[0].set_title("Standard Colormap");
In [45]: cb1 = fig.colorbar(plt1, ax=axes[0])
In [46]: plt2 = axes[1].contourf(xvec, xvec, W, 100, cmap=wmap) # Apply Wigner colormap
In [47]: axes[1].set_title("Wigner Colormap");
In [48]: cb2 = fig.colorbar(plt2, ax=axes[1])
In [49]: fig.tight_layout()
In [50]: plt.show()
```


Husimi Q-function

The Husimi Q function is, like the Wigner function, a quasiprobability distribution for harmonic modes. It is defined as

$$Q(\alpha) = \frac{1}{\pi} \left< \alpha |\rho| \alpha \right>$$

where $|\alpha\rangle$ is a coherent state and $\alpha = x + iy$. In QuTiP, the Husimi Q function can be computed given a state ket or density matrix using the function qutip.wigner.qfunc, as demonstrated below.

In [51]: Q_coherent = qfunc(rho_coherent, xvec, xvec)
In [52]: Q_thermal = qfunc(rho_thermal, xvec, xvec)
In [53]: Q_fock = qfunc(rho_fock, xvec, xvec)
In [54]: fig, axes = plt.subplots(1, 3, figsize=(12,3))
In [55]: cont0 = axes[0].contourf(xvec, xvec, Q_coherent, 100)
In [56]: lbl0 = axes[0].set_title("Coherent state")
In [57]: cont1 = axes[1].contourf(xvec, xvec, Q_thermal, 100)
In [58]: lbl1 = axes[1].set_title("Thermal state")
In [59]: cont0 = axes[2].contourf(xvec, xvec, Q_fock, 100)
In [60]: lbl2 = axes[2].set_title("Fock state")
In [61]: plt.show()

Visualizing operators

Sometimes, it may also be useful to directly visualizing the underlying matrix representation of an operator. The density matrix, for example, is an operator whose elements can give insights about the state it represents, but one might also be interesting in plotting the matrix of an Hamiltonian to inspect the structure and relative importance of various elements.

QuTiP offers few functions quickly visualizing а for matrix data in the of histograms, qutip.visualization.matrix_histogram form and qutip.visualization.matrix_histogram_complex, and as Hinton diagram of weighted squares, qutip.visualization.hinton. These functions takes a qutip.Qobj.Qobj as first argument, and optional arguments to, for example, set the axis labels and figure title (see the function's documentation for details).

For example, to illustrate the use of qutip.visualization.matrix_histogram, let's visualize of the Jaynes-Cummings Hamiltonian:

```
In [62]: N = 5
In [63]: a = tensor(destroy(N), qeye(2))
In [64]: b = tensor(qeye(N), destroy(2))
In [65]: sx = tensor(qeye(N), sigmax())
In [66]: H = a.dag() * a + sx - 0.5 * (a * b.dag() + a.dag() * b)
In [67]: # visualize H
In [68]: lbls_list = [[str(d) for d in range(N)], ["u", "d"]]
In [69]: xlabels = []
In [70]: for inds in tomography._index_permutations([len(lbls) for lbls in lbls_list]):
             xlabels.append("".join([lbls_list[k][inds[k]]
   . . . . :
                                     for k in range(len(lbls_list))]))
   . . . . :
   . . . . :
In [71]: fig, ax = matrix_histogram(H, xlabels, xlabels, limits=[-4,4])
In [72]: ax.view_init(azim=-55, elev=45)
In [73]: plt.show()
```


Similarly, we can use the function qutip.visualization.hinton, which is used below to visualize the corresponding steadystate density matrix:

```
In [74]: rho_ss = steadystate(H, [np.sqrt(0.1) * a, np.sqrt(0.4) * b.dag()])
In [75]: fig, ax = hinton(rho_ss) # xlabels=xlabels, ylabels=xlabels)
In [76]: plt.show()
```


Quantum process tomography

Quantum process tomography (QPT) is a useful technique for characterizing experimental implementations of quantum gates involving a small number of qubits. It can also be a useful theoretical tool that can give insight

in how a process transforms states, and it can be used for example to study how noise or other imperfections deteriorate a gate. Whereas a fidelity or distance measure can give a single number that indicates how far from ideal a gate is, a quantum process tomography analysis can give detailed information about exactly what kind of errors various imperfections introduce.

The idea is to construct a transformation matrix for a quantum process (for example a quantum gate) that describes how the density matrix of a system is transformed by the process. We can then decompose the transformation in some operator basis that represent well-defined and easily interpreted transformations of the input states.

To see how this works (see e.g. [Moh08] for more details), consider a process that is described by quantum map $\epsilon(\rho_{in}) = \rho_{out}$, which can be written

$$\epsilon(\rho_{\rm in}) = \rho_{\rm out} = \sum_{i}^{N^2} A_i \rho_{\rm in} A_i^{\dagger}, \qquad (3.20)$$

where N is the number of states of the system (that is, ρ is represented by an $[N \times N]$ matrix). Given an orthogonal operator basis of our choice $\{B_i\}_i^{N^2}$, which satisfies $\text{Tr}[B_i^{\dagger}B_j] = N\delta_{ij}$, we can write the map as

$$\epsilon(\rho_{\rm in}) = \rho_{\rm out} = \sum_{mn} \chi_{mn} B_m \rho_{\rm in} B_n^{\dagger}.$$
(3.21)

where $\chi_{mn} = \sum_{ij} b_{im} b_{jn}^*$ and $A_i = \sum_m b_{im} B_m$. Here, matrix χ is the transformation matrix we are after, since it describes how much $B_m \rho_{in} B_n^{\dagger}$ contributes to ρ_{out} .

In a numerical simulation of a quantum process we usually do not have access to the quantum map in the form Eq. (3.20). Instead, what we usually can do is to calculate the propagator U for the density matrix in superoperator form, using for example the QuTiP function qutip.propagator.propagator. We can then write

$$\epsilon(\tilde{\rho}_{\rm in}) = U\tilde{\rho}_{\rm in} = \tilde{\rho}_{\rm out}$$

where $\tilde{\rho}$ is the vector representation of the density matrix ρ . If we write Eq. (3.21) in superoperator form as well we obtain

$$\tilde{\rho}_{\rm out} = \sum_{mn} \chi_{mn} \tilde{B}_m \tilde{B}_n^{\dagger} \tilde{\rho}_{\rm in} = U \tilde{\rho}_{\rm in}$$

so we can identify

$$U = \sum_{mn} \chi_{mn} \tilde{B}_m \tilde{B}_n^{\dagger}$$

Now this is a linear equation systems for the $N^2 \times N^2$ elements in χ . We can solve it by writing χ and the superoperator propagator as $[N^4]$ vectors, and likewise write the superoperator product $\tilde{B}_m \tilde{B}_n^{\dagger}$ as a $[N^4 \times N^4]$ matrix M:

$$U_I = \sum_J^{N^4} M_{IJ} \chi_J$$

with the solution

$$\chi = M^{-1}U.$$

Note that to obtain χ with this method we have to construct a matrix M with a size that is the square of the size of the superoperator for the system. Obviously, this scales very badly with increasing system size, but this method can still be a very useful for small systems (such as system comprised of a small number of coupled qubits).

Implementation in QuTiP

In QuTiP, the procedure described above is implemented in the function qutip.tomography.qpt, which returns the χ matrix given a density matrix propagator. To illustrate how to use this function, let's consider the *i*-SWAP gate for two qubits. In QuTiP the function qutip.gates.iswap generates the unitary transformation for the state kets:

In [77]: U_psi = iswap()

To be able to use this unitary transformation matrix as input to the function qutip.tomography.qpt, we first need to convert it to a transformation matrix for the corresponding density matrix:

In [78]: U_rho = spre(U_psi) * spost(U_psi.dag())

Next, we construct a list of operators that define the basis $\{B_i\}$ in the form of a list of operators for each composite system. At the same time, we also construct a list of corresponding labels that will be used when plotting the χ matrix.

In [79]: op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2

In [80]: op_label = [["i", "x", "y", "z"]] * 2

We are now ready to compute χ using qutip.tomography.qpt, and to plot it using qutip.tomography.qpt_plot_combined.

In [81]: chi = qpt(U_rho, op_basis)

In [82]: fig = qpt_plot_combined(chi, op_label, r'\$i\$SWAP')

In [83]: plt.show()

For a slightly more advanced example, where the density matrix propagator is calculated from the dynamics of a system defined by its Hamiltonian and collapse operators using the function <code>qutip.propagator.propagator</code>, see notebook "Time-dependent master equation: Landau-Zener transitions" on the tutorials section on the QuTiP web site.

3.11 Parallel computation

Parallel map and parallel for-loop

Often one is interested in the output of a given function as a single-parameter is varied. For instance, we can calculate the steady-state response of our system as the driving frequency is varied. In cases such as this, where each iteration is independent of the others, we can speedup the calculation by performing the iterations in parallel.

In QuTiP, parallel computations may be performed using the qutip.parallel.parallel_map function or the qutip.parallel.parfor (parallel-for-loop) function.

To use the these functions we need to define a function of one or more variables, and the range over which one of these variables are to be evaluated. For example:

```
In [1]: def func1(x): return x, x**2, x**3
In [2]: a, b, c = parfor(func1, range(10))
In [3]: print(a)
[0 1 2 3 4 5 6 7 8 9]
In [4]: print(b)
[ 0 1 4 9 16 25 36 49 64 81]
In [5]: print(c)
[ 0 1 8 27 64 125 216 343 512 729]
  or
In [6]: result = parallel_map(func1, range(10))
In [7]: result_array = np.array(result)
In [8]: print(result_array[:, 0]) # == a
[0 1 2 3 4 5 6 7 8 9]
In [9]: print(result_array[:, 1]) # == b
[ 0 1 4 9 16 25 36 49 64 81]
In [10]: print(result_array[:, 2]) # == c
```

[0 1 8 27 64 125 216 343 512 729]

Note that the return values are arranged differently for the qutip.parallel.parallel_map and the qutip.parallel.parfor functions, as illustrated below. In particular, the return value of qutip.parallel.parallel_map is not enforced to be NumPy arrays, which can avoid unnecessary copy- ing if all that is needed is to iterate over the resulting list:

```
In [11]: result = parfor(func1, range(5))
In [12]: print(result)
[array([0, 1, 2, 3, 4]), array([ 0, 1, 4, 9, 16]), array([ 0, 1, 8, 27, 64])]
In [13]: result = parallel_map(func1, range(5))
In [14]: print(result)
[(0, 0, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]
```

The qutip.parallel.parallel_map and qutip.parallel.parfor functions are not limited to
just numbers, but also works for a variety of outputs:

In [15]: def func2(x): return x, Qobj(x), 'a' * x
In [16]: a, b, c = parfor(func2, range(5))
In [17]: print(a)
[0 1 2 3 4]
In [18]: print(b)
[Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[0.]]

```
Qobj data =
[[ 1.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[ 2.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[ 3.]]
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, isherm = True
Qobj data =
[[ 4.]]
In [19]: print(c)
['' 'a' 'aa' 'aaa' 'aaaa']
```

Note: New in QuTiP 3.

One can also define functions with **multiple** input arguments and even keyword arguments. Here the qutip.parallel.parallel_map and qutip.parallel.parfor functions behaves differently: While qutip.parallel.parallel_map only iterate over the values *arguments*, the qutip.parallel.parfor function simultaneously iterates over all arguments:

```
In [20]: def sum_diff(x, y, z=0): return x + y, x - y, z
In [21]: parfor(sum_diff, [1, 2, 3], [4, 5, 6], z=5.0)
Out[21]: [array([5, 7, 9]), array([-3, -3, -3]), array([ 5., 5., 5.])]
In [22]: parallel_map(sum_diff, [1, 2, 3], task_args=(np.array([4, 5, 6]),), task_kwargs=dict(z=5
Out[22]:
[(array([5, 6, 7]), array([-3, -4, -5]), 5.0),
   (array([6, 7, 8]), array([-2, -3, -4]), 5.0),
   (array([7, 8, 9]), array([-1, -2, -3]), 5.0)]
```

Note that the keyword arguments can be anything you like, but the keyword values are **not** iterated over. The keyword argument *num_cpus* is reserved as it sets the number of CPU's used by parfor. By default, this value is set to the total number of physical processors on your system. You can change this number to a lower value, however setting it higher than the number of CPU's will cause a drop in performance. In qutip.parallel_map, keyword arguments to the task function are specified using *task_kwargs* argument, so there is no special reserved keyword arguments.

The qutip.parallel.parallel_map function also supports progressbar, using the keyword argument *progress_bar* which can be set to *True* or to an instance of qutip.ui.progressbar.BaseProgressBar. There is a function called qutip.parallel.serial_map that works as a non-parallel drop-in replacement for qutip.parallel.parallel_map, which allows easy switching between serial and parallel computation.

```
In [23]: import time
```

```
In [24]: def func(x): time.sleep(1)
```

```
In [25]: result = parallel_map(func, range(50), progress_bar=True)
                 2.01s. Est. time left: 00:00:00:18
10.0%. Run time:
                  3.01s. Est. time left: 00:00:00:12
20.0%. Run time:
30.0%. Run time:
                  4.02s. Est. time left: 00:00:00:09
40.0%. Run time:
                 5.02s. Est. time left: 00:00:00:07
50.0%. Run time: 7.02s. Est. time left: 00:00:00:07
60.0%. Run time: 8.02s. Est. time left: 00:00:00:05
70.0%. Run time: 9.02s. Est. time left: 00:00:00:03
80.0%. Run time: 10.02s. Est. time left: 00:00:00:02
90.0%. Run time: 12.02s. Est. time left: 00:00:00:01
100.0%. Run time: 13.02s. Est. time left: 00:00:00:00
Total run time: 13.07s
```

Parallel processing is useful for repeated tasks such as generating plots corresponding to the dynamical evolution of your system, or simultaneously simulating different parameter configurations.

IPython-based parallel_map

Note: New in QuTiP 3.

When QuTiP is used with IPython interpreter, there is an alternative parallel for-loop implementation in the QuTiP module qutip.ipynbtools, see qutip.ipynbtools.parallel_map. The advantage of this parallel_map implementation is based on IPythons powerful framework for parallelization, so the compute processes are not confined to run on the same host as the main process.

3.12 Saving QuTiP Objects and Data Sets

With time-consuming calculations it is often necessary to store the results to files on disk, so it can be postprocessed and archived. In QuTiP there are two facilities for storing data: Quantum objects can be stored to files and later read back as python pickles, and numerical data (vectors and matrices) can be exported as plain text files in for example CSV (comma-separated values), TSV (tab-separated values), etc. The former method is preferred when further calculations will be performed with the data, and the latter when the calculations are completed and data is to be imported into a post-processing tool (e.g. for generating figures).

Storing and loading QuTiP objects

To store and load arbitrary QuTiP related objects (qutip.Qobj, qutip.solver.Result, etc.) there are two functions: qutip.fileio.qsave and qutip.fileio.qload. The function qutip.fileio.qsave takes an arbitrary object as first parameter and an optional filename as second parameter (default filename is *qutip_data.qu*). The filename extension is always.*qu*. The function qutip.fileio.qload takes a mandatory filename as first argument and loads and returns the objects in the file.

To illustrate how these functions can be used, consider a simple calculation of the steadystate of the harmonic oscillator:

```
In [1]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]
In [2]: rho_ss = steadystate(H, c_ops)
```

The steadystate density matrix *rho_ss* is an instance of qutip.Qobj. It can be stored to a file *steadystate.qu* using

```
In [3]: qsave(rho_ss, 'steadystate')
In [4]: ls *.qu
density_matrix_vs_time.qu steadystate.qu
```

and it can later be loaded again, and used in further calculations:

```
In [5]: rho_ss_loaded = qload('steadystate')
Loaded Qobj object:
Quantum object: dims = [[10], [10]], shape = [10, 10], type = oper, isHerm = True
In [6]: a = destroy(10)
In [7]: expect(a.dag() * a, rho_ss_loaded)
Out[7]: 0.9902248289345064
```

The nice thing about the qutip.fileio.qsave and qutip.fileio.qload functions is that almost any object can be stored and load again later on. We can for example store a list of density matrices as returned by qutip.mesolve:
```
In [8]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]
In [9]: psi0 = rand_ket(10)
In [10]: times = np.linspace(0, 10, 10)
In [11]: dm_list = mesolve(H, psi0, times, c_ops, [])
In [12]: qsave(dm_list, 'density_matrix_vs_time')
```

And it can then be loaded and used again, for example in an other program:

Storing and loading datasets

The qutip.fileio.qsave and qutip.fileio.qload are great, but the file format used is only understood by QuTiP (python) programs. When data must be exported to other programs the preferred method is to store the data in the commonly used plain-text file formats. With the QuTiP functions qutip.fileio.file_data_store and qutip.fileio.file_data_read we can store and load **numpy** arrays and matrices to files on disk using a deliminator-separated value format (for example comma-separated values CSV). Almost any program can handle this file format.

The qutip.fileio.file_data_store takes two mandatory and three optional arguments:

>>> file_data_store(filename, data, numtype="complex", numformat="decimal", sep=",")

where *filename* is the name of the file, *data* is the data to be written to the file (must be a *numpy* array), *numtype* (optional) is a flag indicating numerical type that can take values *complex* or *real*, *numformat* (optional) specifies the numerical format that can take the values *exp* for the format *1.0e1* and *decimal* for the format *10.0*, and *sep* (optional) is an arbitrary single-character field separator (usually a tab, space, comma, semicolon, etc.).

A common use for the qutip.fileio.file_data_store function is to store the expectation values of a set of operators for a sequence of times, e.g., as returned by the qutip.mesolve function, which is what the following example does:

```
In [16]: a = destroy(10); H = a.dag() * a ; c_ops = [sqrt(0.5) * a, sqrt(0.25) * a.dag()]
In [17]: psi0 = rand_ket(10)
In [18]: times = np.linspace(0, 100, 100)
In [19]: medata = mesolve(H, psi0, times, c_ops, [a.dag() * a, a + a.dag(), -1j * (a - a.dag())])
In [20]: shape(medata.expect)
Out[20]: (3, 100)
In [21]: shape(times)
Out[21]: (100,)
In [22]: output_data = np.vstack((times, medata.expect))  # join time and expt data
```

In [23]: file_data_store('expect.dat', output_data.T) # Note the .T for transpose!

In [24]: ls *.dat
expect.dat

In [25]: !head expect.dat

```
# Generated by QuTiP: 100x4 complex matrix in decimal format [',' separated values].
0.000000000+0.000000000j,3.0955765962+0.000000000j,2.3114466232+0.000000000j,-0.2208505556+0.
1.0101010101+0.000000000j,2.5836572767+0.0000000000j,0.8657267558+0.0000000000j,-1.7468558726+0.
2.0202020202+0.000000000j,2.2083149044+0.000000000j,-0.8847004889+0.0000000000j,-1.4419458039+0
3.033030303+0.000000000j,1.9242964668+0.0000000000j,-1.4729939509+0.0000000000j,-0.0149042695+0
4.0404040404+0.0000000000j,1.7075693373+0.0000000000j,-0.6940705865+0.0000000000j,1.0812526557+0.
5.050505055+0.0000000000j,1.5416230338+0.0000000000j,0.4773836586+0.0000000000j,1.0153635400+0.0
6.0606666666+0.0000000000j,1.4143168556+0.0000000000j,0.9734025713+0.0000000000j,0.1185429362+0.0
7.0707070707+0.0000000000j,1.3165352694+0.0000000000j,0.5404687852+0.0000000000j,-0.6657847865+0.
8.0808080808+0.000000000j,1.2413698337+0.0000000000j,-0.2418480793+0.0000000000j,-0.7102105490+0
```

In this case we didn't really need to store both the real and imaginary parts, so instead we could use the *numtype="real"* option:

```
In [26]: file_data_store('expect.dat', output_data.T, numtype="real")
In [27]: !head -n5 expect.dat
# Generated by QuTiP: 100x4 real matrix in decimal format [',' separated values].
0.0000000000,3.0955765962,2.3114466232,-0.2208505556
1.0101010101,2.5836572767,0.8657267558,-1.7468558726
2.020202022,2.2083149044,-0.8847004889,-1.4419458039
3.0303030303,1.9242964668,-1.4729939509,-0.0149042695
```

and if we prefer scientific notation we can request that using the *numformat="exp"* option

In [28]: file_data_store('expect.dat', output_data.T, numtype="real", numformat="exp")

In [29]: !head -n 5 expect.dat

```
# Generated by QuTiP: 100x4 real matrix in exp format [',' separated values].
0.000000000e+00,3.0955765962e+00,2.3114466232e+00,-2.2085055556e-01
1.0101010101e+00,2.5836572767e+00,8.6572675578e-01,-1.7468558726e+00
2.02020202e+00,2.2083149044e+00,-8.8470048890e-01,-1.4419458039e+00
3.0303030303e+00,1.9242964668e+00,-1.4729939509e+00,-1.4904269545e-02
```

Loading data previously stored using qutip.fileio.file_data_store (or some other software) is a even easier. Regardless of which deliminator was used, if data was stored as complex or real numbers, if it is in decimal or exponential form, the data can be loaded using the qutip.fileio.file_data_read, which only takes the filename as mandatory argument.

```
In [30]: input_data = file_data_read('expect.dat')
In [31]: shape(input_data)
Out[31]: (100, 4)
In [32]: from pylab import *
In [33]: plot(input_data[:,0], input_data[:,1]); # plot the data
Out[33]: [<matplotlib.lines.Line2D at 0x10d8f65d0>]
```


(If a particularly obscure choice of deliminator was used it might be necessary to use the optional second argument, for example $sep = "_"$ if _ is the deliminator).

3.13 Generating Random Quantum States & Operators

QuTiP includes a collection of random state generators for simulations, theorem evaluation, and code testing:

Function	Description
rand_ket	Random ket-vector
rand_dm	Random density ma-
	trix
rand_herm	Random Hermitian
	matrix
rand_unitary	Random Unitary ma-
	trix

See the API documentation: Random Operators and States for details.

In all cases, these functions can be called with a single parameter N that indicates a NxN matrix (*rand_dm*, *rand_herm*, *rand_unitary*), or a Nx1 vector (*rand_ket*), should be generated. For example:

```
In [1]: rand_ket(5)
Out[1]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[-0.37899439-0.03246954j]
[-0.09389192-0.30281261j]
[-0.41147565-0.20947105j]
[-0.411769426-0.02916778j]
[-0.54640563+0.26024817j]]
```

or

```
In [2]: rand_herm(5)
Out[2]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
[[-0.29514824+0.j
                           0.0000000+0.j
                                                  -0.27781445-0.15337652j
  -0.35652395-0.05592461j 0.00000000+0.j
                                                 ]
 [ 0.0000000+0.j
                          -0.55204452+0.j
                                                   -0.22293747-0.12925792j
 -0.09264731+0.20738712j -0.71881796+0.01202871j]
 [-0.27781445+0.15337652j -0.22293747+0.12925792j
                                                   0.00000000+0.j
  -0.84636559+0.30414702j -0.47088943-0.09313568j]
 [-0.35652395+0.05592461j -0.09264731-0.20738712j -0.84636559-0.30414702j
```

```
-0.02792858+0.j-0.39742673-0.09375464j][0.00000000+0.j-0.71881796-0.01202871j-0.39742673+0.09375464j0.00000000+0.j]]
```

In this previous example, we see that the generated Hermitian operator contains a fraction of elements that are identically equal to zero. The number of nonzero elements is called the *density* and can be controlled by calling any of the random state/operator generators with a second argument between 0 and 1. By default, the density for the operators is 0.75 where as ket vectors are completely dense (1). For example:

```
In [3]: rand dm(5, 0.5)
Out[3]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isherm = True
Qobj data =
                        0.00000000+0.j
[[ 0.04892987+0.j
                                                 0.00265679-0.0245355j
  0.09885662-0.01638816j 0.0000000+0.j
                                               1
 [ 0.00000000+0.j 0.00000000+0.j
                                                 0.00000000+0.j
  0.00000000+0.j
                         0.00000000+0.j
                                               ]
 [ 0.00265679+0.0245355j 0.00000000+0.j
                                                 0.24585391+0.j
  0.01358542+0.04868103j 0.21507082+0.04053822j]
 [ 0.09885662+0.01638816j 0.00000000+0.j
                                                 0.01358542-0.04868103i
  0.43862274+0.j
                         0.01799108+0.05080967j]
 [ 0.0000000+0.j
                          0.0000000+0.j
                                                 0.21507082-0.04053822j
  0.01799108-0.05080967j 0.26659348+0.j
                                               ]]
```

has roughly half nonzero elements, or equivalently a density of 0.5.

Warning: In the case of a density matrix, setting the density too low will result in not enough diagonal elements to satisfy $Tr(\rho) = 1$.

Composite random objects

In many cases, one is interested in generating random quantum objects that correspond to composite systems generated using the qutip.tensor.tensor function. Specifying the tensor structure of a quantum object is done using the *dims* keyword argument in the same fashion as one would do for a qutip.Qobj object:

```
In [4]: rand_dm(4, 0.5, dims=[[2,2], [2,2]])
Out[4]:
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isherm = True
Qobj data =
[[ 0.30122934 0.
                            0.
                                        0.
                                                   1
[ 0.
               0.
                            0.
                                        0.
                                                   ]
 [ 0.
               0.
                            0.34938533 0.
 [ 0.
               0.
                            0.
                                        0.3493853311
```

3.14 Modifying Internal QuTiP Settings

User Accessible Parameters

In this section we show how to modify a few of the internal parameters used by QuTiP. The settings that can be modified are given in the following table:

Setting	Description	Options
auto_herm	Automatically calculate the hermic-	True / False
	ity of quantum objects.	
auto_tidyup	Automatically tidyup quantum ob-	True / False
	jects.	
auto_tidyup_atol	Tolerance used by tidyup	any <i>float</i> value > 0
atol	General tolerance	any <i>float</i> value > 0
num_cpus	Number of CPU's used for multi-	<i>int</i> between 1 and # cpu's
	processing.	
debug	Show debug printouts.	True / False

Example: Changing Settings

The two most important settings are auto_tidyup and auto_tidyup_atol as they control whether the small elements of a quantum object should be removed, and what number should be considered as the cut-off tolerance. Modifying these, or any other parameters, is quite simple:

```
>>> qutip.settings.auto_tidyup = False
```

These settings will be used for the current QuTiP session only and will need to be modified again when restarting QuTiP. If running QuTiP from a script file, then place the *qutip.setings.xxxx* commands immediately after *from qutip import* * at the top of the script file. If you want to reset the parameters back to their default values then call the reset command:

```
>>> qutip.settings.reset()
```

Persistent Settings

When QuTiP is imported, it looks for the file .qutiprc in the user's home directory. If this file is found, it will be loaded and overwrite the QuTiP default settings, which allows for persistent changes in the QuTiP settings to be made. A sample .qutiprc file is show below. The syntax is a simple key-value format, where the keys and possible values are described in the table above:

```
# QuTiP Graphics
qutip_graphics="YES"
# use auto tidyup
auto_tidyup=True
# detect hermiticity
auto_herm=True
# use auto tidyup absolute tolerance
auto_tidyup_atol=1e-12
# number of cpus
num_cpus=4
# debug
debug=False
```

API DOCUMENTATION

This chapter contains automatically generated API documentation, including a complete list of QuTiP's public classes and functions.

4.1 Classes

Qobj

class Qobj (*inpt=None, dims=[[], []], shape=[], type=None, isherm=None, fast=False, superrep=None*) A class for representing quantum objects, such as quantum operators and states.

The Qobj class is the QuTiP representation of quantum operators and state vectors. This class also implements math operations +,-,* between Qobj instances (and / by a C-number), as well as a collection of common operator/state operations. The Qobj constructor optionally takes a dimension list and/or shape list as arguments.

Parameters inpt : array_like

Data for vector/matrix representation of the quantum object.

dims : list

Dimensions of object used for tensor products.

shape : list

Shape of underlying data structure (matrix shape).

fast : bool

Flag for fast qobj creation when running ode solvers. This parameter is used internally only.

Attributes

data	(array_like) Sparse matrix characterizing the quantum object.
dims	(list) List of dimensions keeping track of the tensor structure.
shape	(list) Shape of the underlying <i>data</i> array.
type	(str) Type of quantum object: 'bra', 'ket', 'oper', 'operator-ket', 'operator-bra', or 'super'.
super-	(str) Representation used if type is 'super'. One of 'super' (Liouville form) or 'choi' (Choi
rep	matrix with $tr = dimension$).
isherm	(bool) Indicates if quantum object represents Hermitian operator.
iscp	(bool) Indicates if the quantum object represents a map, and if that map is completely
	positive (CP).
istp	(bool) Indicates if the quantum object represents a map, and if that map is trace preserving
	(TP).
iscptp	(bool) Indicates if the quantum object represents a map that is completely positive and trace
	preserving (CPTP).
isket	(bool) Indicates if the quantum object represents a ket.
isbra	(bool) Indicates if the quantum object represents a bra.
isoper	(bool) Indicates if the quantum object represents an operator.
issuper	(bool) Indicates if the quantum object represents a superoperator.
isoper-	(bool) Indicates if the quantum object represents an operator in column vector form.
ket	
isoper-	(bool) Indicates if the quantum object represents an operator in row vector form.
bra	

Methods

conj()	Conjugate of quantum object.
dag()	Adjoint (dagger) of quantum object.
eigenenergies(sparse=False, sort='low',	Returns eigenenergies (eigenvalues) of a quantum
eigvals=0, tol=0, maxiter=100000)	object.
eigenstates(sparse=False, sort='low', eigvals=0,	Returns eigenenergies and eigenstates of quantum
tol=0, maxiter=100000)	object.
expm()	Matrix exponential of quantum object.
full()	Returns dense array of quantum object <i>data</i>
	attribute.
groundstate(sparse=False,tol=0,maxiter=100000)	Returns eigenvalue and eigenket for the
	groundstate of a quantum object.
matrix_element(bra, ket)	Returns the matrix element of operator between
	<i>bra</i> and <i>ket</i> vectors.
norm(norm='tr', sparse=False, tol=0,	Returns norm of a ket or an operator.
maxiter=100000)	L
permute(order)	Returns composite qobj with indices reordered.
ptrace(sel)	Returns quantum object for selected dimensions
	after performing partial trace.
sqrtm()	Matrix square root of quantum object.
tidyup(atol=1e-12)	Removes small elements from quantum object.
tr()	Trace of quantum object.
trans()	Transpose of quantum object.
transform(inpt, inverse=False)	Performs a basis transformation defined by <i>inpt</i>
(- r ⁻)	matrix.
unit(norm='tr', sparse=False, tol=0,	Returns normalized quantum object.
maxiter=100000)	1
· · · ·	1

checkherm()

Check if the quantum object is hermitian.

Returns isherm: bool

Returns the new value of isherm property.

conj()

Conjugate operator of quantum object.

dag()

Adjoint operator of quantum object.

diag()

Diagonal elements of quantum object.

Returns diags: array

Returns array of real values if operators is Hermitian, otherwise complex values are returned.

eigenenergies (*sparse=False*, *sort='low'*, *eigvals=0*, *tol=0*, *maxiter=100000*)

Eigenenergies of a quantum object.

Eigenenergies (eigenvalues) are defined for operators or superoperators only.

Parameters sparse : bool

Use sparse Eigensolver

sort : str

Sort eigenvalues 'low' to high, or 'high' to low.

eigvals : int

Number of requested eigenvalues. Default is all eigenvalues.

tol : float

Tolerance used by sparse Eigensolver (0=machine precision). The sparse solver may not converge if the tolerance is set too low.

maxiter : int

Maximum number of iterations performed by sparse solver (if used).

Returns eigvals: array

Array of eigenvalues for operator.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements demand it.

eigenstates (sparse=False, sort='low', eigvals=0, tol=0, maxiter=100000)

Eigenstates and eigenenergies.

Eigenstates and eigenenergies are defined for operators and superoperators only.

Parameters sparse : bool

Use sparse Eigensolver

sort : str

Sort eigenvalues (and vectors) 'low' to high, or 'high' to low.

eigvals : int

Number of requested eigenvalues. Default is all eigenvalues.

tol : float

Tolerance used by sparse Eigensolver (0 = machine precision). The sparse solver may not converge if the tolerance is set too low.

maxiter : int

Maximum number of iterations performed by sparse solver (if used).

Returns eigvals : array

Array of eigenvalues for operator.

eigvecs : array

Array of quantum operators representing the oprator eigenkets. Order of eigenkets is determined by order of eigenvalues.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements demand it.

eliminate_states (states_inds, normalize=False)

Creates a new quantum object with states in state_inds eliminated.

Parameters states_inds : list of integer

The states that should be removed.

normalize : True / False

Weather or not the new Qobj instance should be normalized (default is False). For Qobjs that represents density matrices or state vectors normalized should probably be set to True, but for Qobjs that represents operators in for example an Hamiltonian, normalize should be False.

Returns q: qutip.Qobj

A new instance of qutip.Qobj that contains only the states corresponding to indices that are **not** in *state_inds*.

Note: Experimental.

static evaluate (qobj_list, t, args)

Evaluate a time-dependent quantum object in list format. For example,

 $qobj_list = [H0, [H1, func_t]]$

is evaluated to

 $Qobj(t) = H0 + H1 * func_t(t, args)$

and

 $qobj_list = [H0, [H1, 'sin(w * t)']]$

is evaluated to

Qobj(t) = H0 + H1 * sin(args['w'] * t)

Parameters qobj_list : list

A nested list of Qobj instances and corresponding time-dependent coefficients.

t : float

The time for which to evaluate the time-dependent Qobj instance.

args : dictionary

A dictionary with parameter values required to evaluate the time-dependent Qobj intance.

Returns output : Qobj

A Qobj instance that represents the value of qobj_list at time t.

expm (method=None)

Matrix exponential of quantum operator.

Input operator must be square.

Parameters method : str {'dense', 'sparse', 'scipy-dense', 'scipy-sparse'}

Use set method to use to calculate the matrix exponentiation. The available choices includes 'dense' and 'sparse' for using QuTiP's implementation of expm using dense and sparse matrices, respectively, and 'scipy-dense' and 'scipy-sparse' for using the scipy.linalg.expm (dense) and scipy.sparse.linalg.expm (sparse). If no method is explicitly given a heuristic will be used to try and automatically select the most appropriate solver.

Returns oper : qobj

Exponentiated quantum operator.

Raises TypeError

Quantum operator is not square.

extract_states (states_inds, normalize=False)

Qobj with states in state_inds only.

Parameters states_inds : list of integer

The states that should be kept.

normalize : True / False

Weather or not the new Qobj instance should be normalized (default is False). For Qobjs that represents density matrices or state vectors normalized should probably be set to True, but for Qobjs that represents operators in for example an Hamiltonian, normalize should be False.

Returns q:qutip.Qobj

A new instance of qutip.Qobj that contains only the states corresponding to the indices in *state_inds*.

Note: Experimental.

full (squeeze=False)

Dense array from quantum object.

Returns data : array

Array of complex data from quantum objects data attribute.

groundstate (sparse=False, tol=0, maxiter=100000)

Ground state Eigenvalue and Eigenvector.

Defined for quantum operators or superoperators only.

Parameters sparse : bool

Use sparse Eigensolver

tol : float

Tolerance used by sparse Eigensolver (0 = machine precision). The sparse solver may not converge if the tolerance is set too low.

maxiter : int

Maximum number of iterations performed by sparse solver (if used).

Returns eigval : float

Eigenvalue for the ground state of quantum operator.

eigvec : qobj

Eigenket for the ground state of quantum operator.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements demand it.

matrix_element(bra, ket)

Calculates a matrix element.

Gives the matrix element for the quantum object sandwiched between a bra and ket vector.

Parameters bra : qobj

Quantum object of type 'bra'.

ket : qobj

Quantum object of type 'ket'.

Returns elem : complex

Complex valued matrix element.

Raises TypeError

Can only calculate matrix elements between a bra and ket quantum object.

norm (*norm=None*, *sparse=False*, *tol=0*, *maxiter=100000*)

Norm of a quantum object.

Default norm is L2-norm for kets and trace-norm for operators. Other ket and operator norms may be specified using the *norm* and argument.

Parameters norm : str

Which norm to use for ket/bra vectors: L2 '12', max norm 'max', or for operators: trace 'tr', Frobius 'fro', one 'one', or max 'max'.

sparse : bool

Use sparse eigenvalue solver for trace norm. Other norms are not affected by this parameter.

tol : float

Tolerance for sparse solver (if used) for trace norm. The sparse solver may not converge if the tolerance is set too low.

maxiter : int

Maximum number of iterations performed by sparse solver (if used) for trace norm.

Returns norm : float

The requested norm of the operator or state quantum object.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements demand it.

overlap(state)

Overlap between two state vectors.

Gives the overlap (scalar product) for the quantum object and *state* state vector.

Parameters state : qobj

Quantum object for a state vector of type 'ket' or 'bra'.

Returns overlap : complex

Complex valued overlap.

Raises TypeError

Can only calculate overlap between a bra and ket quantum objects.

permute (order)

Permutes a composite quantum object.

Parameters order : list/array

List specifying new tensor order.

Returns P: qobj

Permuted quantum object.

ptrace (sel)

Partial trace of the quantum object.

Parameters sel : int/list

An int or list of components to keep after partial trace.

Returns oper: qobj

Quantum object representing partial trace with selected components remaining.

Notes

This function is identical to the qutip.qobj.ptrace function that has been deprecated.

sqrtm (sparse=False, tol=0, maxiter=100000)

Sqrt of a quantum operator.

Operator must be square.

Parameters sparse : bool

Use sparse eigenvalue/vector solver.

tol : float

Tolerance used by sparse solver (0 = machine precision).

maxiter : int

Maximum number of iterations used by sparse solver.

Returns oper: qobj

Matrix square root of operator.

Raises TypeError

Quantum object is not square.

Notes

The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements demand it.

```
tidyup(atol=None)
```

Removes small elements from the quantum object.

Parameters atol : float

Absolute tolerance used by tidyup. Default is set via qutip global settings parameters.

Returns oper: qobj

Quantum object with small elements removed.

tr()

Trace of a quantum object.

Returns trace: float

Returns real if operator is Hermitian, returns complex otherwise.

trans()

Transposed operator.

Returns oper : qobj

Transpose of input operator.

transform (inpt, inverse=False)

Basis transform defined by input array.

Input array can be a matrix defining the transformation, or a list of kets that defines the new basis.

Parameters inpt : array_like

A matrix or list of kets defining the transformation.

inverse : bool

Whether to return inverse transformation.

Returns oper : qobj

Operator in new basis.

Notes

This function is still in development.

```
unit (norm=None, sparse=False, tol=0, maxiter=100000)
Operator or state normalized to unity.
```

Uses norm from Qobj.norm().

Parameters norm : str

Requested norm for states / operators.

sparse : bool

Use sparse eigensolver for trace norm. Does not affect other norms.

tol : float

Tolerance used by sparse eigensolver.

maxiter: int

Number of maximum iterations performed by sparse eigensolver.

Returns oper : qobj

Normalized quantum object.

eseries

class eseries (*q=array([], dtype=object*), *s=array([], dtype=float64*)) Class representation of an exponential-series expansion of time-dependent quantum objects.

Attributes

ampl	(ndarray) Array of amplitudes for exponential series.
rates	(ndarray) Array of rates for exponential series.
dims	(list) Dimensions of exponential series components
shape	(list) Shape corresponding to exponential series components

Methods

value(tlist)	Evaluate an exponential series at the times listed in tlist
spec(wlist)	Evaluate the spectrum of an exponential series at frequencies in wlist.
tidyup()	Returns a tidier version of the exponential series

spec(wlist)

Evaluate the spectrum of an exponential series at frequencies in wlist.

Parameters wlist : array_like

Array/list of frequenies.

Returns val_list : ndarray

Values of exponential series at frequencies in wlist.

tidyup(*args)

Returns a tidier version of exponential series.

value (tlist)

Evaluates an exponential series at the times listed in tlist.

Parameters tlist : ndarray

Times at which to evaluate exponential series.

Returns val_list : ndarray

Values of exponential at times in tlist.

Bloch sphere

class Bloch (*fig=None*, *axes=None*, *view=None*, *figsize=None*, *background=False*)

Class for plotting data on the Bloch sphere. Valid data can be either points, vectors, or qobj objects.

Attributes

avas	(instance (None)) User supplied Matulatlik area for Dlack subary animation	
axes	(instance {None}) User supplied Matplotlib axes for Bloch sphere animation.	
fig	(instance {None}) User supplied Matplotlib Figure instance for plotting Bloch sphere.	
font_color	1	
font_size	(int {20}) Size of font used for Bloch sphere labels.	
	a (float {0.1}) Sets transparency of Bloch sphere frame.	
_	r (str { 'gray' }) Color of sphere wireframe.	
	h(int {1}) Width of wireframe.	
point_color	(list {["b","r","g","#CC6600"]}) List of colors for Bloch sphere point markers to cycle	
	through. i.e. By default, points 0 and 4 will both be blue ('b').	
	er(list {["o","s","d","^"]}) List of point marker shapes to cycle through.	
point_size	(list {[25,32,35,45]}) List of point marker sizes. Note, not all point markers look the same	
	size when plotted!	
sphere_alph	a(float {0.2}) Transparency of Bloch sphere itself.	
sphere_cold	r(str { '#FFDDDD' }) Color of Bloch sphere.	
figsize	(list {[7,7]}) Figure size of Bloch sphere plot. Best to have both numbers the same;	
	otherwise you will have a Bloch sphere that looks like a football.	
vec-	(list {["g","#CC6600","b","r"]}) List of vector colors to cycle through.	
tor_color		
vec-	(int {5}) Width of displayed vectors.	
tor_width		
vec-	(str { '-l>', 'simple', 'fancy', ''}) Vector arrowhead style (from matplotlib's arrow style).	
tor_style		
vec-	(int {20}) Width of vectors arrowhead.	
tor_mutatio	n	
view	(list {[-60,30]}) Azimuthal and Elevation viewing angles.	
xlabel	(list {["\$x\$",""]}) List of strings corresponding to +x and -x axes labels, respectively.	
xlpos	(list {[1.1,-1.1]}) Positions of +x and -x labels respectively.	
ylabel	(list {["\$y\$",""]}) List of strings corresponding to +y and -y axes labels, respectively.	
ylpos	(list {[1.2,-1.2]}) Positions of +y and -y labels respectively.	
zlabel	(list {[r'\$leftl0right>\$',r'\$leftl1right>\$']}) List of strings corresponding to +z and -z axes	
	labels, respectively.	
zlpos	(list {[1.2,-1.2]}) Positions of +z and -z labels respectively.	
1		

Methods

add_annotation add_points add_states Continued on next page

Table 4.1 – continued from previous page

```
add_vectors
clear
make_sphere
plot_annotations
plot_axes
plot_back
plot_front
plot_vectors
render
save
set_label_convention
show
```

add_annotation (state_or_vector, text, **kwargs)

Add a text or LaTeX annotation to Bloch sphere, parametrized by a qubit state or a vector.

Parameters state_or_vector : Qobj/array/list/tuple

Position for the annotaion. Qobj of a qubit or a vector of 3 elements.

text : str/unicode

Annotation text. You can use LaTeX, but remember to use raw string e.g. r"\$langle x rangle\$" or escape backslashes e.g. "\$\langle x \rangle\$".

**kwargs :

Options as for mplot3d.axes3d.text, including: fontsize, color, horizontalalignment, verticalalignment.

add_points (points, meth='s')

Add a list of data points to bloch sphere.

Parameters points : array/list

Collection of data points.

meth : str { 's', 'm', 'l' }

Type of points to plot, use 'm' for multicolored, 'l' for points connected with a line.

add_states (state, kind='vector')

Add a state vector Qobj to Bloch sphere.

Parameters state : qobj

Input state vector.

kind : str { 'vector', 'point' }

Type of object to plot.

add_vectors (vectors)

Add a list of vectors to Bloch sphere.

Parameters vectors : array/list

Array with vectors of unit length or smaller.

clear()

Resets Bloch sphere data sets to empty.

make_sphere()

Plots Bloch sphere and data sets.

render (*fig=None*, *axes=None*)

Render the Bloch sphere and its data sets in on given figure and axes.

save (name=None, format='png', dirc=None)

Saves Bloch sphere to file of type format in directory dirc.

Parameters name : str

Name of saved image. Must include path and format as well. i.e. '/Users/Paul/Desktop/bloch.png' This overrides the 'format' and 'dirc' arguments.

format : str

Format of output image.

dirc : str

Directory for output images. Defaults to current working directory.

Returns File containing plot of Bloch sphere.

set_label_convention(convention)

Set x, y and z labels according to one of conventions.

Parameters convention : string

One of the following: - "original" - "xyz" - "sx sy sz" - "01" - "polarization jones"

- "polarization jones letters"

see also: http://en.wikipedia.org/wiki/Jones_calculus

• "polarization stokes" see also: http://en.wikipedia.org/wiki/Stokes_parameters

${\tt show}()$

Display Bloch sphere and corresponding data sets.

vector_mutation = None

Sets the width of the vectors arrowhead

vector_style = None

Style of Bloch vectors, default = (-)' (or 'simple')

vector_width = None

Width of Bloch vectors, default = 5

class Bloch3d (fig=None)

Class for plotting data on a 3D Bloch sphere using mayavi. Valid data can be either points, vectors, or qobj objects corresponding to state vectors or density matrices. for a two-state system (or subsystem).

Notes

The use of mayavi for 3D rendering of the Bloch sphere comes with a few limitations: I) You can not embed a Bloch3d figure into a matplotlib window. II) The use of LaTex is not supported by the mayavi rendering engine. Therefore all labels must be defined using standard text. Of course you can post-process the generated figures later to add LaTeX using other software if needed.

Attributes

fig (instance {None}) User supplied Matplotlib Figure instance for plotting Bloch sphere.
font_color (str { 'black' }) Color of font used for Bloch sphere labels.
font_scale (float {0.08}) Scale for font used for Bloch sphere labels.
frame (bool {True}) Draw frame for Bloch sphere
frame_alph@float {0.05}) Sets transparency of Bloch sphere frame.
frame_colotstr {'gray'}) Color of sphere wireframe.
frame_num(int {8}) Number of frame elements to draw.
frame_radit@oats {0.005}) Width of wireframe.
point_color(list {['r', 'g', 'b', 'y']}) List of colors for Bloch sphere point markers to cycle through. i.e.
By default, points 0 and 4 will both be blue ('r').
point_modestring { 'sphere', 'cone', 'cube', 'cylinder', 'point' }) Point marker shapes.
point_size (float {0.075}) Size of points on Bloch sphere.
sphere_alphfaoat {0.1}) Transparency of Bloch sphere itself.
sphere_colostr { '#808080' }) Color of Bloch sphere.
size (list {[500,500]}) Size of Bloch sphere plot in pixels. Best to have both numbers the same
otherwise you will have a Bloch sphere that looks like a football.
vec- (list {['r', 'g', 'b', 'y']}) List of vector colors to cycle through.
tor_color
vec- (int {3}) Width of displayed vectors.
tor_width
view (list {[45,65]}) Azimuthal and Elevation viewing angles.
xlabel (list {['lx>', '']}) List of strings corresponding to +x and -x axes labels, respectively.
xlpos (list {[1.07,-1.07]}) Positions of +x and -x labels respectively.
ylabel (list {['ly>', '']}) List of strings corresponding to +y and -y axes labels, respectively.
ylpos (list {[1.07,-1.07]}) Positions of +y and -y labels respectively.
zlabel (list {['l0>', 'l1>']}) List of strings corresponding to +z and -z axes labels, respectively.
zlpos (list {[1.07,-1.07]}) Positions of +z and -z labels respectively.

Methods

add_points	
add_states	
add_vectors	
clear	
make_sphere	
plot_points	
plot_vectors	
save	
show	

add_points (points, meth='s')

Add a list of data points to bloch sphere.

Parameters points : array/list

Collection of data points.

$\boldsymbol{meth}: str \left\{`s', `m' \right\}$

Type of points to plot, use 'm' for multicolored.

add_states (state, kind='vector')

Add a state vector Qobj to Bloch sphere.

Parameters state : qobj

Input state vector. **kind** : str { 'vector', 'point' } Type of object to plot.

add_vectors (vectors)

Add a list of vectors to Bloch sphere.

Parameters vectors : array/list

Array with vectors of unit length or smaller.

clear()

Resets the Bloch sphere data sets to empty.

make_sphere()

Plots Bloch sphere and data sets.

plot_points()

Plots points on the Bloch sphere.

plot_vectors()

Plots vectors on the Bloch sphere.

save (name=None, format='png', dirc=None)

Saves Bloch sphere to file of type format in directory dirc.

Parameters name : str

Name of saved image. Must include path and format as well. i.e. '/Users/Paul/Desktop/bloch.png' This overrides the 'format' and 'dirc' arguments.

format : str

Format of output image. Default is 'png'.

dirc : str

Directory for output images. Defaults to current working directory.

Returns File containing plot of Bloch sphere.

show()

Display the Bloch sphere and corresponding data sets.

Solver Options and Results

```
class Options (atol=1e-08, rtol=1e-06, method='adams', order=12, nsteps=1000, first_step=0,
max_step=0, min_step=0, average_expect=True, average_states=False, tidy=True,
num_cpus=0, norm_tol=0.001, norm_steps=5, rhs_reuse=False, rhs_filename=None,
ntraj=500, gui=False, rhs_with_state=False, store_final_state=False,
store_states=False, seeds=None, steady_state_average=False)
```

Class of options for evolution solvers such as qutip.mesolve and qutip.mcsolve. Options can be specified either as arguments to the constructor:

opts = Options(order=10, ...)

or by changing the class attributes after creation:

```
opts = Options()
opts.order = 10
```

Returns options class to be used as options in evolution solvers.

Attributes

atol	(float {1e-8}) Absolute tolerance.
rtol	(float {1e-6}) Relative tolerance.
method	(str {'adams','bdf'}) Integration method.
order	(int {12}) Order of integrator (<=12 'adams', <=5 'bdf')
nsteps	(int {2500}) Max. number of internal steps/call.
first_step	(float $\{0\}$) Size of initial step (0 = automatic).
min_step	(float $\{0\}$) Minimum step size (0 = automatic).
max_step	(float $\{0\}$) Maximum step size (0 = automatic)
tidy	(bool {True,False}) Tidyup Hamiltonian and initial state by removing small terms.
num_cpus	(int) Number of cpus used by mcsolver (default = # of cpus).
norm_tol	(float) Tolerance used when finding wavefunction norm in mcsolve.
norm_step	s (int) Max. number of steps used to find wavefunction norm to within norm_tol in mcsolve.
aver-	(bool {False}) Average states values over trajectories in stochastic solvers.
age_states	
aver-	(bool {True}) Average expectation values over trajectories for stochastic solvers.
age_expec	
mc_corr_e	p≰float {1e-10}) Arbitrarily small value for eliminating any divide-by-zero errors in
	correlation calculations when using mcsolve.
ntraj	(int {500}) Number of trajectories in stochastic solvers.
rhs_reuse	
rhs_with_	sta(teool {False,True}) Whether or not to include the state in the Hamiltonian function
	callback signature.
	néstr) Name for compiled Cython file.
seeds	(ndarray) Array containing random number seeds for mcsolver.
store_fina	(tabe) {False, True}) Whether or not to store the final state of the evolution in the result
	class.
store_state	s (bool {False, True}) Whether or not to store the state vectors or density matrices in the
	result class, even if expectation values operators are given. If no expectation are provided,
	then states are stored by default and this option has no effect.

class Result

Class for storing simulation results from any of the dynamics solvers.

Attributes

solver	(str) Which solver was used [e.g., 'mesolve', 'mcsolve', 'brmesolve',]
times	(list/array) Times at which simulation data was collected.
expect	(list/array) Expectation values (if requested) for simulation.
states	(array) State of the simulation (density matrix or ket) evaluated at times.
num_exp	ectint) Number of expectation value operators in simulation.
num_coll	agiset) Number of collapse operators in simualation.
ntraj	(int/list) Number of trajectories (for stochastic solvers). A list indicates that averaging of
	expectation values was done over a subset of total number of trajectories.
col_times	(list) Times at which state collpase occurred. Only for Monte Carlo solver.
col_whic	h (list) Which collapse operator was responsible for each collapse in col_times. Only for
	Monte Carlo solver.
StochasticSolverOptions (<i>H=None</i> , state0=None, times=None, c_ops=[], sc_ops=[],	
	$a \circ ps = \begin{bmatrix} 1 & m \circ ps = N \circ ps & m \circ s = N \circ ps & m \circ s = 1 \end{bmatrix}$

class StochasticSolverOptions (H=None, state0=None, times=None, c_ops=[], sc_ops=[], e_ops=[], m_ops=None, args=None, ntraj=1, nsubsteps=1, d1=None, d2=None, d2_len=1, dW_factors=None, rhs=None, generate_A_ops=None, generate_noise=None, homogeneous=True, solver=None, method=None, distribution='normal', store_measurement=False, noise=None, normalize=True, options=None, progress_bar=None, map_func=None, map_kwargs=None)

Class of options for stochastic solvers such as qutip.stochastic.ssesolve, qutip.stochastic.smesolve, etc. Options can be specified either as arguments to the constructor:

sso = StochasticSolverOptions(nsubsteps=100, ...)

or by changing the class attributes after creation:

sso = StochasticSolverOptions()
sso.nsubsteps = 1000

The stochastic solvers qutip.stochastic.ssesolve, qutip.stochastic.smesolve, qutip.stochastic.smepdpsolve and qutip.stochastic.smepdpsolve all take the same keyword arguments as the constructor of these class, and internally they use these arguments to construct an instance of this class, so it is rarely needed to explicitly create an instance of this class.

Attributes

H	(qutip.Qobj) System Hamiltonian.
state0	(qutip.Qobj) Initial state vector (ket) or density matrix.
times	(<i>list / array</i>) List of times for t. Must be uniformly spaced.
c_ops	(list of qutip. Qobj) List of deterministic collapse operators.
sc_ops	(list of qutip.Qobj) List of stochastic collapse operators. Each stochastic collapse
_	operator will give a deterministic and stochastic contribution to the equation of motion
	according to how the d1 and d2 functions are defined.
e_ops	(list of qutip.Qobj) Single operator or list of operators for which to evaluate
	expectation values.
m_ops	(list of qutip.Qobj) List of operators representing the measurement operators. The
_opo	expected format is a nested list with one measurement operator for each stochastic
	increament, for each stochastic collapse operator.
args	(dict / list) List of dictionary of additional problem-specific parameters.
ntraj	(int) Number of trajectors.
nsubsteps	(int) Number of sub steps between each time-spep given in <i>times</i> .
d1	(function) Function for calculating the operator-valued coefficient to the deterministic
ui	increment dt.
d2	(function) Function for calculating the operator-valued coefficient to the stochastic
u2	$(runchon)$ increment(s) dW_n, where n is in [0, d2_len[.
d2_len	(int (default 1)) The number of stochastic increments in the process.
dW_factors	(array) Array of length d2_len, containing scaling factors for each measurement
	operator in m_ops.
rhs	(function) Function for calculating the deterministic and stochastic contributions to the
1115	right-hand side of the stochastic differential equation. This only needs to be specified
	when implementing a custom SDE solver.
gener-	(function) Function that generates a list of pre-computed operators or super- operators.
ate_A_ops	These precomputed operators are used in some d1 and d2 functions.
gener-	(function) Function for generate an array of pre-computed noise signal.
ate_noise	(Tunedon) i unedon foi generate un array or pre computed noise signal.
homoge-	(bool (True)) Wheter or not the stochastic process is homogenous. Inhomogenous
neous	processes are only supported for poisson distributions.
solver	(string) Name of the solver method to use for solving the stochastic equations. Valid
301701	values are: 'euler-maruyama', 'fast-euler-maruyama', 'milstein', 'fast-milstein',
	'platen'.
method	(string ('homodyne', 'heterodyne', 'photocurrent')) The name of the type of
method	measurement process that give rise to the stochastic equation to solve. Specifying a
	method with this keyword argument is a short-hand notation for using pre-defined d1
	and d2 functions for the corresponding stochastic processes.
distribution	(string ('normal', 'poission')) The name of the distribution used for the stochastic
distribution	increments.
store measure	meteriority (default False)) Whether or not to store the measurement results in the
store_measure	qutip.solver.SolverResult instance returned by the solver.
noise	(array) Vector specifying the noise.
normalize	(bool (default True)) Whether or not to normalize the wave function during the
	evolution.
options	(qutip.solver.Options) Generic solver options.
map_func:	A map function or managing the calls to single-trajactory solvers.
function	r map remeation or managing the cans to single-trajactory solvers.
map_kwargs:	Optional keyword arguments to the map_func function function.
dictionary	optional key word arguments to the map_func function function.
progress_bar	(qutip.ui.BaseProgressBar) Optional progress bar class instance.
progress_bal	Macip.ur. Daber rogressbar) optional progress bai class instance.

Distribution functions

class Distribution (*data=None*, *xvecs=[]*, *xlabels=[]*) A class for representation spatial distribution functions.

The Distribution class can be used to prepresent spatial distribution functions of arbitray dimension (although only 1D and 2D distributions are used so far).

It is indented as a base class for specific distribution function, and provide implementation of basic functions that are shared among all Distribution functions, such as visualization, calculating marginal distributions, etc.

Parameters data : array_like

Data for the distribution. The dimensions must match the lengths of the coordinate arrays in xvecs.

xvecs : list

List of arrays that spans the space for each coordinate.

xlabels : list

List of labels for each coordinate.

Methods

```
marginal
project
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface
```

marginal(dim=0)

Calculate the marginal distribution function along the dimension *dim*. Return a new Distribution instance describing this reduced- dimensionality distribution.

Parameters dim : int

The dimension (coordinate index) along which to obtain the marginal distribution.

Returns d : Distributions

A new instances of Distribution that describes the marginal distribution.

project (dim=0)

Calculate the projection (max value) distribution function along the dimension *dim*. Return a new Distribution instance describing this reduced-dimensionality distribution.

Parameters dim : int

The dimension (coordinate index) along which to obtain the projected distribution.

Returns d : Distributions

A new instances of Distribution that describes the projection.

Visualize the data of the distribution in 1D or 2D, depending on the dimensionality of the underlaying distribution.

Parameters:

fig [matplotlib Figure instance] If given, use this figure instance for the visualization,

ax [matplotlib Axes instance] If given, render the visualization using this axis instance.

figsize [tuple] Size of the new Figure instance, if one needs to be created.

colorbar: Bool Whether or not the colorbar (in 2D visualization) should be used.

cmap: matplotlib colormap instance If given, use this colormap for 2D visualizations.

style [string] Type of visualization: 'colormap' (default) or 'surface'.

Returns fig, ax : tuple

A tuple of matplotlib figure and axes instances.

class WignerDistribution (rho=None, extent=[[-5, 5], [-5, 5]], steps=250)

Methods

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

class QDistribution (*rho=None*, *extent=*[[-5, 5], [-5, 5]], *steps=*250)

Methods

marginal
project
update
visualize_1d
visualize_2d_colormap
visualize_2d_surface

class TwoModeQuadratureCorrelation (*state=None, theta1=0.0, theta2=0.0, extent=[[-5, 5], [-5, 5]], steps=250*)

Methods

marginal
project
update
update_psi
update_rho
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

update(state)

calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunction or density matrix

update_psi(psi)

calculate probability distribution for quadrature measurement outcomes given a two-mode wavefunction

update_rho(*rho*)

calculate probability distribution for quadrature measurement outcomes given a two-mode density matrix

class HarmonicOscillatorWaveFunction (*psi=None*, *omega=1.0*, *extent=[-5, 5]*, *steps=250*)

Methods

marginal
project
update
visualize
visualize_1d
visualize_2d_colormap
visualize_2d_surface

update (psi)

Calculate the wavefunction for the given state of an harmonic oscillator class HarmonicOscillatorProbabilityFunction (rho=None, omega=1.0, extent=[-5, 5], steps=250)

Methods

marginal project update visualize visualize_1d visualize_2d_colormap visualize_2d_surface

update (*rho*)

Calculate the probability function for the given state of an harmonic oscillator (as density matrix)

Quantum information processing

class Gate (*name*, *targets=None*, *controls=None*, *arg_value=None*, *arg_label=None*)

Representation of a quantum gate, with its required parametrs, and target and control qubits. class QubitCircuit (N, reverse_states=True)

Representation of a quantum program/algorithm, maintaining a sequence of gates.

Attributes

png			
svg			

Methods

```
add_1q_gate
add_circuit
add_gate
adjacent_gates
latex_code
propagators
qasm
remove_gate
resolve_gates
reverse_circuit
```

add_1q_gate (name, start=0, end=None, qubits=None, arg_value=None, arg_label=None)

Adds a single qubit gate with specified parameters on a variable number of qubits in the circuit. By default, it applies the given gate to all the qubits in the register.

Parameters name: String

Gate name.

start: Integer

Starting location of qubits.

end: Integer

Last qubit for the gate.

qubits: List

Specific qubits for applying gates.

arg_value: Float

Argument value(phi).

arg_label: String

Label for gate representation.

add_circuit (qc, start=0)

Adds a block of a qubit circuit to the main circuit. Globalphase gates are not added.

Parameters qc: QubitCircuit

The circuit block to be added to the main circuit.

start: Integer

The qubit on which the first gate is applied.

add_gate (*name*, *targets=None*, *controls=None*, *arg_value=None*, *arg_label=None*) Adds a gate with specified parameters to the circuit.

Parameters name: String

Gate name.

targets: List

Gate targets.

controls: List

Gate controls.

arg_value: Float

Argument value(phi).

arg_label: String

Label for gate representation.

adjacent_gates()

Method to resolve two qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent interactions.

Returns qc: QubitCircuit

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

propagators()

Propagator matrix calculator for N qubits returning the individual steps as unitary matrices operating from left to right.

Returns U_list: list

Returns list of unitary matrices for the qubit circuit.

remove_gate (*index=None*, *name=None*, *remove='first'*)

Removes a gate with from a specific index or the first, last or all instances of a particular gate.

Parameters index: Integer

Location of gate to be removed.

name: String

Gate name to be removed.

remove: String

If first or all gate are to be removed.

resolve_gates (basis=['CNOT', 'RX', 'RY', 'RZ'])

Unitary matrix calculator for N qubits returning the individual steps as unitary matrices operating from left to right in the specified basis.

Parameters basis: list.

Basis of the resolved circuit.

Returns qc: QubitCircuit

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

reverse_circuit()

Reverses an entire circuit of unitary gates.

Returns qc: QubitCircuit

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

class CircuitProcessor (*N*, *correct_global_phase*)

Base class for representation of the physical implementation of a quantum program/algorithm on a specified qubit system.

Methods

```
adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state
```

adjacent_gates (qc, setup)

Function to take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired physical system.

Parameters qc: QubitCircuit

Takes the quantum circuit to be implemented.

setup: String

Takes the nature of the spin chain; linear or circular.

Returns qc: QubitCircuit

The resolved circuit representation.

get_ops_and_u()

Returns the Hamiltonian operators and corresponding values by stacking them together.

get_ops_labels()

Returns the Hamiltonian operators and corresponding labels by stacking them together.

load_circuit (qc)

Translates an abstract quantum circuit to its corresponding Hamiltonian for a specific model.

Parameters qc: QubitCircuit

Takes the quantum circuit to be implemented.

optimize_circuit(qc)

Function to take a quantum circuit/algorithm and convert it into the optimal form/basis for the desired physical system.

Parameters qc: QubitCircuit

Takes the quantum circuit to be implemented.

Returns qc: QubitCircuit

The optimal circuit representation.

plot_pulses()

Maps the physical interaction between the circuit components for the desired physical system.

Returns fig, ax: Figure

Maps the physical interaction between the circuit components.

pulse_matrix()

Generates the pulse matrix for the desired physical system.

Returns t, u, labels:

Returns the total time and label for every operation.

run (qc=None)

Generates the propagator matrix by running the Hamiltonian for the appropriate time duration for the desired physical system.

Parameters qc: QubitCircuit

Takes the quantum circuit to be implemented.

Returns U_list: list

The propagator matrix obtained from the physical implementation.

run_state(qc=None, states=None)

Generates the propagator matrix by running the Hamiltonian for the appropriate time duration for the desired physical system with the given initial state of the qubit register.

Parameters qc: QubitCircuit

Takes the quantum circuit to be implemented.

states: Qobj

Initial state of the qubits in the register.

Returns U_list: list

The propagator matrix obtained from the physical implementation.

class SpinChain (N, correct_global_phase=True, sx=None, sz=None, sxsy=None)

Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit system.

Methods

```
adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state
```

adjacent_gates (qc, setup='linear')

Method to resolve 2 qubit gates with non-adjacent control/s or target/s in terms of gates with adjacent interactions for linear/circular spin chain system.

Parameters qc: QubitCircuit

The circular spin chain circuit to be resolved

setup: Boolean

Linear of Circular spin chain setup

Returns qc: QubitCircuit

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

class LinearSpinChain (*N*, correct_global_phase=True, sx=None, sz=None, sxsy=None)

Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit system arranged in a linear formation. It is a sub-class of SpinChain.

Methods

```
adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state
```

class CircularSpinChain (N, correct_global_phase=True, sx=None, sz=None, sxsy=None) Representation of the physical implementation of a quantum program/algorithm on a spin chain qubit system arranged in a circular formation. It is a sub-class of SpinChain.

Methods

```
adjacent_gates
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
run_state
```

class DispersivecQED (*N*, *correct_global_phase=True*, *Nres=None*, *deltamax=None*, *epsmax=None*,

w0=None, wq=None, eps=None, delta=None, g=None) Representation of the physical implementation of a quantum program/algorithm on a dispersive cavity-QED system.

Methods

```
adjacent_gates
dispersive_gate_correction
eliminate_auxillary_modes
get_ops_and_u
get_ops_labels
load_circuit
optimize_circuit
plot_pulses
pulse_matrix
run
```

Table 4.15 – continued from previous page

run_state

dispersive_gate_correction (qc1, rwa=True)

Method to resolve ISWAP and SQRTISWAP gates in a cQED system by adding single qubit gates to get the correct output matrix.

Parameters qc: Qobj

The circular spin chain circuit to be resolved

rwa: Boolean

Specify if RWA is used or not.

Returns qc: QubitCircuit

Returns QubitCircuit of resolved gates for the qubit circuit in the desired basis.

Optimal control

class GRAPEResult (*u=None*, *H_t=None*, *U_f=None*)

Class for representing the result of a GRAPE simulation.

Attributes

u	(array) GRAPE control pulse matrix.
H_t	(time-dependent Hamiltonian) The time-dependent Hamiltonian that realize the GRAPE pulse
	sequence.
U_f	(Qobj) The final unitary transformation that is realized by the evolution of the system with the
	GRAPE generated pulse sequences.

class Dynamics (optimconfig)

This is a base class only. See subclass descriptions and choose an appropriate one for the application.

Note that initialize_controls must be called before any of the methods can be used.

Attributes

log_level	(integer) level of messaging output from the logger. Options are attributes of
	qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE,
	DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything
	WARN or above is effectively 'quiet' execution, assuming everything runs as
	expected. The default NOTSET implies that the level will be taken from the QuTiP
	settings file, which by default is WARN Note value should be set using set_log_level
stats	(Stats) Attributes of which give performance stats for the optimisation set to None to
	reduce overhead of calculating stats. Note it is (usually) shared with the Optimizer
	object
tslot_computer	(TimeslotComputer (subclass instance)) Used to manage when the timeslot dynamics
	generators, propagators, gradients etc are updated
prop_computer	
	gradients
fid_computer	(FidelityComputer (subclass instance)) Used to computer the fidelity error and the
	fidelity error gradient.
num_tslots	(integer) Number of timeslots, aka timeslices
num_ctrls	(integer) Number of controls. Note this is set when get_num_ctrls is called based on
	the length of ctrl_dyn_gen
evo_time	(float) Total time for the evolution
tau	(array[num_tslots] of float) Duration of each timeslot Note that if this is set before
	initialize_controls is called then num_tslots and evo_time are calculated from tau,
	otherwise tau is generated from num_tslots and evo_time, that is equal size time slices
time	(array[num_tslots+1] of float) Cumulative time for the evolution, that is the time at the
	start of each time slice
drift_dyn_gen	(Qobj) Drift or system dynamics generator Matrix defining the underlying dynamics
	of the system
ctrl_dyn_gen	(List of Qobj) Control dynamics generator: ctrl_dyn_gen () List of matrices defining
	the control dynamics
initial	(Qobj) Starting state / gate The matrix giving the initial state / gate, i.e. at time 0
	Typically the identity
target	(Qobj) Target state / gate: The matrix giving the desired state / gate for the evolution
ctrl_amps	(array[num_tslots, num_ctrls] of float) Control amplitudes The amplitude (scale
_	factor) for each control in each timeslot
ini-	(float) Scale factor applied to be applied the control amplitudes when they are
tial_ctrl_scaling	initialised This is used by the PulseGens rather than in any fucntions in this class
self.initial_ctrl_	offsee ar offset applied to be applied the control amplitudes when they are initialised
= 0.0	This is used by the PulseGens rather than in any fucntions in this class
dyn_gen	(List of Qobj) Dynamics generators the combined drift and control dynamics
	generators for each timeslot
prop	(list of Qobj) Propagators - used to calculate time evolution from one timeslot to the
	next
prop_grad	(array[num_tslots, num_ctrls] of Qobj) Propagator gradient (exact gradients only)
	Array of matrices that give the gradient with respect to the control amplitudes in a
	timeslot Note this attribute is only created when the selected PropagatorComputer is
	an exact gradient type.
evo_init2t	(List of Qobj) Forward evolution (or propagation) the time evolution operator from the
	initial state / gate to the specified timeslot as generated by the dyn_gen
evo_t2end	(List of Qobj) Onward evolution (or propagation) the time evolution operator from the
	specified timeslot to end of the evolution time as generated by the dyn_gen
evo_t2targ	(List of Qobj) 'Backward' List of Qobj propagation the overlap of the onward
	propagation with the inverse of the target. Note this is only used (so far) by the unitary
	dynamics fidelity
evo_current	(Boolean) Used to flag that the dynamics used to calculate the evolution operators is
	current. It is set to False when the amplitudes change
decomp_curr	(List of boolean) Indicates whether the diagonalisation for the timeslot is fresh, it is set
	to false when the dyn_gen for the timeslot is changed Only used when the
	PropagatorComputer uses diagonalisation
dyn_gen_eigen	(editions of array[drift_dyn_gen.shape]) Eigenvectors of the dynamics generators Used for
	calculating the propagators and their gradients Only used when the
	PropagatorComputer uses diagonalisation
prop_eigen	(List of array[drift_dyn_gen.shape]) Propagator in diagonalised basis of the combined
1 1- 0	dynamics generator Used for calculating the propagators and their gradients Only used
	and the second

Methods

```
check_ctrls_initialized
clear
combine_dyn_gen
compute_evolution
ensure_decomp_curr
flag_system_changed
get_amp_times
get_ctrl_dyn_gen
get_drift_dim
get_dyn_gen
get_num_ctrls
get_owd_evo_target
init_time_slots
initialize_controls
reset
save_amps
set_log_level
spectral_decomp
update_ctrl_amps
```

$combine_dyn_gen(k)$

Computes the dynamics generator for a given timeslot The is the combined Hamiltion for unitary systems

compute_evolution()

Recalculate the time evolution operators Dynamics generators (e.g. Hamiltonian) and prop (propagators) are calculated as necessary Actual work is completed by the recompute_evolution method of the timeslot computer

ensure_decomp_curr(k)

Checks to see if the diagonalisation has been completed since the last update of the dynamics generators (after the amplitude update) If not then the diagonlisation is completed

flag_system_changed()

Flag eveolution, fidelity and gradients as needing recalculation

$get_ctrl_dyn_gen(j)$

Get the dynamics generator for the control Not implemented in the base class. Choose a subclass

get_drift_dim()

Returns the size of the matrix that defines the drift dynamics that is assuming the drift is NxN, then this returns N

$get_dyn_gen(k)$

Get the combined dynamics generator for the timeslot Not implemented in the base class. Choose a subclass

get_num_ctrls()

calculate the of controls from the length of the control list sets the num_ctrls property, which can be used alternatively subsequently

get_owd_evo_target()

Get the inverse of the target. Used for calculating the 'backward' evolution

init_time_slots()

Generate the timeslot duration array 'tau' based on the evo_time and num_tslots attributes, unless the tau attribute is already set in which case this step in ignored Generate the cumulative time array 'time' based on the tau values

initialize_controls (amps, init_tslots=True)

Set the initial control amplitudes and time slices Note this must be called after the configuration is complete before any dynamics can be calculated

save_amps (file_name=None, times=None, amps=None, verbose=False)

Save a file with the current control amplitudes in each timeslot The first column in the file will be the start time of the slot

Parameters file_name : string

Name of the file If None given the def_amps_fname attribuite will be used

times : List type (or string)

List / array of the start times for each slot If None given this will be retrieved through get_amp_times() If 'exclude' then times will not be saved in the file, just the amplitudes

amps : Array[num_tslots, num_ctrls]

Amplitudes to be saved If None given the ctrl_amps attribute will be used

verbose : Boolean

If True then an info message will be logged

set_log_level (lvl)

Set the log_level attribute and set the level of the logger that is call logger.setLevel(lvl)

spectral_decomp(k)

Calculate the diagonalization of the dynamics generator generating lists of eigenvectors, propagators in the diagonalised basis, and the 'factormatrix' used in calculating the propagator gradient Not implemented in this base class, because the method is specific to the matrix type

update_ctrl_amps (new_amps)

Determine if any amplitudes have changed. If so, then mark the timeslots as needing recalculation The actual work is completed by the compare_amps method of the timeslot computer

class DynamicsUnitary (optimconfig)

This is the subclass to use for systems with dynamics described by unitary matrices. E.g. closed systems with Hermitian Hamiltonians Note a matrix diagonalisation is used to compute the exponent The eigen decomposition is also used to calculate the propagator gradient. The method is taken from DYNAMO (see file header)

Attributes

drift_har(Qobj) This is the drift Hamiltonian for unitary dynamics It is mapped to drift_dyn_gen during
initialize_controlsctrl_ham(List of Qobj) These are the control Hamiltonians for unitary dynamics It is mapped to
ctrl_dyn_gen during initialize_controlsH(List of Qobj) The combined drift and control Hamiltonians for each timeslot These are the
dynamics generators for unitary dynamics. It is mapped to dyn_gen during initialize_controls

Methods

Table 4.17 – continued from previous page

reset save_amps set_log_level spectral_decomp update_ctrl_amps

$get_ctrl_dyn_gen(j)$

Get the dynamics generator for the control including the -i factor

get_dyn_gen(k)

Get the combined dynamics generator for the timeslot including the -i factor

$spectral_decomp(k)$

Calculates the diagonalization of the dynamics generator generating lists of eigenvectors, propagators in the diagonalised basis, and the 'factormatrix' used in calculating the propagator gradient

class DynamicsSymplectic (optimconfig)

Symplectic systems This is the subclass to use for systems where the dynamics is described by symplectic matrices, e.g. coupled oscillators, quantum optics

Attributes

omega	(array[drift_dyn_gen.shape]) matrix used in the calculation of propagators (time evolution)
	with symplectic systems.

Methods

```
check_ctrls_initialized
clear
combine_dyn_gen
compute_evolution
ensure_decomp_curr
flag_system_changed
get_amp_times
get_ctrl_dyn_gen
get_drift_dim
get_dyn_gen
get_num_ctrls
get_omega
get_owd_evo_target
init_time_slots
initialize_controls
reset
save amps
set_log_level
spectral_decomp
update_ctrl_amps
```

$\texttt{get_ctrl_dyn_gen}\left(j\right)$

Get the dynamics generator for the control multiplied by omega

$get_dyn_gen(k)$

Get the combined dynamics generator for the timeslot multiplied by omega

class PulseGen (dyn=None)

Pulse generator Base class for all Pulse generators The object can optionally be instantiated with a Dynamics object, in which case the timeslots and amplitude scaling and offset are copied from that. Otherwise the

class can be used independently by setting: tau (array of timeslot durations) or num_tslots and pulse_time for equally spaced timeslots

Attributes

num_tsl	num_tslo(integer) Number of timeslots, aka timeslices (copied from Dynamics if given)			
pulse_ti	pulse_tim(float) total duration of the pulse (copied from Dynamics.evo_time if given)			
scal-	(float) linear scaling applied to the pulse (copied from Dynamics.initial_ctrl_scaling if given)			
ing				
offset	(float) linear offset applied to the pulse (copied from Dynamics.initial_ctrl_offset if given)			
tau	(array[num_tslots] of float) Duration of each timeslot (copied from Dynamics if given)			
lbound	(float) Lower boundary for the pulse amplitudes Note that the scaling and offset attributes can			
	be used to fully bound the pulse for all generators except some of the random ones This bound			
	(if set) may result in additional shifting / scaling Default is -Inf			
ubound	(float) Upper boundary for the pulse amplitudes Note that the scaling and offset attributes can			
	be used to fully bound the pulse for all generators except some of the random ones This bound			
	(if set) may result in additional shifting / scaling Default is Inf			
peri-	(boolean) True if the pulse generator produces periodic pulses			
odic				
ran-	(boolean) True if the pulse generator produces random pulses			
dom				
L				

Methods

gen_pulse init_pulse reset

gen_pulse()

returns the pulse as an array of vales for each timeslot Must be implemented by subclass

init_pulse()

Initialise the pulse parameters

reset()

reset attributes to default values

class PulseGenRandom(dyn=None)

Generates random pulses as simply random values for each timeslot

Methods

gen_pulse init_pulse reset

gen_pulse()

Generate a pulse of random values between 1 and -1 Values are scaled using the scaling property and shifted using the offset property Returns the pulse as an array of vales for each timeslot

class PulseGenZero (dyn=None)

Generates a flat pulse

Methods

gen_pulse
init_pulse
reset

gen_pulse()

Generate a pulse with the same value in every timeslot. The value will be zero, unless the offset is not zero, in which case it will be the offset

class PulseGenLinear (dyn=None)

Generates linear pulses

Attributes

gradi-	(float) Gradient of the line. Note this is calculated from the start_val and end_val if these are
ent	given
start_val	(float) Start point of the line. That is the starting amplitude
end_val	(float) End point of the line. That is the amplitude at the start of the last timeslot

Methods

gen_pulse	
init_pulse	
reset	

gen_pulse (gradient=None, start_val=None, end_val=None)

Generate a linear pulse using either the gradient and start value or using the end point to calulate the gradient Note that the scaling and offset parameters are still applied, so unless these values are the default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales for each timeslot

```
init_pulse(gradient=None, start_val=None, end_val=None)
```

Calulate the gradient if pulse is defined by start and end point values

reset()

reset attributes to default values

```
class PulseGenLinear (dyn=None)
```

Generates linear pulses

Attributes

gradi-	(float) Gradient of the line. Note this is calculated from the start_val and end_val if these are
ent	given
start_val	(float) Start point of the line. That is the starting amplitude
end_val	(float) End point of the line. That is the amplitude at the start of the last timeslot

Methods

gen_pulse init_pulse reset

gen_pulse (gradient=None, start_val=None, end_val=None)

Generate a linear pulse using either the gradient and start value or using the end point to calulate the gradient Note that the scaling and offset parameters are still applied, so unless these values are the
default 1.0 and 0.0, then the actual gradient etc will be different Returns the pulse as an array of vales for each timeslot

init_pulse (gradient=None, start_val=None, end_val=None)
Calulate the gradient if pulse is defined by start and end point values

reset()

reset attributes to default values

class PulseGenPeriodic (dyn=None)

Intermediate class for all periodic pulse generators All of the periodic pulses range from -1 to 1 All have a start phase that can be set between 0 and 2pi

Attributes

num_waves (float) Number of complete waves (cycles) that occur in the pulse. wavelen and freq		
	calculated from this if it is given	
wavelen	(float) Wavelength of the pulse (assuming the speed is 1) freq is calculated from this if it is	
	given	
freq	(float) Frequency of the pulse	
start_phase (float) Phase of the pulse signal when t=0		

Methods

gen_pulse init_pulse reset

init_pulse (num_waves=None, wavelen=None, freq=None, start_phase=None)

Calculate the wavelength, frequency, number of waves etc from the each other and the other parameters If num_waves is given then the other parameters are worked from this Otherwise if the wavelength is given then it is the driver Otherwise the frequency is used to calculate wavelength and num_waves

reset()

reset attributes to default values class PulseGenSine (*dyn=None*) Generates sine wave pulses

Methods

gen_pulse	
init_pulse	
reset	

```
gen_pulse (num_waves=None, wavelen=None, freq=None, start_phase=None)
```

Generate a sine wave pulse If no params are provided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs. returns the pulse as an array of vales for each timeslot

class PulseGenSquare (dyn=None)

Generates square wave pulses

Methods

gen_pulse	
	Continued on next page

Table 4.26 – continued from previous page

init_pulse reset

gen_pulse (num_waves=None, wavelen=None, freq=None, start_phase=None)

Generate a square wave pulse If no parameters are pavided then the class object attributes are used. If they are provided, then these will reinitialise the object attribs

class PulseGenSaw (dyn=None)

Generates saw tooth wave pulses

Methods

gen_pulse	
init_pulse	
reset	

gen_pulse (num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a saw tooth wave pulse If no parameters are pavided then the class object attributes are used.
If they are provided, then these will reinitialise the object attribs

class PulseGenTriangle (dyn=None)

Generates triangular wave pulses

Methods

gen_pulse init_pulse reset

gen_pulse (num_waves=None, wavelen=None, freq=None, start_phase=None)
Generate a sine wave pulse If no parameters are pavided then the class object attributes are used. If
they are provided, then these will reinitialise the object attribs

4.2 Functions

Manipulation and Creation of States and Operators

Quantum States

basis (N, n=0, offset=0)

Generates the vector representation of a Fock state.

Parameters N : int

Number of Fock states in Hilbert space.

n : int

Integer corresponding to desired number state, defaults to 0 if omitted.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the state.

Returns state : qobj

Qobj representing the requested number state |n>.

Notes

A subtle incompatibility with the quantum optics toolbox: In QuTiP:

basis(N, 0) = ground state

but in the qotoolbox:

basis(N, 1) = ground state

Examples

```
>>> basis(5,2)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.+0.j]
[ 0.+0.j]
[ 1.+0.j]
[ 0.+0.j]
[ 0.+0.j]
[ 0.+0.j]]
```

coherent (N, alpha, offset=0, method='operator')

Generates a coherent state with eigenvalue alpha.

Constructed using displacement operator on vacuum state.

```
Parameters N : int
```

Number of Fock states in Hilbert space.

```
alpha : float/complex
```

Eigenvalue of coherent state.

```
offset : int (default 0)
```

The lowest number state that is included in the finite number state representation of the state. Using a non-zero offset will make the default method 'analytic'.

```
method : string { 'operator', 'analytic' }
```

Method for generating coherent state.

```
Returns state : qobj
```

Qobj quantum object for coherent state

Notes

Select method 'operator' (default) or 'analytic'. With the 'operator' method, the coherent state is generated by displacing the vacuum state using the displacement operator defined in the truncated Hilbert space of size 'N'. This method guarantees that the resulting state is normalized. With 'analytic' method the coherent state is generated using the analytical formula for the coherent state coefficients in the Fock basis. This method does not guarantee that the state is normalized if truncated to a small number of Fock states, but would in that case give more accurate coefficients.

```
>>> coherent(5,0.25j)
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 9.69233235e-01+0.j ]
[ 0.0000000e+00+0.24230831j]
[ -4.28344935e-02+0.j ]
[ 0.0000000e+00-0.00618204j]
[ 7.80904967e-04+0.j ]]
```

coherent_dm (N, alpha, offset=0, method='operator')

Density matrix representation of a coherent state.

Constructed via outer product of qutip.states.coherent

Parameters N : int

Number of Fock states in Hilbert space.

```
alpha : float/complex
```

Eigenvalue for coherent state.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the state.

method : string { 'operator', 'analytic' }

Method for generating coherent density matrix.

Returns dm : qobj

Density matrix representation of coherent state.

Notes

Select method 'operator' (default) or 'analytic'. With the 'operator' method, the coherent density matrix is generated by displacing the vacuum state using the displacement operator defined in the truncated Hilbert space of size 'N'. This method guarantees that the resulting density matrix is normalized. With 'analytic' method the coherent density matrix is generated using the analytical formula for the coherent state coefficients in the Fock basis. This method does not guarantee that the state is normalized if truncated to a small number of Fock states, but would in that case give more accurate coefficients.

Examples

```
>>> coherent_dm(3,0.25j)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.93941695+0.j 0.0000000-0.23480733j -0.04216943+0.j ]
[ 0.00000000+0.23480733j 0.05869011+0.j 0.00000000-0.01054025j]
[-0.04216943+0.j 0.0000000+0.01054025j 0.00189294+0.j ]]
```

fock (*N*, *n*=0, *offset*=0)

Bosonic Fock (number) state.

Same as qutip.states.basis.

Parameters N : int

Number of states in the Hilbert space.

n : int

int for desired number state, defaults to 0 if omitted.

Returns Requested number state $|n\rangle$.

```
>>> fock(4,3)
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
Qobj data =
[[ 0.+0.j]
[ 0.+0.j]
[ 0.+0.j]
[ 1.+0.j]]
```

$fock_dm(N, n=0, offset=0)$

Density matrix representation of a Fock state

Constructed via outer product of qutip.states.fock.

Parameters N : int

Number of Fock states in Hilbert space.

n : int

int for desired number state, defaults to 0 if omitted.

Returns dm : qobj

Density matrix representation of Fock state.

Examples

```
>>> fock_dm(3,1)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j]]
```

$\texttt{ket2dm}\left(Q\right)$

Takes input ket or bra vector and returns density matrix formed by outer product.

Parameters Q : qobj

Ket or bra type quantum object.

Returns dm : qobj Density matrix formed by outer product of *Q*.

Examples

```
>>> x=basis(3,2)
>>> ket2dm(x)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j]]
```

qutrit_basis()

Basis states for a three level system (qutrit)

Returns qstates : array

Array of qutrit basis vectors

thermal_dm(*N*, *n*, *method='operator'*)

Density matrix for a thermal state of n particles

Parameters N : int

Number of basis states in Hilbert space.

 \mathbf{n} : float

Expectation value for number of particles in thermal state.

method : string { 'operator', 'analytic' }

string that sets the method used to generate the thermal state probabilities

Returns dm : qobj

Thermal state density matrix.

Notes

The 'operator' method (default) generates the thermal state using the truncated number operator num(N). This is the method that should be used in computations. The 'analytic' method uses the analytic coefficients derived in an infinite Hilbert space. The analytic form is not necessarily normalized, if truncated too aggressively.

Examples

```
>>> thermal_dm(5, 1)
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =

      [ 0.51612903
      0.
      0.
      0.

      [ 0.
      0.25806452
      0.
      0.

      [ 0.
      0.
      0.12903226
      0.

[[ 0.51612903 0.
                                                                       Ο.
                                                                                     ]
                                                                     Ο.
                                                                                     ]
                                                                      Ο.
                                                                                     ]
                                    0. 0.06451613 0.
                    0.
 [ 0.
                                                                                     ]
 [ 0.
                    0.
                                     0.
                                                    0.
                                                                       0.03225806]]
```

```
>>> thermal_dm(5, 1, 'analytic')
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, isHerm = True
Qobj data =
[[ 0.5
[ 0.
           Ο.
                    Ο.
                             Ο.
                                      0.
                                              1
           0.25
                    0.
                              0.
                                      0.
                                              ]
           0.
                             0.
 [ 0.
                    0.125
                                      0.
                                             ]
 [ 0.
           0.
                    Ο.
                              0.0625
                                      0.
 [ 0.
           0.
                     0.
                              0.
                                      0.03125]]
```

phase_basis (N, m, phi0=0)

Basis vector for the mth phase of the Pegg-Barnett phase operator.

```
Parameters N : int
```

Number of basis vectors in Hilbert space.

m : int

Integer corresponding to the mth discrete phase phi_m=phi0+2*pi*m/N

phi0 : float (default=0)

Reference phase angle.

Returns state : qobj

Ket vector for mth Pegg-Barnett phase operator basis state.

Notes

The Pegg-Barnett basis states form a complete set over the truncated Hilbert space.

state_number_enumerate(dims, excitations=None, state=None, idx=0)

An iterator that enumerate all the state number arrays (quantum numbers on the form [n1, n2, n3, ...]) for a system with dimensions given by dims.

Example:

```
>>> for state in state_number_enumerate([2,2]):
>>> print(state)
[ 0. 0.]
[ 0. 1.]
[ 1. 0.]
[ 1. 1.]
```

Parameters dims : list or array

The quantum state dimensions array, as it would appear in a Qobj. **state** : list

Current state in the iteration. Used internally.

excitations : integer (None)

Restrict state space to states with excitation numbers below or equal to this value.

idx : integer

Current index in the iteration. Used internally.

Returns state_number : list

Successive state number arrays that can be used in loops and other iterations, using standard state enumeration *by definition*.

state_number_index(dims, state)

Return the index of a quantum state corresponding to state, given a system with dimensions given by dims. Example:

Example.

```
>>> state_number_index([2, 2, 2], [1, 1, 0])
6.0
```

Parameters dims : list or array

The quantum state dimensions array, as it would appear in a Qobj.

state : list

State number array.

Returns idx : list

The index of the state given by *state* in standard enumeration ordering.

state_index_number (dims, index)

Return a quantum number representation given a state index, for a system of composite structure defined by dims.

Example:

```
>>> state_index_number([2, 2, 2], 6)
[1, 1, 0]
```

Parameters dims : list or array

The quantum state dimensions array, as it would appear in a Qobj.

index : integer

The index of the state in standard enumeration ordering.

Returns state : list

The state number array corresponding to index *index* in standard enumeration ordering.

state_number_qobj(dims, state)

Return a Qobj representation of a quantum state specified by the state array state.

Example:

```
>>> state_number_qobj([2, 2, 2], [1, 0, 1])
Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = [8, 1], type = ket
Qobj data =
[[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 0.]
[ 1.]
[ 0.]
[ 1.]
[ 0.]
[ 0.]
```

Parameters dims : list or array

The quantum state dimensions array, as it would appear in a Qobj.

state : list

State number array.

Returns state: qutip.Qobj.qobj

The state as a qutip. Qobj. qobj instance.

enr_state_dictionaries (dims, excitations)

Return the number of states, and lookup-dictionaries for translating a state tuple to a state index, and vice versa, for a system with a given number of components and maximum number of excitations.

Parameters dims: list

A list with the number of states in each sub-system.

excitations : integer

The maximum numbers of dimension

Returns nstates, state2idx, idx2state: integer, dict, dict

The number of states *nstates*, a dictionary for looking up state indices from a state tuple, and a dictionary for looking up state state tuples from state indices.

enr_thermal_dm(dims, excitations, n)

Generate the density operator for a thermal state in the excitation-number- restricted state space defined by the *dims* and *excitations* arguments. See the documentation for enr_fock for a more detailed description of these arguments. The temperature of each mode in dims is specified by the average number of excitations *n*.

Parameters dims : list

A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer

The maximum number of excitations that are to be included in the state space.

n : integer

The average number of excitations in the thermal state. n can be a float (which then applies to each mode), or a list/array of the same length as dims, in which each element corresponds specifies the temperature of the corresponding mode.

Returns dm : Qobj

Thermal state density matrix.

enr_fock (dims, excitations, state)

Generate the Fock state representation in a excitation-number restricted state space. The *dims* argument is a list of integers that define the number of quantums states of each component of a composite quantum system, and the *excitations* specifies the maximum number of excitations for the basis states that are to be included in the state space. The *state* argument is a tuple of integers that specifies the state (in the number basis representation) for which to generate the Fock state representation.

Parameters dims : list

A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer

The maximum number of excitations that are to be included in the state space.

state : list of integers

The state in the number basis representation.

Returns ket : Qobj

A Qobj instance that represent a Fock state in the exication-number- restricted state space defined by *dims* and *excitations*.

Quantum Operators

This module contains functions for generating Qobj representation of a variety of commonly occuring quantum operators.

create (*N*, *offset*=0)

Creation (raising) operator.

Parameters N : int

Dimension of Hilbert space. **Returns oper** : qobj Qobj for raising operator. **offset** : int (default 0) The lowest number state that is included in the finite number state representation of the operator.

Examples

```
>>> create(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.00000000+0.j 0.0000000+0.j 0.0000000+0.j 0.0000000+0.j]
[ 1.00000000+0.j 0.0000000+0.j 0.0000000+0.j 0.0000000+0.j]
[ 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.0000000+0.j]
[ 0.00000000+0.j 0.0000000+0.j 1.73205081+0.j 0.00000000+0.j]]
```

destroy(N, offset=0)

Destruction (lowering) operator.

Parameters N : int

Dimension of Hilbert space.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the operator.

Returns oper : qobj

Qobj for lowering operator.

Examples

```
>>> destroy(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.00000000+0.j 1.0000000+0.j 0.0000000+0.j 0.0000000+0.j]
[ 0.00000000+0.j 0.0000000+0.j 1.41421356+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.0000000+0.j 0.0000000+0.j 1.73205081+0.j]
[ 0.00000000+0.j 0.0000000+0.j 0.0000000+0.j 0.0000000+0.j]
```

displace (N, alpha, offset=0)

Single-mode displacement operator.

Parameters N : int

Dimension of Hilbert space.

alpha : float/complex

Displacement amplitude.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the operator.

Returns oper : qobj

Displacement operator.

```
>>> displace(4,0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j]
[ 0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j]
[ 0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j]
[ 0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]]
```

jmat(j, *args)

Higher-order spin operators:

```
Parameters j: float
    Spin of operator
    args : str
    Which operator to return 'x','y','z','+','-'. If no args given, then output is
    ['x','y','z']
Returns jmat : qobj/list
    qobj for requested spin operator(s).
```

Notes

If no 'args' input, then returns array of ['x','y','z'] operators.

Examples

```
>>> jmat(1)
[Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.
              0.70710678 0.
[ 0.70710678 0.
                         0.70710678]
[ 0.
             0.70710678 0.
                                   11
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j
                  0.+0.70710678j 0.+0.j
                                               1
[ 0.-0.70710678j 0.+0.j
                                 0.+0.70710678j]
                  0.-0.70710678j 0.+0.j
 [ 0.+0.j
                                               11
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 1. 0. 0.]
 [ 0. 0. 0.]
 [ 0. 0. -1.]]]
```

num(N, offset=0)

Quantum object for number operator.

Parameters N : int

The dimension of the Hilbert space.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the operator.

Returns oper: qobj

Qobj for number operator.

```
>>> num(4)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[0 0 0 0]
[0 1 0 0]
[0 0 2 0]
[0 0 2 0]
[0 0 0 3]]
```

qeye(N)

Identity operator

Parameters N : int or list of ints

Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the dims property of the new Qobj are set to this list.

```
Returns oper : qobj
```

Identity operator Qobj.

Examples

```
>>> qeye(3)
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, isHerm = True
Qobj data =
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
```

identity(N)

Identity operator. Alternative name to qeye.

Parameters N : int or list of ints

Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the dims property of the new Qobj are set to this list.

Returns oper : qobj

Identity operator Qobj.

qutrit_ops()

Operators for a three level system (qutrit).

Returns opers: array

array of qutrit operators.

sigmam()

Annihilation operator for Pauli spins.

Examples

```
>>> sigmam()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 0.]
[ 1. 0.]]
```

sigmap()

Creation operator for Pauli spins.

```
>>> sigmam()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 1.]
[ 0. 0.]]
```

sigmax()

Pauli spin 1/2 sigma-x operator

Examples

```
>>> sigmax()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 0. 1.]
[ 1. 0.]]
```

sigmay()

Pauli spin 1/2 sigma-y operator.

Examples

```
>>> sigmay()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.-1.j]
  [ 0.+1.j 0.+0.j]]
```

sigmaz()

Pauli spin 1/2 sigma-z operator.

Examples

```
>>> sigmaz()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]
```

squeeze (N, z, offset=0)
Single-mode Squeezing operator.

Parameters N : int

Dimension of hilbert space.

z : float/complex

Squeezing parameter.

offset : int (default 0)

The lowest number state that is included in the finite number state representation of the operator.

Returns oper: qutip.qobj.Qobj

Squeezing operator.

```
>>> squeeze(4, 0.25)
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 0.98441565+0.j 0.0000000+0.j 0.17585742+0.j 0.0000000+0.j]
[ 0.0000000+0.j 0.95349007+0.j 0.0000000+0.j 0.30142443+0.j]
[-0.17585742+0.j 0.0000000+0.j 0.98441565+0.j 0.0000000+0.j]
[ 0.00000000+0.j -0.30142443+0.j 0.0000000+0.j 0.95349007+0.j]]
```

squeezing (a1, a2, z)

Generalized squeezing operator.

$$S(z) = \exp\left(\frac{1}{2}\left(z^*a_1a_2 - za_1^{\dagger}a_2^{\dagger}\right)\right)$$

Parameters a1: qutip.qobj.Qobj

Operator 1.

a2:qutip.qobj.Qobj

Operator 2.

z : float/complex

Squeezing parameter.

Returns oper: qutip.qobj.Qobj

Squeezing operator.

phase(N, phi0=0)

Single-mode Pegg-Barnett phase operator.

Parameters N : int Number of basis states in Hilbert space. phi0 : float Reference phase. Returns oper : qobj

Phase operator with respect to reference phase.

Notes

The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space.

enr_destroy (dims, excitations)

Generate annihilation operators for modes in a excitation-number-restricted state space. For example, consider a system consisting of 4 modes, each with 5 states. The total hilbert space size is $5^{**4} = 625$. If we are only interested in states that contain up to 2 excitations, we only need to include states such as

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) ...

This function creates annihilation operators for the 4 modes that act within this state space:

a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2)

From this point onwards, the annihiltion operators a1, ..., a4 can be used to setup a Hamiltonian, collapse operators and expectation-value operators, etc., following the usual pattern.

Parameters dims : list

A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer

The maximum number of excitations that are to be included in the state space.

Returns a_ops : list of qobj

A list of annihilation operators for each mode in the composite quantum system described by dims.

enr_identity (dims, excitations)

Generate the identity operator for the excitation-number restricted state space defined by the *dims* and *excitations* arguments. See the docstring for enr_fock for a more detailed description of these arguments.

Parameters dims : list

A list of the dimensions of each subsystem of a composite quantum system.

excitations : integer

The maximum number of excitations that are to be included in the state space.

state : list of integers

The state in the number basis representation.

Returns op : Qobj

A Qobj instance that represent the identity operator in the exication-numberrestricted state space defined by *dims* and *excitations*.

Random Operators and States

This module is a collection of random state and operator generators. The sparsity of the ouput Qobj's is controlled by varing the *density* parameter.

rand_dm (N, density=0.75, pure=False, dims=None)

Creates a random NxN density matrix.

Parameters N : int

Shape of output density matrix.

density : float

Density between [0,1] of output density matrix.

dims : list

Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]].

Returns oper : qobj

NxN density matrix quantum operator.

Notes

For small density matrices., choosing a low density will result in an error as no diagonal elements will be generated such that $Tr(\rho) = 1$.

rand_herm (N, density=0.75, dims=None)

Creates a random NxN sparse Hermitian quantum object.

Uses $H = X + X^+$ where X is a randomly generated quantum operator with a given *density*.

Parameters N : int

Shape of output quantum operator.

density : float

Density between [0,1] of output Hermitian operator.

dims : list

Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]].

Returns oper : qobj

NxN Hermitian quantum operator.

rand_ket (N, density=1, dims=None)

Creates a random Nx1 sparse ket vector.

Parameters N : int

Number of rows for output quantum operator.

density : float

Density between [0,1] of output ket state.

dims : list

Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[1]].

Returns oper : qobj

Nx1 ket state quantum operator.

rand_unitary (N, density=0.75, dims=None)

Creates a random NxN sparse unitary quantum object.

Uses $\exp(-iH)$ where H is a randomly generated Hermitian operator.

```
Parameters N : int
```

Shape of output quantum operator.

density : float

Density between [0,1] of output Unitary operator.

dims : list

Dimensions of quantum object. Used for specifying tensor structure. Default is dims=[[N],[N]].

Returns oper : qobj

NxN Unitary quantum operator.

Three-Level Atoms

This module provides functions that are useful for simulating the three level atom with QuTiP. A three level atom (qutrit) has three states, which are linked by dipole transitions so that 1 <-> 2 <-> 3. Depending on there relative energies they are in the ladder, lambda or vee configuration. The structure of the relevant operators is the same for any of the three configurations:

References

The naming of qutip operators follows the convention in [R1].

Notes

Contributed by Markus Baden, Oct. 07, 2011 three_level_basis() Basis states for a three level atom.

Returns states : array

array of three level atom basis vectors.

three_level_ops()

Operators for a three level system (qutrit)

Returns ops : array

array of three level operators.

Superoperators and Liouvillians

operator_to_vector(op)

Create a vector representation of a quantum operator given the matrix representation.

vector_to_operator(op)

Create a matrix representation given a quantum operator in vector form.

liouvillian (*H*, *c_ops=[]*, *data_only=False*, *chi=None*)

Assembles the Liouvillian superoperator from a Hamiltonian and a list of collapse operators. Like liouvillian, but with an experimental implementation which avoids creating extra Qobj instances, which can be advantageous for large systems.

Parameters H : qobj

System Hamiltonian. **c_ops** : array_like A list or array of collapse operators. **Returns L** : qobj Liouvillian superoperator.

$\texttt{spost}\left(A\right)$

Superoperator formed from post-multiplication by operator A

Parameters A : qobj

Quantum operator for post multiplication.

Returns super : qobj

Superoperator formed from input qauntum object.

spre(A)

Superoperator formed from pre-multiplication by operator A.

Parameters A : qobj

Quantum operator for pre-multiplication.

Returns super : qobj

Superoperator formed from input quantum object.

sprepost(A, B)

Superoperator formed from pre-multiplication by operator A and post- multiplication of operator B.

Parameters A : Qobj

Quantum operator for pre-multiplication.

B: Qobj

Quantum operator for post-multiplication.

Returns super : Qobj

Superoperator formed from input quantum objects.

lindblad_dissipator (a, b=None, data_only=False)

Lindblad dissipator (generalized) for a single pair of collapse operators (a, b), or for a single collapse operator (a) when b is not specified:

$$\mathcal{D}[a,b]\rho = a\rho b^{\dagger} - \frac{1}{2}a^{\dagger}b\rho - \frac{1}{2}\rho a^{\dagger}b$$

Parameters a : qobj

Left part of collapse operator.

b : qobj (optional)

Right part of collapse operator. If not specified, b defaults to a.

Returns D : qobj

Lindblad dissipator superoperator.

Superoperator Representations

This module implements transformations between superoperator representations, including supermatrix, Kraus, Choi and Chi (process) matrix formalisms.

$to_choi(q_oper)$

Converts a Qobj representing a quantum map to the Choi representation, such that the trace of the returned operator is equal to the dimension of the system.

Parameters q_oper : Qobj

Superoperator to be converted to Choi representation.

Returns choi : Qobj

A quantum object representing the same map as q_oper, such that choi.superrep == "choi".

Raises TypeError: if the given quantum object is not a map, or cannot be converted

to Choi representation.

to_super(q_oper)

Converts a Qobj representing a quantum map to the supermatrix (Liouville) representation.

Parameters q_oper : Qobj

Superoperator to be converted to supermatrix representation.

Returns superop : Qobj

A quantum object representing the same map as q_oper, such that superop.superrep == "super".

Raises TypeError: if the given quantum object is not a map, or cannot be converted to supermatrix representation.

to_kraus (q_oper)

Converts a Qobj representing a quantum map to a list of quantum objects, each representing an operator in the Kraus decomposition of the given map.

Parameters q_oper : Qobj

Superoperator to be converted to Kraus representation.

Returns kraus_ops : list of Qobj

A list of quantum objects, each representing a Kraus operator in the decomposition of q_oper .

Raises TypeError: if the given quantum object is not a map, or cannot be

decomposed into Kraus operators.

Functions acting on states and operators

Tensor

Module for the creation of composite quantum objects via the tensor product.

tensor(*args)

Calculates the tensor product of input operators.

Parameters args : array_like

list or array of quantum objects for tensor product.

Returns obj : qobj

A composite quantum object.

```
>>> tensor([sigmax(), sigmax()])
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 1.+0.j 0.+0.j 0.+0.j]
```

super_tensor(*args)

Calculates the tensor product of input superoperators, by tensoring together the underlying Hilbert spaces on which each vectorized operator acts.

Parameters args : array_like

list or array of quantum objects with type="super".

Returns obj : qobj

A composite quantum object.

composite(*args)

Given two or more operators, kets or bras, returns the Qobj corresponding to a composite system over each argument. For ordinary operators and vectors, this is the tensor product, while for superoperators and vectorized operators, this is the column-reshuffled tensor product.

If a mix of Qobjs supported on Hilbert and Liouville spaces are passed in, the former are promoted. Ordinary operators are assumed to be unitaries, and are promoted using to_super, while kets and bras are promoted by taking their projectors and using operator_to_vector(ket2dm(arg)).

tensor_contract (qobj, *pairs)

Contracts a qobj along one or more index pairs. Note that this uses dense representations and thus should *not* be used for very large Qobjs.

Parameters pairs : tuple

One or more tuples (i, j) indicating that the i and j dimensions of the original qobj should be contracted.

Returns cqobj : Qobj

The original Qobj with all named index pairs contracted away.

Expectation Values

expect (oper, state)

Calculates the expectation value for operator(s) and state(s).

Parameters oper : qobj/array-like

A single or a *list* or operators for expectation value.

state : qobj/array-like

A single or a *list* of quantum states or density matrices.

Returns expt : float/complex/array-like

Expectation value. real if *oper* is Hermitian, complex otherwise. A (nested) array of expectaction values of state or operator are arrays.

Examples

>>> expect(num(4), basis(4, 3))
3

variance (oper, state)

Variance of an operator for the given state vector or density matrix.

Parameters oper : qobj

Operator for expectation value. **state** : qobj/list A single or *list* of quantum states or density matrices..

Returns var : float

Variance of operator 'oper' for given state.

Partial Transpose

partial_transpose(rho, mask, method='dense')

Return the partial transpose of a Qobj instance *rho*, where *mask* is an array/list with length that equals the number of components of *rho* (that is, the length of *rho.dims[0]*), and the values in *mask* indicates whether or not the corresponding subsystem is to be transposed. The elements in *mask* can be boolean or integers 0 or 1, where *True*/1 indicates that the corresponding subsystem should be transposed.

Parameters rho: qutip.qobj

A density matrix.

mask : list / array

A mask that selects which subsystems should be transposed.

method : str

choice of method, *dense* or *sparse*. The default method is *dense*. The *sparse* implementation can be faster for large and sparse systems (hundreds of quantum states).

Returns rho_pr: qutip.qobj

A density matrix with the selected subsystems transposed.

Entropy Functions

concurrence (*rho*)

Calculate the concurrence entanglement measure for a two-qubit state.

Parameters state : qobj

Ket, bra, or density matrix for a two-qubit state.

Returns concur : float

Concurrence

References

[R2]

entropy_conditional (*rho*, selB, base=2.718281828459045, sparse=False) Calculates the conditional entropy S(A|B) = S(A, B) - S(B) of a slected density matrix component.

Parameters rho : qobj

Density matrix of composite object

selB : int/list

Selected components for density matrix B

base : {e,2}

Base of logarithm.

sparse : {False,True}

Use sparse eigensolver.

Returns ent_cond : float

Value of conditional entropy

entropy_linear(rho)

Linear entropy of a density matrix.

Parameters rho: qobj

sensity matrix or ket/bra vector.

Returns entropy : float

Linear entropy of rho.

Examples

```
>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_linear(rho)
0.5
```

entropy_mutual (*rho*, *selA*, *selB*, *base=2.718281828459045*, *sparse=False*) Calculates the mutual information S(A:B) between selection components of a system density matrix.

Parameters rho: qobj

Density matrix for composite quantum systems selA : int/list int or list of first selected density matrix components. selB : int/list int or list of second selected density matrix components. base : {e,2} Base of logarithm. sparse : {False,True} Use sparse eigensolver. Returns ent_mut : float Mutual information between selected components.

entropy_vn (*rho*, *base=2.718281828459045*, *sparse=False*) Von-Neumann entropy of density matrix

```
Parameters rho : qobj
Density matrix.
base : {e,2}
Base of logarithm.
sparse : {False,True}
Use sparse eigensolver.
Returns entropy : float
Von-Neumann entropy of rho.
```

Examples

```
>>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
>>> entropy_vn(rho,2)
1.0
```

Density Matrix Metrics

This module contains a collection of functions for calculating metrics (distance measures) between states and operators.

fidelity (A, B)

Calculates the fidelity (pseudo-metric) between two density matrices. See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

```
Parameters A : qobj
```

Density matrix or state vector.

B: qobj

Density matrix or state vector with same dimensions as A.

Returns fid : float

Fidelity pseudo-metric between A and B.

Examples

```
>>> x = fock_dm(5,3)
>>> y = coherent_dm(5,1)
>>> fidelity(x,y)
0.24104350624628332
```

tracedist (A, B, sparse=False, tol=0)

Calculates the trace distance between two density matrices.. See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

Parameters A : qobj

Density matrix or state vector.

B: qobj

Density matrix or state vector with same dimensions as A.

tol : float

Tolerance used by sparse eigensolver, if used. (0=Machine precision)

sparse : {False, True}

Use sparse eigensolver.

Returns tracedist : float

Trace distance between A and B.

Examples

```
>>> x=fock_dm(5,3)
>>> y=coherent_dm(5,1)
>>> tracedist(x,y)
0.9705143161472971
```

bures_dist (A, B)

Returns the Bures distance between two density matrices A & B.

The Bures distance ranges from 0, for states with unit fidelity, to sqrt(2).

Parameters A : qobj

Density matrix or state vector.

B : qobj

Density matrix or state vector with same dimensions as A.

Returns dist : float

Bures distance between density matrices.

$bures_angle(A, B)$

Returns the Bures Angle between two density matrices A & B.

The Bures angle ranges from 0, for states with unit fidelity, to pi/2.

Parameters A : qobj

Density matrix or state vector.

B: qobj

Density matrix or state vector with same dimensions as A.

Returns angle : float

Bures angle between density matrices.

$hilbert_dist(A, B)$

Returns the Hilbert-Schmidt distance between two density matrices A & B.

```
Parameters A : qobj
```

Density matrix or state vector.

B: qobj

Density matrix or state vector with same dimensions as A.

Returns dist : float

Hilbert-Schmidt distance between density matrices.

Notes

See V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).

average_gate_fidelity(oper)

Given a Qobj representing the supermatrix form of a map, returns the average gate fidelity (pseudo-metric) of that map.

Parameters A : Qobj

Quantum object representing a superoperator.

Returns fid : float

Fidelity pseudo-metric between A and the identity superoperator.

process_fidelity(U1, U2, normalize=True)

Calculate the process fidelity given two process operators.

Continous Variables

This module contains a collection functions for calculating continuous variable quantities from fock-basis representation of the state of multi-mode fields.

correlation_matrix(basis, rho=None)

Given a basis set of operators $\{a\}_n$, calculate the correlation matrix:

$$C_{mn} = \langle a_m a_n \rangle$$

Parameters basis: list of qutip.qobj.Qobj

List of operators that defines the basis for the correlation matrix.

rho:qutip.qobj.Qobj

Density matrix for which to calculate the correlation matrix. If *rho* is *None*, then a matrix of correlation matrix operators is returned instead of expectation values of those operators.

Returns corr_mat: *array*

A 2-dimensional array of correlation values or operators.

covariance_matrix (*basis*, *rho*, *symmetrized=True*)

Given a basis set of operators $\{a\}_n$, calculate the covariance matrix:

$$V_{mn} = \frac{1}{2} \langle a_m a_n + a_n a_m \rangle - \langle a_m \rangle \langle a_n \rangle$$

or, if of the optional argument symmetrized=False,

$$V_{mn} = \langle a_m a_n \rangle - \langle a_m \rangle \langle a_n \rangle$$

Parameters basis: list of qutip.qobj.Qobj

List of operators that defines the basis for the covariance matrix.

rho:qutip.qobj.Qobj

Density matrix for which to calculate the covariance matrix.

symmetrized : bool

Flag indicating whether the symmetrized (default) or non-symmetrized correlation matrix is to be calculated.

Returns corr_mat: array

A 2-dimensional array of covariance values.

correlation_matrix_field(a1, a2, rho=None)

Calculate the correlation matrix for given field operators a_1 and a_2 . If a density matrix is given the expectation values are calculated, otherwise a matrix with operators is returned.

```
Parameters al: qutip.qobj.Qobj
```

Field operator for mode 1.

a2:qutip.qobj.Qobj

Field operator for mode 2.

rho:qutip.qobj.Qobj

Density matrix for which to calculate the covariance matrix.

Returns cov_mat: array of complex numbers or qutip.qobj.Qobj

A 2-dimensional array of covariance values, or, if rho=0, a matrix of operators.

correlation_matrix_quadrature (*a1*, *a2*, *rho=None*)

Calculate the quadrature correlation matrix with given field operators a_1 and a_2 . If a density matrix is given the expectation values are calculated, otherwise a matrix with operators is returned.

Parameters al: qutip.qobj.Qobj

Field operator for mode 1.

a2:qutip.qobj.Qobj

Field operator for mode 2.

```
rho:qutip.qobj.Qobj
```

Density matrix for which to calculate the covariance matrix.

Returns corr_mat: array of complex numbers or qutip.qobj.Qobj

A 2-dimensional *array* of covariance values for the field quadratures, or, if rho=0, a matrix of operators.

wigner_covariance_matrix (a1=None, a2=None, R=None, rho=None)

Calculate the Wigner covariance matrix $V_{ij} = \frac{1}{2}(R_{ij} + R_{ji})$, given the quadrature correlation matrix $R_{ij} = \langle R_i R_j \rangle - \langle R_i \rangle \langle R_j \rangle$, where $R = (q_1, p_1, q_2, p_2)^T$ is the vector with quadrature operators for the two modes.

Alternatively, if R = None, and if annihilation operators a1 and a2 for the two modes are supplied instead, the quadrature correlation matrix is constructed from the annihilation operators before then the covariance matrix is calculated.

Parameters a1: qutip.qobj.Qobj

Field operator for mode 1.

a2:qutip.qobj.Qobj

Field operator for mode 2.

R : array

The quadrature correlation matrix.

rho:qutip.qobj.Qobj

Density matrix for which to calculate the covariance matrix.

Returns cov_mat: *array*

A 2-dimensional *array* of covariance values.

$logarithmic_negativity(V)$

Calculate the logarithmic negativity given the symmetrized covariance matrix, see qutip.continous_variables.covariance_matrix. Note that the two-mode field state that is described by *V* must be Gaussian for this function to applicable.

Parameters V: 2d array

The covariance matrix.

Returns N: *float*, the logarithmic negativity for the two-mode Gaussian state that is described by the the Wigner covariance matrix V.

Dynamics and Time-Evolution

Schrödinger Equation

This module provides solvers for the unitary Schrodinger equation.

Schrodinger equation evolution of a state vector for a given Hamiltonian.

Evolve the state vector or density matrix (rho0) using a given Hamiltonian (H), by integrating the set of ordinary differential equations that define the system.

The output is either the state vector at arbitrary points in time (*tlist*), or the expectation values of the supplied operators (e_ops). If e_ops is a callback function, it is invoked for each time in *tlist* with time and the state as arguments, and the function does not use any return values.

Parameters H:qutip.qobj

system Hamiltonian, or a callback function for time-dependent Hamiltonians.

```
rho0:qutip.qobj
```

initial density matrix or state vector (ket).

tlist : list / array

list of times for t.

e_ops : list of qutip.qobj / callback function single

single operator or list of operators for which to evaluate expectation values.

 $args: {\it dictionary}$

dictionary of parameters for time-dependent Hamiltonians and collapse operators.

options:qutip.Qdeoptions

with options for the ODE solver.

Returns output: qutip.solver

An instance of the class qutip.solver, which contains either an *array* of expectation values for the times specified by *tlist*, or an *array* or state vectors or density matrices corresponding to the times in *tlist* [if e_ops is an empty list], or nothing if a callback function was given inplace of operators for which to calculate the expectation values.

Master Equation

This module provides solvers for the Lindblad master equation and von Neumann equation.

mesolve (*H*, *rho0*, *tlist*, *c_ops*, *e_ops*, *args={}*, *options=None*, *progress_bar=None*)

Master equation evolution of a density matrix for a given Hamiltonian and set of collapse operators, or a Liouvillian.

Evolve the state vector or density matrix (*rho0*) using a given Hamiltonian (*H*) and an [optional] set of collapse operators (c_ops), by integrating the set of ordinary differential equations that define the system. In the absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian.

The output is either the state vector at arbitrary points in time (*tlist*), or the expectation values of the supplied operators (e_ops). If e_ops is a callback function, it is invoked for each time in *tlist* with time and the state as arguments, and the function does not use any return values.

If either H or the Qobj elements in c_{ops} are superoperators, they will be treated as direct contributions to the total system Liouvillian. This allows to solve master equations that are not on standard Lindblad form by passing a custom Liouvillian in place of either the H or c_{ops} elements.

Time-dependent operators

For time-dependent problems, H and c_{ops} can be callback functions that takes two arguments, time and *args*, and returns the Hamiltonian or Liouvillian for the system at that point in time (*callback format*).

Alternatively, H and c_{ops} can be a specified in a nested-list format where each element in the list is a list of length 2, containing an operator (qutip.qobj) at the first element and where the second element is either a string (*list string format*), a callback function (*list callback format*) that evaluates to the time-dependent coefficient for the corresponding operator, or a NumPy array (*list array format*) which specifies the value of the coefficient to the corresponding operator for each value of t in tlist.

Examples

 $H = [[H0, 'sin(w^*t)'], [H1, 'sin(2^*w^*t)']]$ $H = [[H0, f0_t], [H1, f1_t]]$ where f0_t and f1_t are python functions with signature f_t(t, args). $H = [[H0, np.sin(w^*tlist)], [H1, np.sin(2^*w^*tlist)]]$

In the *list string format* and *list callback format*, the string expression and the callback function must evaluate to a real or complex number (coefficient for the corresponding operator).

In all cases of time-dependent operators, *args* is a dictionary of parameters that is used when evaluating operators. It is passed to the callback functions as second argument.

Additional options

Additional options to mesolve can be set via the *options* argument, which should be an instance of qutip.solver.Options. Many ODE integration options can be set this way, and the *store_states* and *store_final_state* options can be used to store states even though expectation values are requested via the *e_ops* argument.

Note: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in superoperator form it will be added to the total Liouvillian of the problem with out further transformation. This allows for using mesolve for solving master equations that are not on standard Lindblad form.

Note: On using callback function: mesolve transforms all qutip.qobj objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all qutip.qobj objects that are used in constructing the Hamiltonian via args. mesolve will check for qutip.qobj in *args* and handle the conversion to sparse matrices. All other qutip.qobj objects that are not passed via *args* will be passed on to the integrator in scipy which will raise an NotImplemented exception.

Parameters H: qutip.Qobj

System Hamiltonian, or a callback function for time-dependent Hamiltonians, or alternatively a system Liouvillian.

rho0:qutip.Qobj

initial density matrix or state vector (ket).

tlist : list / array

list of times for t.

c_ops : list of qutip.Qobj

single collapse operator, or list of collapse operators, or a list of Liouvillian superoperators.

e_ops : list of qutip.Qobj / callback function single

single operator or list of operators for which to evaluate expectation values.

args : dictionary

dictionary of parameters for time-dependent Hamiltonians and collapse operators.

options:qutip.Options

with options for the solver.

progress_bar: BaseProgressBar

Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation.

Returns result: qutip.Result

An instance of the class qutip.Result, which contains either an *array result.expect* of expectation values for the times specified by *tlist*, or an *array result.states* of state vectors or density matrices corresponding to the times in *tlist* [if e_{ops} is an empty list], or nothing if a callback function was given in place of operators for which to calculate the expectation values.

Monte Carlo Evolution

mcsolve (H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=None, progress_bar=True, map_func=None, map_kwargs=None)

Monte Carlo evolution of a state vector $|\psi\rangle$ for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class.

mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term.

As an example of a time-dependent problem, consider a Hamiltonian with two terms H0 and H1, where H1 is time-dependent with coefficient sin(w*t), and collapse operators C0 and C1, where C1 is time-dependent with coefficient exp(-a*t). Here, w and a are constant arguments with values W and A.

Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:

```
def H1_coeff(t,args):
    return sin(args['w']*t)

def C1_coeff(t,args):
    return exp(-args['a']*t)

H = [H0, [H1, H1_coeff]]

c_ops = [C0, [C1, C1_coeff]]

args={'a': A, 'w': W}
```

or in String (Cython) format we could write:

H = [H0, [H1, 'sin(w*t)']]
c_ops = [C0, [C1, 'exp(-a*t)']]
args={'a': A, 'w': W}

Constant terms are preferably placed first in the Hamiltonian and collapse operator lists.

Parameters H: qutip.Qobj

System Hamiltonian.

psi0:qutip.Qobj

Initial state vector

tlist : array_like

Times at which results are recorded.

ntraj : int

Number of trajectories to run.

c_ops : array_like

single collapse operator or list or array of collapse operators.

e_ops : array_like

single operator or list or array of operators for calculating expectation values. **args** : dict

ings . ulet

Arguments for time-dependent Hamiltonian and collapse operator terms.

options : Options

Instance of ODE solver options.

progress_bar: BaseProgressBar

Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Set to None to disable the progress bar.

map_func: function

A map function for managing the calls to the single-trajactory solver.

map_kwargs: dictionary

Optional keyword arguments to the map_func function.

Returns results: qutip.solver.Result

Object storing all results from the simulation.

Note: It is possible to reuse the random number seeds from a previous run of the mcsolver by passing the output Result object seeds via the Options class, i.e. Options(seeds=prev_result.seeds).

Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for problems without explicit time-dependence, and with some optional input:

Parameters H : qobj

System Hamiltonian.

psi0: qobj

Initial state vector

tlist : array_like

Times at which results are recorded.

ntraj : int

Number of trajectories to run.

c_ops : array_like

list or array of collapse operators.

e_ops : array_like

list or array of operators for calculating expectation values.

options : Options

Instance of solver options.

sparse_dms : boolean

If averaged density matrices are returned, they will be stored as sparse (Compressed Row Format) matrices during computation if sparse_dms = True (default), and dense matrices otherwise. Dense matrices might be preferable for smaller systems.

serial : boolean

If True (default is False) the solver will not make use of the multiprocessing module, and simply run in serial.

ptrace_sel: list

This optional argument specifies a list of components to keep when returning a partially traced density matrix. This can be convenient for large systems where memory becomes a problem, but you are only interested in parts of the density matrix.

calc_entropy : boolean

If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged entropy over trajectories in results.entropy. This can be interpreted as a measure of entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

Returns results : Result

Object storing all results from simulation.

Exponential Series

essolve (*H*, *rho0*, *tlist*, *c_op_list*, *e_ops*)

Evolution of a state vector or density matrix (*rho0*) for a given Hamiltonian (*H*) and set of collapse operators (c_op_list) , by expressing the ODE as an exponential series. The output is either the state vector at arbitrary points in time (*tlist*), or the expectation values of the supplied operators (*e_ops*).

Parameters H : qobj/function_type

System Hamiltonian.

rho0:qutip.qobj

Initial state density matrix.

tlist : list/array

list of times for *t*.

c_op_list : list of qutip.qobj

list of qutip.qobj collapse operators.

e_ops: list of qutip.qobj

list of qutip.qobj operators for which to evaluate expectation values.

Returns expt_array : array

Expectation values of wavefunctions/density matrices for the times specified in tlist.

Note: This solver does not support time-dependent Hamiltonians.

ode2es(L, rho0)

Creates an exponential series that describes the time evolution for the initial density matrix (or state vector) *rho0*, given the Liouvillian (or Hamiltonian) *L*.

```
Parameters L : qobj
```

Liouvillian of the system.

rho0: qobj

Initial state vector or density matrix.

Returns eseries: qutip.eseries

eseries represention of the system dynamics.

Bloch-Redfield Master Equation

brmesolve (H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=None, args={}, options=<qutip.solver.Options instance at 0x105963320>) Solve the dynamics for a system using the Bloch-Redfield master equation.

Note: This solver does not currently support time-dependent Hamiltonians.

Parameters H: qutip.Qobj

System Hamiltonian. rho0 / psi0: :class:'qutip.Qobj' Initial density matrix or state vector (ket). tlist : list / array List of times for t. **a_ops**: list of qutip.gobj List of system operators that couple to bath degrees of freedom. e_ops: list of qutip.qobj/callback function List of operators for which to evaluate expectation values. c_ops : list of qutip.gobj List of system collapse operators. args : dictionary Placeholder for future implementation, kept for API consistency. options:gutip.solver.Options Options for the solver. Returns result: gutip.solver.Result

An instance of the class qutip.solver.Result, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by *tlist*.

bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops=None, use_secular=True)

Calculate the Bloch-Redfield tensor for a system given a set of operators and corresponding spectral functions that describes the system's coupling to its environment.

Note: This tensor generation requires a time-independent Hamiltonian.

Parameters H: qutip.qobj System Hamiltonian. **a_ops**: list of qutip.gobj List of system operators that couple to the environment. spectra_cb : list of callback functions List of callback functions that evaluate the noise power spectrum at a given frequency. c_ops : list of qutip.qobj List of system collapse operators. use secular : bool Flag (True of False) that indicates if the secular approximation should be used. Returns R, kets: qutip.Qobj, list of qutip.Qobj R is the Bloch-Redfield tensor and kets is a list eigenstates of the Hamiltonian. **bloch_redfield_solve** (*R*, *ekets*, *rho0*, *tlist*, *e_ops=[]*, *options=None*) Evolve the ODEs defined by Bloch-Redfield master equation. The Bloch-Redfield tensor can be calculated by the function bloch_redfield_tensor. Parameters R: qutip. qobj Bloch-Redfield tensor. ekets: array of gutip.gobj Array of kets that make up a basis tranformation for the eigenbasis. rho0:qutip.qobj Initial density matrix. tlist : list / array List of times for t. e_ops: list of gutip.gobj/callback function List of operators for which to evaluate expectation values. options: gutip. Qdeoptions Options for the ODE solver. Returns output: qutip.solver An instance of the class gutip.solver, which contains either an array of ex-

pectation values for the times specified by *tlist*.

Floquet States and Floquet-Markov Master Equation

fmmesolve(H, rho0, tlist, c_ops, e_ops=[], spectra_cb=[], T=None, args={}, options=<qutip.solver.Options instance at 0x105963290>, floquet_basis=True, kmax=5) Solve the dynamics for the system using the Floquet-Markov master equation.

Note: This solver currently does not support multiple collapse operators.

Parameters H: qutip.qobj system Hamiltonian. rho0/psi0: qutip.qobj initial density matrix or state vector (ket).

tlist : list / array

list of times for t.

- c_{ops} : list of qutip.qobj
 - list of collapse operators.
- e_ops : list of <code>qutip.qobj</code> / callback function

list of operators for which to evaluate expectation values.

spectra_cb : list callback functions

List of callback functions that compute the noise power spectrum as a function of frequency for the collapse operators in c_{ops} .

 \mathbf{T} : float

The period of the time-dependence of the hamiltonian. The default value 'None' indicates that the 'tlist' spans a single period of the driving.

args : dictionary

dictionary of parameters for time-dependent Hamiltonians and collapse operators. This dictionary should also contain an entry 'w_th', which is the temperature of the environment (if finite) in the energy/frequency units of the Hamiltonian. For example, if the Hamiltonian written in units of 2pi GHz, and the temperature is given in K, use the following conversion

```
>>> temperature = 25e-3 # unit K
>>> h = 6.626e-34
>>> kB = 1.38e-23
>>> args['w_th'] = temperature * (kB / h) * 2 * pi * 1e-9
```

options:qutip.solver

options for the ODE solver.

k_max : int

The truncation of the number of sidebands (default 5).

Returns output: qutip.solver

An instance of the class qutip.solver, which contains either an *array* of expectation values for the times specified by *tlist*.

floquet_modes (H, T, args=None, sort=False, U=None)

Calculate the initial Floquet modes Phi_alpha(0) for a driven system with period T.

Returns a list of qutip.qobj instances representing the Floquet modes and a list of corresponding quasienergies, sorted by increasing quasienergy in the interval [-pi/T, pi/T]. The optional parameter *sort* decides if the output is to be sorted in increasing quasienergies or not.

Parameters H: qutip.qobj

system Hamiltonian, time-dependent with period T

args : dictionary

dictionary with variables required to evaluate H

 \mathbf{T} : float

The period of the time-dependence of the hamiltonian. The default value 'None' indicates that the 'tlist' spans a single period of the driving.

U:qutip.qobj

The propagator for the time-dependent Hamiltonian with period T. If U is *None* (default), it will be calculated from the Hamiltonian H using qutip.propagator.propagator.

Returns output : list of kets, list of quasi energies

Two lists: the Floquet modes as kets and the quasi energies.

floquet_modes_t (f_modes_0, f_energies, t, H, T, args=None)

Calculate the Floquet modes at times tlist Phi_alpha(tlist) propagting the initial Floquet modes Phi_alpha(0)

Parameters f_modes_0 : list of qutip.qobj (kets)

Floquet modes at t
f_energies : list
Floquet energies.
t : float
The time at which to evaluate the floquet modes.
H:qutip.qobj
system Hamiltonian, time-dependent with period T
args : dictionary
dictionary with variables required to evaluate H
\mathbf{T} : float
The period of the time-dependence of the hamiltonian.
Returns output : list of kets
The Floquet modes as kets at time t
<pre>floquet_modes_table (f_modes_0, f_energies, tlist, H, T, args=None) Pre-calculate the Floquet modes for a range of times spanning the floquet period. Can later be used as a table to look up the floquet modes for any time.</pre>
Parameters f_modes_0: list of qutip.qobj (kets)
Floquet modes at t
f_energies : list
Floquet energies.
tlist : array
The list of times at which to evaluate the floquet modes.
H:qutip.qobj
system Hamiltonian, time-dependent with period T
\mathbf{T} : float
The period of the time-dependence of the hamiltonian.
args : dictionary
dictionary with variables required to evaluate H
Returns output : nested list
A nested list of Floquet modes as kets for each time in <i>tlist</i>
<pre>floquet_modes_t_lookup (f_modes_table_t, t, T) Lookup the floquet mode at time t in the pre-calculated table of floquet modes in the first period of the time-dependence.</pre>
Parameters f_modes_table_t : nested list of qutip.qobj (kets)
A lookup-table of Floquet modes at times precalculated by
<pre>qutip.floquet.floquet_modes_table.</pre>
t : float
The time for which to evaluate the Floquet modes.
\mathbf{T} : float

The period of the time-dependence of the hamiltonian.

Returns output : nested list

A list of Floquet modes as kets for the time that most closely matching the time t in the supplied table of Floquet modes.

floquet_states_t (f_modes_0, f_energies, t, H, T, args=None)

Evaluate the floquet states at time t given the initial Floquet modes.

Parameters f_modes_t : list of qutip.qobj(kets)

A list of initial Floquet modes (for time t = 0).

f_energies : array

The Floquet energies.

\mathbf{t} : float

The time for which to evaluate the Floquet states.

 ${f H}$:qutip.qobj

System Hamiltonian, time-dependent with period T.

 \mathbf{T} : float

The period of the time-dependence of the hamiltonian.

args : dictionary

Dictionary with variables required to evaluate H.

Returns output : list

A list of Floquet states for the time t.

floquet_wavefunction_t (f_modes_0, f_energies, f_coeff, t, H, T, args=None)

Evaluate the wavefunction for a time t using the Floquet state decompositon, given the initial Floquet modes.

Parameters f_modes_t : list of qutip.qobj (kets)

A list of initial Floquet modes (for time t = 0).

f_energies : array

The Floquet energies.

f_coeff : array

The coefficients for Floquet decomposition of the initial wavefunction.

t : float

The time for which to evaluate the Floquet states.

H:qutip.qobj

System Hamiltonian, time-dependent with period T.

 \mathbf{T} : float

The period of the time-dependence of the hamiltonian.

args : dictionary

Dictionary with variables required to evaluate H.

Returns output: qutip.qobj

The wavefunction for the time t.

floquet_state_decomposition (f_states, f_energies, psi)

Decompose the wavefunction *psi* (typically an initial state) in terms of the Floquet states, $\psi = \sum_{\alpha} c_{\alpha} \psi_{\alpha}(0)$.

Parameters f_states : list of qutip.qobj (kets)

A list of Floquet modes.

f_energies : array

The Floquet energies.

```
psi:qutip.qobj
```

The wavefunction to decompose in the Floquet state basis.

Returns output : array

The coefficients c_{α} in the Floquet state decomposition.

fsesolve (*H*, *psi0*, *tlist*, *e_ops=[]*, *T=None*, *args={}*, *Tsteps=100*) Solve the Schrodinger equation using the Floquet formalism.

Parameters H: qutip.qobj.Qobj

System Hamiltonian, time-dependent with period T.

psi0:qutip.qobj

Initial state vector (ket).

tlist : list / array

list of times for t.

 $e_ops:$ list of <code>qutip.qobj</code> / <code>callback</code> function

list of operators for which to evaluate expectation values. If this list is empty, the state vectors for each time in *tlist* will be returned instead of expectation values.

\mathbf{T} : float

The period of the time-dependence of the hamiltonian.

$args: {\rm dictionary}$

Dictionary with variables required to evaluate H.

Tsteps : integer

The number of time steps in one driving period for which to precalculate the Floquet modes. *Tsteps* should be an even number.

Returns output: qutip.solver.Result

An instance of the class qutip.solver.Result, which contains either an *array* of expectation values or an array of state vectors, for the times specified by *tlist*.

Stochastic Schrödinger Equation and Master Equation

This module contains functions for solving stochastic schrodinger and master equations. The API should not be considered stable, and is subject to change when we work more on optimizing this module for performance and features.

smesolve(H, rho0, times, c_ops, sc_ops, e_ops, **kwargs)

Solve stochastic master equation. Dispatch to specific solvers depending on the value of the *solver* keyword argument.

Parameters H: qutip.Qobj

System Hamiltonian.

rho0:qutip.Qobj

Initial density matrix or state vector (ket).

times : list / array

List of times for t. Must be uniformly spaced.

c_ops : list of qutip.Qobj

Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation.

sc_ops : list of qutip.Qobj

List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the equation of motion according to how the d1 and d2 functions are defined.

e_ops : list of qutip.Qobj / callback function single

single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary

Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult

An instance of the class qutip.solver.SolverResult.

ssesolve (H, psi0, times, sc_ops, e_ops, **kwargs)

Solve the stochastic Schrödinger equation. Dispatch to specific solvers depending on the value of the *solver* keyword argument.

Parameters H: qutip.Qobj

System Hamiltonian.

psi0:qutip.Qobj

Initial state vector (ket).

times : list / array

List of times for t. Must be uniformly spaced.

sc_ops : list of qutip.Qobj

List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the equation of motion according to how the d1 and d2 functions are defined.

e_ops:list of qutip.Qobj

Single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary

Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult

An instance of the class qutip.solver.SolverResult.

smepdpsolve (H, rho0, times, c_ops, e_ops, **kwargs)

A stochastic (piecewse deterministic process) PDP solver for density matrix evolution.

Parameters H:qutip.Qobj

System Hamiltonian.

rho0:qutip.Qobj

Initial density matrix.

times : list / array

List of times for t. Must be uniformly spaced.

$c_ops: \texttt{list of qutip.Qobj}$

Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation.

sc_ops : list of qutip.Qobj

List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the equation of motion according to how the d1 and d2 functions are defined.

e_ops : list of qutip.Qobj / callback function single

single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary

Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions.

Returns output: qutip.solver.SolverResult

An instance of the class qutip.solver.SolverResult.

ssepdpsolve (H, psi0, times, c_ops, e_ops, **kwargs)

A stochastic (piecewse deterministic process) PDP solver for wavefunction evolution. For most purposes, use qutip.mcsolve instead for quantum trajectory simulations.

Parameters H:qutip.Qobj

System Hamiltonian.

psi0:qutip.Qobj

Initial state vector (ket).

times : list / array

List of times for t. Must be uniformly spaced.

 $c_ops: \texttt{list of qutip.Qobj}$

Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation.

e_ops : list of qutip.Qobj / callback function single

single operator or list of operators for which to evaluate expectation values.

kwargs : dictionary

Optional keyword arguments. See qutip.stochastic.StochasticSolverOptions. **Returns output:** qutip.solver.SolverResult

An instance of the class qutip.solver.SolverResult.

Correlation Functions

```
correlation (H, state0, tlist, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args=None, op-
tions=<qutip.solver.Options instance at 0x105963a70>)
```

Calculate the two-operator two-time correlation function: $\langle A(t + \tau)B(t) \rangle$ along two time axes using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Parameters H: qutip.qobj.Qobj

system Hamiltonian.

- **state0** [qutip.qobj.Qobj] Initial state density matrix $\rho(t_0)$ or state vector $\psi(t_0)$. If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.
- **tlist** [*list / array*] list of times for *t*. tlist must be positive and contain the element 0. When taking steady-steady correlations only one tlist value is necessary, i.e. :math:⁴t

ightarrow infty'; here tlist is

automatically set, ignoring user input.

- **taulist** [*list / array*] list of times for τ . taulist must be positive and contain the element 0.
- **c_ops** [list of qutip.qobj.Qobj] list of collapse operators.

a_op [qutip.qobj.Qobj] operator A.

b_op [qutip.qobj.Qobj] operator B.

reverse [bool] If *True*, calculate $\langle A(t)B(t+\tau)\rangle$ instead of $\langle A(t+\tau)B(t)\rangle$.

solver [str] choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)

options [qutip.solver.Options] solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc corr eps=1e-10*.

Returns corr_mat: array

An 2-dimensional *array* (matrix) of correlation values for the times specified by *tlist* (first index) and *taulist* (second index). If *tlist* is *None*, then a 1-dimensional *array* of correlation values is returned instead.

correlation_ss(*H*, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args=None, options=<qutip.solver.Options instance at 0x105963a28>)

Calculate the two-operator two-time correlation function:

$$\lim_{t \to \infty} \left\langle A(t+\tau) B(t) \right\rangle$$

along one time axis (given steady-state initial conditions) using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Parameters H:qutip.qobj.Qobj

system Hamiltonian.

taulist : list / array
list of times for τ. taulist must be positive and contain the element θ.
c_ops : list of qutip.qobj.Qobj
list of collapse operators.
a_op : qutip.qobj.Qobj
operator A.
b_op : qutip.qobj.Qobj
operator B.
reverse : bool
If True, calculate lim_{to∞} ⟨A(t)B(t + τ)⟩ instead of lim_{to∞} ⟨A(t + τ)B(t)⟩.

solver : str

choice of solver (me for master-equation and es for exponential series)

options:qutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_vec: array

An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_2op_1t (*H*, state0, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args=None, options=<qutip.solver.Options instance at 0x1059637e8>)

Calculate the two-operator two-time correlation function: :math: left < A(t+tau)B(t)right > along one time axis using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

```
Parameters H: qutip.qobj.Qobj
```

system Hamiltonian.

state0:qutip.qobj.Qobj

Initial state density matrix $\rho(t_0)$ or state vector $\psi(t_0)$. If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.

taulist : list / array

list of times for τ . taulist must be positive and contain the element θ .

c_ops : list of qutip.gobj.Qobj

```
list of collapse operators.
```

a_op:qutip.qobj.Qobj

operator A.

b_op:qutip.qobj.Qobj

operator B.

reverse : bool

If *True*, calculate $\langle A(t)B(t+\tau)\rangle$ instead of $\langle A(t+\tau)B(t)\rangle$.

solver : str

choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)

options:qutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_vec: array

An array of correlation values for the times specified by tlist.

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_2op_2t (*H*, state0, tlist, taulist, c_ops, a_op, b_op, solver='me', reverse=False, args=None, options=<qutip.solver.Options instance at 0x1059638c0>)

Calculate the two-operator two-time correlation function: $\langle A(t + \tau)B(t) \rangle$ along two time axes using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Parameters H:qutip.qobj.Qobj system Hamiltonian.
- **state0** [qutip.qobj.Qobj] Initial state density matrix ρ_0 or state vector ψ_0 . If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.
- **tlist** [*list / array*] list of times for t. tlist must be positive and contain the element 0. When taking steady-steady correlations only one tlist value is necessary, i.e. :math:⁴t

ightarrow infty'; here tlist is

automatically set, ignoring user input.

- **taulist** [*list / array*] list of times for τ . taulist must be positive and contain the element 0.
- **c_ops** [list of qutip.qobj.Qobj] list of collapse operators.

a_op [qutip.qobj.Qobj] operator A.

b_op [qutip.qobj.Qobj] operator B.

- **reverse** [bool] If *True*, calculate $\langle A(t)B(t+\tau)\rangle$ instead of $\langle A(t+\tau)B(t)\rangle$.
- **solver** [str] choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)
- **options** [qutip.solver.Options] solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_mat: array

An 2-dimensional *array* (matrix) of correlation values for the times specified by *tlist* (first index) and *taulist* (second index). If *tlist* is *None*, then a 1-dimensional *array* of correlation values is returned instead.

correlation_3op_1t (H, state0, taulist, c_ops, a_op, b_op, c_op, solver='me', args=None, options=<qutip.solver.Options instance at 0x105963908>)

Calculate the three-operator two-time correlation function: $\langle A(t)B(t+\tau)C(t)\rangle$ along one time axis using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where :math: tau < 0.

Parameters H: qutip.qobj.Qobj

```
system Hamiltonian.
rho0 : qutip.qobj.Qobj
```

```
Initial state density matrix \rho(t_0) or state vector \psi(t_0). If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the me and es solvers.
```

taulist : list / array

list of times for τ . taulist must be positive and contain the element θ .

c_ops : list of qutip.qobj.Qobj

```
list of collapse operators.
```

```
a_{op}:qutip.qobj.Qobj
```

```
operator A.
```

```
b_op:qutip.qobj.Qobj
```

```
operator B.
```

```
c\_op: \texttt{qutip.qobj.Qobj}
```

```
operator C.
```

```
solver : str
```

choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)

options:qutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_vec: array

An array of correlation values for the times specified by taulist

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_3op_2t (H, state0, tlist, taulist, c_ops, a_op, b_op, c_op, solver='me', args=None, options=<qutip.solver.Options instance at 0x105963950>)

Calculate the three-operator two-time correlation function: $\langle A(t)B(t+\tau)C(t)\rangle$ along two time axes using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where :math: tau < 0.

Parameters H: qutip.qobj.Qobj

system Hamiltonian, or a callback function for time-dependent Hamiltonians.

- **rho0** [qutip.qobj.Qobj] Initial state density matrix ρ_0 or state vector ψ_0 . If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.
- **tlist** [*list | array*] list of times for t. tlist must be positive and contain the element 0. When taking steady-steady correlations only one tlist value is necessary, i.e. :math:⁴t

ightarrow infty'; here tlist is

automatically set, ignoring user input.

- **taulist** [*list / array*] list of times for τ . taulist must be positive and contain the element 0.
- **c_ops** [list of qutip.qobj.Qobj] list of collapse operators. (does not accept time dependence)
- a_op [qutip.qobj.Qobj] operator A.
- **b_op** [qutip.qobj.Qobj] operator B.
- **c_op** [qutip.qobj.Qobj] operator C.
- **solver** [str] choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)
- **options** [qutip.solver.Options] solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.
- Returns corr_mat: array

An 2-dimensional *array* (matrix) of correlation values for the times specified by *tlist* (first index) and *taulist* (second index). If *tlist* is *None*, then a 1-dimensional *array* of correlation values is returned instead.

correlation_4op_1t (*H*, state0, taulist, c_ops, a_op, b_op, c_op, d_op, solver='me', args=None, options=<qutip.solver.Options instance at 0x105963ab8>)

Calculate the four-operator two-time correlation function: $\langle A(t)B(t+\tau)C(t+\tau)D(t)\rangle$ along one time axis using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where $\tau < 0$.

Parameters H: qutip.qobj.Qobj

system Hamiltonian.

rho0:qutip.qobj.Qobj

Initial state density matrix $\rho(t_0)$ or state vector $\psi(t_0)$. If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.

taulist : list / array

list of times for τ . taulist must be positive and contain the element θ .

c_ops:list of qutip.qobj.Qobj

list of collapse operators.

```
a_op:qutip.qobj.Qobj
operator A.
b_op:qutip.qobj.Qobj
operator B.
c_op:qutip.qobj.Qobj
```

operator C.

d_op:qutip.qobj.Qobj

operator D.

solver : str

choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)

options:gutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_vec: *array*

An array of correlation values for the times specified by taulist

References

See, Gardiner, Quantum Noise, Section 5.2.

correlation_4op_2t (*H*, state0, tlist, taulist, c_ops, a_op, b_op, c_op, d_op, solver='me', args=None, options=<qutip.solver.Options instance at 0x105963b00>)

Calculate the four-operator two-time correlation function: $\langle A(t)B(t+\tau)C(t+\tau)D(t)\rangle$ along two time axes using the quantum regression theorem and the evolution solver indicated by the *solver* parameter.

Note: it is not possibly to calculate a physically meaningful correlation of this form where $\tau < 0$.

Parameters H: qutip.qobj.Qobj

system Hamiltonian, or a callback function for time-dependent Hamiltonians.

- **rho0** [qutip.qobj.Qobj] Initial state density matrix ρ_0 or state vector ψ_0 . If 'state0' is 'None', then the steady state will be used as the initial state. The 'steady-state' is only implemented for the *me* and *es* solvers.
- **tlist** [*list | array*] list of times for t. tlist must be positive and contain the element 0. When taking steady-steady correlations only one tlist value is necessary, i.e. :math:'t

ightarrow infty'; here tlist is

automatically set, ignoring user input.

- **taulist** [*list / array*] list of times for τ . taulist must be positive and contain the element 0.
- **c_ops** [list of qutip.qobj.Qobj] list of collapse operators. (does not accept time dependence)
- a_op [qutip.qobj.Qobj] operator A.
- **b_op** [qutip.qobj.Qobj] operator B.
- **c_op** [qutip.qobj.Qobj] operator C.
- **d_op** [qutip.qobj.Qobj] operator D.
- **solver** [str] choice of solver (*me* for master-equation, *mc* for Monte Carlo, and *es* for exponential series)
- **options** [qutip.solver.Options] solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns corr_mat: *array*

An 2-dimensional *array* (matrix) of correlation values for the times specified by *tlist* (first index) and *taulist* (second index). If *tlist* is *None*, then a 1-dimensional *array* of correlation values is returned instead.

spectrum(H, wlist, c_ops, a_op, b_op, solver='es', use_pinv=False)

Calculate the spectrum of the correlation function $\lim_{t \to \infty} \langle A(t + \tau)B(t) \rangle$, i.e., the Fourier transform of the correlation function:

$$S(\omega) = \int_{-\infty}^{\infty} \lim_{t \to \infty} \left\langle A(t+\tau)B(t) \right\rangle e^{-i\omega\tau} d\tau.$$

using the solver indicated by the *solver* parameter. Note: this spectrum is only defined for stationary statistics (uses steady state rho0)

Parameters H:qutip.qobj

system Hamiltonian.
wlist : list / array
list of frequencies for ω.
c_ops : list of qutip.qobj
list of collapse operators.
a_op : qutip.qobj

operator A.

b_op:qutip.qobj

operator B.

solver: str

choice of solver (es for exponential series and pi for psuedo-inverse)

use_pinv : bool

For use with the *pi* solver: if *True* use numpy's pinv method, otherwise use a generic

solver

Returns spectrum: array

An array with spectrum $S(\omega)$ for the frequencies specified in wlist.

spectrum_ss(H, wlist, c_ops, a_op, b_op)

Calculate the spectrum of the correlation function $\lim_{to\infty} \langle A(t+\tau)B(t) \rangle$, i.e., the Fourier transform of the correlation function:

$$S(\omega) = \int_{-\infty}^{\infty} \lim_{t \to \infty} \left\langle A(t+\tau)B(t) \right\rangle e^{-i\omega\tau} d\tau.$$

using an eseries based solver Note: this spectrum is only defined for stationary statistics (uses steady state rho0).

```
Parameters H : qutip.qobj
    system Hamiltonian.
wlist : list / array
    list of frequencies for ω.
c_ops : list of qutip.qobj
    list of collapse operators.
a_op : qutip.qobj
    operator A.
b_op : qutip.qobj
    operator B.
use_pinv : bool
    If True use numpy's pinv method, otherwise use a generic solver
Returns spectrum: array
```

An array with spectrum $S(\omega)$ for the frequencies specified in wlist.

spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv=False)

Calculate the spectrum of the correlation function $\lim_{t \to \infty} \langle A(t + \tau)B(t) \rangle$, i.e., the Fourier transform of the correlation function:

$$S(\omega) = \int_{-\infty}^{\infty} \lim_{t \to \infty} \left\langle A(t+\tau)B(t) \right\rangle e^{-i\omega\tau} d\tau.$$

using a psuedo-inverse method. Note: this spectrum is only defined for stationary statistics (uses steady state rho0)

```
Parameters H : qutip.qobj
    system Hamiltonian.
wlist : list / array
    list of frequencies for ω.
c_ops : list of qutip.qobj
    list of collapse operators.
a_op : qutip.qobj
    operator A.
b_op : qutip.qobj
    operator B.
use_pinv : bool
    If True use numpy's pinv method, otherwise use a generic solver
Returns spectrum: array
    An array with spectrum S(ω) for the frequencies specified in wlist.
```

spectrum_correlation_fft(taulist, y)

Calculate the power spectrum corresponding to a two-time correlation function using FFT.

Parameters tlist : *list / array*

list/array of times t which the correlation function is given.

y: list / array

list/array of correlations corresponding to time delays t.

Returns w, S : *tuple*

Returns an array of angular frequencies 'w' and the corresponding one-sided power spectrum 'S(w)'.

coherence_function_g1(*H*, taulist, c_ops, a_op, solver='me', args=None, options=<qutip.solver.Options instance at 0x105963998>)

Calculate the normalized first-order quantum coherence function:

$$g^{(1)}(\tau) = \lim_{t \to \infty} \frac{\langle a^{\dagger}(t+\tau)a(t) \rangle}{\langle a^{\dagger}(t)a(t) \rangle}$$

using the quantum regression theorem and the evolution solver indicated by the *solver* parameter. Note: g1 is only defined for stationary statistics (uses steady state).

Parameters H : qutip.qobj.Qobj
 system Hamiltonian.
taulist : list / array
 list of times for τ. taulist must be positive and contain the element 0.
c_ops : list of qutip.qobj.Qobj
 list of collapse operators.
a_op : qutip.qobj.Qobj
 The annihilation operator of the mode.
solver : str
 choice of solver (me for master-equation and es for exponential series)
 options : qutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns g1: array

The normalized first-order coherence function.

```
coherence_function_g2 (H, taulist, c_ops, a_op, solver='me', args=None, op-
tions=<qutip.solver.Options instance at 0x1059639e0>)
```

Calculate the normalized second-order quantum coherence function:

$$g^{(2)}(\tau) = \lim_{t \to \infty} \frac{\langle a^{\dagger}(t)a^{\dagger}(t+\tau)a(t+\tau)a(t)\rangle}{\langle a^{\dagger}(t)a(t)\rangle^2}$$

using the quantum regression theorem and the evolution solver indicated by the *solver* parameter. Note: g2 is only defined for stationary statistics (uses steady state rho0).

Parameters H: qutip.qobj.Qobj

system Hamiltonian.

taulist : *list / array*

list of times for τ . taulist must be positive and contain the element θ .

c_ops : list of qutip.qobj.Qobj

list of collapse operators.

```
a_op:qutip.qobj.Qobj
```

The annihilation operator of the mode.

solver : str

choice of solver (me for master-equation and es for exponential series)

options:qutip.solver.Options

solver options class. *ntraj* is taken as a two-element list because the *mc* correlator calls *mcsolve()* recursively; by default, *ntraj=[20, 100]*. *mc_corr_eps* prevents divide-by-zero errors in the *mc* correlator; by default, *mc_corr_eps=1e-10*.

Returns g2: array

The normalized second-order coherence function.

Steady-state Solvers

Module contains functions for solving for the steady state density matrix of open quantum systems defined by a Liouvillian or Hamiltonian and a list of collapse operators.

steadystate(A, c_op_list=[], **kwargs)

Calculates the steady state for quantum evolution subject to the supplied Hamiltonian or Liouvillian operator and (if given a Hamiltonian) a list of collapse operators.

If the user passes a Hamiltonian then it, along with the list of collapse operators, will be converted into a Liouvillian operator in Lindblad form.

Parameters A : qobj

A Hamiltonian or Liouvillian operator.

c_op_list : list

A list of collapse operators.

method : str {'direct', 'eigen', 'iterative-gmres',

'iterative-lgmres', 'iterative-bicgstab', 'svd', 'power'}

Method for solving the underlying linear equation. Direct LU solver 'direct' (default), sparse eigenvalue problem 'eigen', iterative GMRES method 'iterative-gmres', iterative LGMRES method 'iterative-lgmres', iterative BICGSTAB method 'iterative-bicgstab',

SVD 'svd' (dense), or inverse-power method 'power'.

return_info : bool, optional, default = False

Return a dictionary of solver-specific infomation about the solution and how it was obtained.

sparse : bool, optional, default = True

Solve for the steady state using sparse algorithms. If set to False, the underlying Liouvillian operator will be converted into a dense matrix. Use only for 'smaller' systems.

use_rcm : bool, optional, default = False

Use reverse Cuthill-Mckee reordering to minimize fill-in in the LU factorization of the Liouvillian.

use_wbm : bool, optional, default = False

Use Weighted Bipartite Matching reordering to make the Liouvillian diagonally dominant. This is useful for iterative preconditioners only, and is set to True by default when finding a preconditioner.

weight : float, optional

Sets the size of the elements used for adding the unity trace condition to the linear solvers. This is set to the average abs value of the Liouvillian elements if not specified by the user.

use_umfpack : bool {False, True}

Use umfpack solver instead of SuperLU. For SciPy 0.14+, this option requires installing scikits.umfpack.

x0 : ndarray, optional

ITERATIVE ONLY. Initial guess for solution vector.

maxiter : int, optional, default=1000

ITERATIVE ONLY. Maximum number of iterations to perform.

tol : float, optional, default=1e-9

ITERATIVE ONLY. Tolerance used for terminating solver.

permc_spec : str, optional, default='COLAMD'

ITERATIVE ONLY. Column ordering used internally by superLU for the 'direct' LU decomposition method. Options include 'COLAMD' and 'NATURAL'. If using RCM then this is set to 'NATURAL' automatically unless explicitly specified.

use_precond : bool optional, default = False

ITERATIVE ONLY. Use an incomplete sparse LU decomposition as a preconditioner for the 'iterative' GMRES and BICG solvers. Speeds up convergence time by orders of magnitude in many cases.

M : {sparse matrix, dense matrix, LinearOperator}, optional

ITERATIVE ONLY. Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning can dramatically improve the rate of convergence for iterative methods. If no preconditioner is given and use_precond = True, then one is generated automatically.

fill_factor : float, optional, default = 100

ITERATIVE ONLY. Specifies the fill ratio upper bound (>=1) of the iLU preconditioner. Lower values save memory at the cost of longer execution times and a possible singular factorization.

drop_tol : float, optional, default = 1e-4

ITERATIVE ONLY. Sets the threshold for the magnitude of preconditioner elements that should be dropped. Can be reduced for a courser factorization at the cost of an increased number of iterations, and a possible singular factorization.

diag_pivot_thresh : float, optional, default = None

ITERATIVE ONLY. Sets the threshold between [0,1] for which diagonal elements are considered acceptable pivot points when using a preconditioner. A value of zero forces the pivot to be the diagonal element.

ILU_MILU : str, optional, default = 'smilu_2'

ITERATIVE ONLY. Selects the incomplete LU decomposition method algorithm used in creating the preconditoner. Should only be used by advanced users.

Returns dm : qobj

Steady state density matrix.

info : dict, optional

Dictionary containing solver-specific information about the solution.

Notes

The SVD method works only for dense operators (i.e. small systems).

build_preconditioner(A, c_op_list=[], **kwargs)

Constructs a iLU preconditioner necessary for solving for the steady state density matrix using the iterative linear solvers in the 'steadystate' function.

Parameters A : qobj

A Hamiltonian or Liouvillian operator.

c_op_list : list

A list of collapse operators.

return_info : bool, optional, default = False

Return a dictionary of solver-specific infomation about the solution and how it was obtained.

use_rcm : bool, optional, default = False

Use reverse Cuthill-Mckee reordering to minimize fill-in in the LU factorization of the Liouvillian.

use_wbm : bool, optional, default = False

Use Weighted Bipartite Matching reordering to make the Liouvillian diagonally dominant. This is useful for iterative preconditioners only, and is set to True by default when finding a preconditioner.

weight : float, optional

Sets the size of the elements used for adding the unity trace condition to the linear solvers. This is set to the average abs value of the Liouvillian elements if not specified by the user.

permc_spec : str, optional, default='COLAMD'

Column ordering used internally by superLU for the 'direct' LU decomposition method. Options include 'COLAMD' and 'NATURAL'. If using RCM then this is set to 'NATURAL' automatically unless explicitly specified.

fill_factor : float, optional, default = 100

Specifies the fill ratio upper bound (>=1) of the iLU preconditioner. Lower values save memory at the cost of longer execution times and a possible singular factor-ization.

drop_tol : float, optional, default = 1e-4

Sets the threshold for the magnitude of preconditioner elements that should be dropped. Can be reduced for a courser factorization at the cost of an increased number of iterations, and a possible singular factorization.

diag_pivot_thresh : float, optional, default = None

Sets the threshold between [0,1] for which diagonal elements are considered acceptable pivot points when using a preconditioner. A value of zero forces the pivot to be the diagonal element.

ILU_MILU : str, optional, default = 'smilu_2'

Selects the incomplete LU decomposition method algoithm used in creating the preconditoner. Should only be used by advanced users.

Returns lu : object

Returns a SuperLU object representing iLU preconditioner.

info : dict, optional

Dictionary containing solver-specific information.

Propagators

propagator (*H*, *t*, *c_op_list*, *args=None*, *options=None*, *sparse=False*, *progress_bar=None*) Calculate the propagator U(t) for the density matrix or wave function such that $\psi(t) = U(t)\psi(0)$ or $\rho_{vec}(t) = U(t)\rho_{vec}(0)$ where ρ_{vec} is the vector representation of the density matrix.

Parameters H : qobj or list

Hamiltonian as a Qobj instance of a nested list of Qobjs and coefficients in the liststring or list-function format for time-dependent Hamiltonians (see description in qutip.mesolve).

t : float or array-like

Time or list of times for which to evaluate the propagator.

c_op_list : list

List of qobj collapse operators.

args : list/array/dictionary

Parameters to callback functions for time-dependent Hamiltonians and collapse operators.

options: qutip.Options

with options for the ODE solver.

progress_bar: BaseProgressBar

Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. By default no progress bar is used, and if set to True a TextProgressBar will be used.

Returns a : qobj

Instance representing the propagator U(t).

$propagator_steadystate(U)$

Find the steady state for successive applications of the propagator U.

Parameters U: qobj

Operator representing the propagator.

Returns a : qobj

Instance representing the steady-state density matrix.

Time-dependent problems

rhs_generate(*H*, *c_ops*, *args={}*, *options=<qutip.solver.Options instance at* 0x10569e200>,

name=None, *cleanup=True*)

Generates the Cython functions needed for solving the dynamics of a given system using the mesolve function inside a parfor loop.

Parameters H : qobj

System Hamiltonian.

 $c_ops: \mathsf{list}$

list of collapse operators.

args : dict

Arguments for time-dependent Hamiltonian and collapse operator terms.

options : Options

Instance of ODE solver options.

name: str

Name of generated RHS

cleanup: bool

Whether the generated cython file should be automatically removed or not.

Notes

Using this function with any solver other than the mesolve function will result in an error.

 $\texttt{rhs_clear}()$

Resets the string-format time-dependent Hamiltonian parameters.

Returns Nothing, just clears data from internal config module.

Visualization

Pseudoprobability Functions

```
qfunc (state, xvec, yvec, g=1.4142135623730951)
```

Q-function of a given state vector or density matrix at points xvec + i * yvec.

```
Parameters state : qobj
```

A state vector or density matrix.

xvec : array_like

x-coordinates at which to calculate the Wigner function.

yvec : array_like

y-coordinates at which to calculate the Wigner function.

g : float

Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2).

Returns Q : array

Values representing the Q-function calculated over the specified range [xvec,yvec].

wigner (*psi*, *xvec*, *yvec*, *method='iterative'*, g=1.4142135623730951, *parfor=False*) Wigner function for a state vector or density matrix at points xvec + i * yvec.

Parameters state : qobj

A state vector or density matrix.

xvec : array_like

x-coordinates at which to calculate the Wigner function.

yvec : array_like

y-coordinates at which to calculate the Wigner function. Does not apply to the 'fft' method.

\mathbf{g} : float

Scaling factor for a = 0.5 * g * (x + iy), default g = sqrt(2).

method : string { 'iterative', 'laguerre', 'fft' }

Select method 'iterative', 'laguerre', or 'fft', where 'iterative' uses an iterative method to evaluate the Wigner functions for density matrices |m > < n|, while 'laguerre' uses the Laguerre polynomials in scipy for the same task. The 'fft' method evaluates the Fourier transform of the density matrix. The 'iterative' method is default, and in general recommended, but the 'laguerre' method is more efficient for very sparse density matrices (e.g., superpositions of Fock states in a large Hilbert space). The 'fft' method is the preferred method for dealing with density matrices that have a large number of excitations (>~50).

parfor : bool {False, True}

Flag for calculating the Laguerre polynomial based Wigner function method='laguerre' in parallel using the parfor function.

Returns W : array

Values representing the Wigner function calculated over the specified range [xvec,yvec].

yvex : array

FFT ONLY. Returns the y-coordinate values calculated via the Fourier transform.

Notes

The 'fft' method accepts only an xvec input for the x-coordinate. The y-coordinates are calculated internally.

References

Ulf Leonhardt, Measuring the Quantum State of Light, (Cambridge University Press, 1997)

Graphs and Visualization

Functions for visualizing results of quantum dynamics simulations, visualizations of quantum states and processes.

hinton (*rho*, *xlabels=None*, *ylabels=None*, *title=None*, *ax=None*, *cmap=None*, *label_top=True*) Draws a Hinton diagram for visualizing a density matrix or superoperator.

Parameters rho: qobj

Input density matrix or superoperator.

xlabels : list of strings or False

list of x labels

ylabels : list of strings or False

list of y labels

title : string

title of the plot (optional)

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

cmap : a matplotlib colormap instance

Color map to use when plotting.

label_top : bool

If True, x-axis labels will be placed on top, otherwise they will appear below the plot.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError

Input argument is not a quantum object.

matrix_histogram(M, xlabels=None, ylabels=None, title=None, limits=None, colorbar=True, fig=None, ax=None)

Draw a histogram for the matrix M, with the given x and y labels and title.

Parameters M : Matrix of Qobj

The matrix to visualize

xlabels : list of strings

list of x labels

ylabels : list of strings

list of y labels

title : string

title of the plot (optional)

limits : list/array with two float numbers

The z-axis limits [min, max] (optional)

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError

Input argument is not valid.

old=None)

Draw a histogram for the amplitudes of matrix M, using the argument of each element for coloring the bars, with the given x and y labels and title.

Parameters M : Matrix of Qobj

The matrix to visualize

xlabels : list of strings

list of x labels

ylabels : list of strings

list of y labels

title : string

title of the plot (optional)

limits : list/array with two float numbers

The z-axis limits [min, max] (optional)

phase_limits : list/array with two float numbers

The phase-axis (colorbar) limits [min, max] (optional)

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

threshold: float (None)

Threshold for when bars of smaller height should be transparent. If not set, all bars are colored according to the color map.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError

Input argument is not valid.

plot_energy_levels (H_list, N=0, labels=None, show_ylabels=False, figsize=(8, 12), fig=None,

ax=None)

Plot the energy level diagrams for a list of Hamiltonians. Include up to N energy levels. For each element in H_list, the energy levels diagram for the cummulative Hamiltonian sum(H_list[0:n]) is plotted, where n is the index of an element in H_list.

Parameters H_list : List of Qobj

A list of Hamiltonians.

labels [List of string] A list of labels for each Hamiltonian

show_ylabels [Bool (default False)] Show y labels to the left of energy levels of the initial Hamiltonian.

N [int] The number of energy levels to plot

figsize [tuple (int,int)] The size of the figure (width, height).

fig [a matplotlib Figure instance] The Figure canvas in which the plot will be drawn.

ax [a matplotlib axes instance] The axes context in which the plot will be drawn.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Raises ValueError

Input argument is not valid.

Plot the Fock distribution for a density matrix (or ket) that describes an oscillator mode.

Parameters rho: qutip.qobj.Qobj

The density matrix (or ket) of the state to visualize.

fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

title : string

An optional title for the figure.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

```
plot_wigner_fock_distribution (rho, fig=None, axes=None, figsize=(8, 4), cmap=None, al-
pha_max=7.5, colorbar=False, method='iterative', projec-
tion='2d')
```

Plot the Fock distribution and the Wigner function for a density matrix (or ket) that describes an oscillator mode.

Parameters rho: qutip.qobj.Qobj

The density matrix (or ket) of the state to visualize.

fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.

axes : a list of two matplotlib axes instances

The axes context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

cmap : a matplotlib cmap instance

The colormap.

alpha_max : float

The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar : bool

Whether (True) or not (False) a colorbar should be attached to the Wigner function graph.

method : string {'iterative', 'laguerre', 'fft'}

The method used for calculating the wigner function. See the documentation for qutip.wigner for details.

projection: string {'2d', '3d'}

Specify whether the Wigner function is to be plotted as a contour graph ('2d') or surface plot ('3d').

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Plot the the Wigner function for a density matrix (or ket) that describes an oscillator mode.

Parameters rho: qutip.qobj.Qobj

The density matrix (or ket) of the state to visualize.

fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

cmap : a matplotlib cmap instance

The colormap.

alpha_max : float

The span of the x and y coordinates (both [-alpha_max, alpha_max]).

colorbar: bool

Whether (True) or not (False) a colorbar should be attached to the Wigner function graph.

method : string {'iterative', 'laguerre', 'fft'}

The method used for calculating the wigner function. See the documentation for qutip.wigner for details.

projection: string {'2d', '3d'}

Specify whether the Wigner function is to be plotted as a contour graph ('2d') or surface plot ('3d').

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

sphereplot (*theta*, *phi*, *values*, *fig=None*, *ax=None*, *save=False*)

Plots a matrix of values on a sphere

Parameters theta : float

Angle with respect to z-axis

phi : float

Angle in x-y plane

values : array

Data set to be plotted

fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.

ax : a matplotlib axes instance

The axes context in which the plot will be drawn.

save : bool {False , True}

Whether to save the figure or not

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_schmidt (ket, splitting=None, labels_iteration=(3, 2), theme='light', fig=None, ax=None, fig-

size = (6, 6)

Plotting scheme related to Schmidt decomposition. Converts a state into a matrix $(A_i j \rightarrow A_i j)$, where rows are first particles and columns - last.

See also: plot_qubism with how='before_after' for a similar plot.

Parameters ket : Qobj

Pure state for plotting.

splitting : int

Plot for a number of first particles versus the rest. If not given, it is (number of particles + 1) // 2.

theme : 'light' (default) or 'dark'

Set coloring theme for mapping complex values into colors. See: complex_array_to_rgb.

labels_iteration : int or pair of ints (default (3,2))

Number of particles to be shown as tick labels, for first (vertical) and last (horizontal) particles, respectively.

fig : a matplotlib figure instance

The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance

The axis context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Qubism plot for pure states of many qudits. Works best for spin chains, especially with even number of particles of the same dimension. Allows to see entanglement between first 2*k particles and the rest.

More information: J. Rodriguez-Laguna, P. Migdal, M. Ibanez Berganza, M. Lewenstein, G. Sierra, "Qubism: self-similar visualization of many-body wavefunctions", New J. Phys. 14 053028 (2012), arXiv:1112.3560, http://dx.doi.org/10.1088/1367-2630/14/5/053028 (open access)

Parameters ket : Qobj

Pure state for plotting.

theme : 'light' (default) or 'dark'

Set coloring theme for mapping complex values into colors. See: complex_array_to_rgb.

how : 'pairs' (default), 'pairs_skewed' or 'before_after'

Type of Qubism plotting. Options:

'pairs' - typical coordinates, 'pairs_skewed' - for ferromagnetic/antriferromagnetic plots, 'before_after' - related to Schmidt plot (see also: plot_schmidt).

grid_iteration : int (default 1)

Helper lines to be drawn on plot. Show tiles for 2*grid_iteration particles vs all others.

legend_iteration : int (default 0) or 'grid_iteration' or 'all'

Show labels for first 2*legend_iteration particles. Option 'grid_iteration' sets the same number of particles

as for grid_iteration.

Option 'all' makes label for all particles. Typically it should be 0, 1, 2 or perhaps 3.

fig : a matplotlib figure instance

The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance

The axis context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_expectation_values(results, ylabels=[], title=None, show_legend=False, fig=None,

axes=None, figsize=(8, 4))

Visualize the results (expectation values) for an evolution solver. *results* is assumed to be an instance of Result, or a list of Result instances.

Parameters results: (list of) qutip.solver.Result

List of results objects returned by any of the QuTiP evolution solvers.

ylabels : list of strings

The y-axis labels. List should be of the same length as *results*.

title : string

The title of the figure.

show_legend : bool

Whether or not to show the legend.

fig : a matplotlib Figure instance

The Figure canvas in which the plot will be drawn.

axes : a matplotlib axes instance

The axes context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

```
plot_spin_distribution_2d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 8))
```

Plot a spin distribution function (given as meshgrid data) with a 2D projection where the surface of the unit sphere is mapped on the unit disk.

Parameters P : matrix

Distribution values as a meshgrid matrix.

THETA : matrix

Meshgrid matrix for the theta coordinate.

PHI : matrix

Meshgrid matrix for the phi coordinate.

fig : a matplotlib figure instance

The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance

The axis context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

plot_spin_distribution_3d(P, THETA, PHI, fig=None, ax=None, figsize=(8, 6))

Plots a matrix of values on a sphere

Parameters P : matrix

Distribution values as a meshgrid matrix.

THETA : matrix

Meshgrid matrix for the theta coordinate.

PHI : matrix

Meshgrid matrix for the phi coordinate.

fig : a matplotlib figure instance

The figure canvas on which the plot will be drawn.

ax : a matplotlib axis instance

The axis context in which the plot will be drawn.

figsize : (width, height)

The size of the matplotlib figure (in inches) if it is to be created (that is, if no 'fig' and 'ax' arguments are passed).

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

orbital (theta, phi, *args)

Calculates an angular wave function on a sphere. psi = orbital (theta, phi, ket1, ket2, ...) calculates the angular wave function on a sphere at the mesh of points defined by theta and phi which is $\sum_{lm} c_{lm} Y_{lm} (theta, phi)$ where C_{lm} are the coefficients specified by the list of kets. Each ket has 2l+1 components for some integer l.

Parameters theta : list/array Polar angles phi : list/array Azimuthal angles args : list/array list of ket vectors. Returns array for angular wave function

Quantum Process Tomography

qpt (U, op_basis_list)

Calculate the quantum process tomography chi matrix for a given (possibly nonunitary) transformation matrix U, which transforms a density matrix in vector form according to:

vec(rho) = U * vec(rho0)
or
rho = vec2mat(U * mat2vec(rho0))

U can be calculated for an open quantum system using the QuTiP propagator function.

```
Parameters U: Qobj
```

Transformation operator. Can be calculated using QuTiP propagator function.

op_basis_list : list

A list of Qobj's representing the basis states.

Returns chi : array

QPT chi matrix

qpt_plot (chi, lbls_list, title=None, fig=None, axes=None)

Visualize the quantum process tomography chi matrix. Plot the real and imaginary parts separately.

Parameters chi : array Input QPT chi matrix. Ibls_list : list List of labels for QPT plot axes. title : string Plot title. fig : figure instance

User defined figure instance used for generating QPT plot.

axes : list of figure axis instance

User defined figure axis instance (list of two axes) used for generating QPT plot.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

qpt_plot_combined (chi, lbls_list, title=None, fig=None, ax=None, figsize=(8, 6), threshold=None)
Visualize the quantum process tomography chi matrix. Plot bars with height and color corresponding to the
absolute value and phase, respectively.

Parameters chi : array Input QPT chi matrix. Ibls_list : list List of labels for QPT plot axes. title : string

Plot title.

 $\mathbf{fig}:$ figure instance

User defined figure instance used for generating QPT plot.

ax : figure axis instance

User defined figure axis instance used for generating QPT plot (alternative to the fig argument).

threshold: float (None)

Threshold for when bars of smaller height should be transparent. If not set, all bars are colored according to the color map.

Returns fig, ax : tuple

A tuple of the matplotlib figure and axes instances used to produce the figure.

Quantum Information Processing

Gates

rx (*phi*, *N*=None, *target*=0)

Single-qubit rotation for operator sigmax with angle phi.

Returns result : qobj

Quantum object for operator describing the rotation.

ry (*phi*, *N=None*, *target=0*) Single-qubit rotation for operator sigmay with angle phi.

> **Returns result** : qobj Quantum object for operator describing the rotation.

rz (phi, N=None, target=0)

Single-qubit rotation for operator sigmaz with angle phi.

Returns result : qobj

Quantum object for operator describing the rotation.

sqrtnot (N=None, target=0)

Single-qubit square root NOT gate.

Returns result : qobj

Quantum object for operator describing the square root NOT gate.

snot (N=None, target=0)

Quantum object representing the SNOT (Hadamard) gate.

Returns snot_gate : qobj

Quantum object representation of SNOT gate.

Examples

```
>>> snot()
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 0.70710678+0.j 0.70710678+0.j]
[ 0.70710678+0.j -0.70710678+0.j]]
```

phasegate(theta, N=None, target=0)

Returns quantum object representing the phase shift gate.

Parameters theta : float

Phase rotation angle.

Returns phase_gate : qobj

Quantum object representation of phase shift gate.

Examples

```
>>> phasegate(pi/4)
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isHerm = False
Qobj data =
[[ 1.00000000+0.j 0.0000000+0.j ]
[ 0.00000000+0.j 0.70710678+0.70710678j]]
```

cphase (*theta*, *N*=2, *control*=0, *target*=1)

Returns quantum object representing the phase shift gate.

Parameters theta : float

Phase rotation angle. N : integer The number of qubits in the target space. control : integer The index of the control qubit. target : integer The index of the target qubit. Returns U : qobj Ouantum object representation of controlled i

Quantum object representation of controlled phase gate.

cnot (N=None, control=0, target=1)
Quantum object representing the CNOT gate.

Returns cnot_gate : qobj

Quantum object representation of CNOT gate

Examples

```
>>> cnot()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
    [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [ 0.+0.j 1.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
    [ 0.+0.j 0.+0.j 1.+0.j]
    [ 0.+0.j 0.+0.j 1.+0.j]
```

csign (*N=None*, *control=0*, *target=1*) Quantum object representing the CSIGN gate.

> Returns csign_gate : qobj Quantum object representation of CSIGN gate

Examples

```
>>> csign()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
    [[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [ 0.+0.j 1.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j -1.+0.j]]
```

berkeley (*N*=*None*, *targets*=[0, 1])

Quantum object representing the Berkeley gate.

Returns berkeley_gate : qobj

Quantum object representation of Berkeley gate

Examples

```
>>> berkeley()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
        [[ cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j]
        [ 0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j]
        [ 0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j]
        [ 0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]]
```

swapalpha (alpha, N=None, targets=[0, 1])

Quantum object representing the SWAPalpha gate.

Returns swapalpha_gate : qobj

Quantum object representation of SWAPalpha gate

Examples

```
>>> swapalpha(alpha)
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]
```

swap(N=None, targets=[0, 1])

Quantum object representing the SWAP gate.

Returns swap_gate : qobj Quantum object representation of SWAP gate

Examples

```
>>> swap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j]]
```

iswap(N=None, targets=[0, 1])

Quantum object representing the iSWAP gate.

Returns iswap_gate : qobj

Quantum object representation of iSWAP gate

Examples

```
>>> iswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+1.j 0.+0.j]
[ 0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j]]
```

```
sqrtswap(N=None, targets=[0, 1])
```

Quantum object representing the square root SWAP gate.

Returns sqrtswap_gate : qobj

Quantum object representation of square root SWAP gate

sqrtiswap(N=None, targets=[0, 1])

Quantum object representing the square root iSWAP gate.

Returns sqrtiswap_gate : qobj

Quantum object representation of square root iSWAP gate

Examples

```
>>> sqrtiswap()
Quantum object: dims = [[2, 2], [2, 2]], shape = [4, 4], type = oper, isHerm = False
Qobj data =
[[ 1.00000000+0.j 0.0000000+0.j 0.0000000+0.j 0.0000000+0.j]
[ 0.00000000+0.j 0.70710678+0.j 0.00000000-0.70710678j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]
```

```
fredkin (N=None, control=0, targets=[1, 2])
Quantum object representing the Fredkin gate.
```

Returns fredkin_gate : qobj

Quantum object representation of Fredkin gate.

Examples

```
>>> fredkin()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isHerm = True
Qobj data =
    [[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
     [0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j
                                                   0.+0.j 0.+0.j]
    [ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j
                                           0.+0.j
                                                   0.+0.j
                                                          0.+0.j]
                                                   1.+0.j
     [ 0.+0.j
             0.+0.j
                     0.+0.j 0.+0.j 0.+0.j
                                           0.+0.j
                                                          0.+0.j]
     [ 0.+0.j
             0.+0.j
                     0.+0.j
                            0.+0.j
                                   0.+0.j
                                           1.+0.j
                                                   0.+0.j
                                                          0.+0.j]
                    0.+0.j 0.+0.j 0.+0.j 0.+0.j
     [ 0.+0.j 0.+0.j
                                                   0.+0.j 1.+0.j]]
```

toffoli (*N*=*None*, *controls*=[0, 1], *target*=2)

Quantum object representing the Toffoli gate.

```
Returns toff_gate : qobj
```

Quantum object representation of Toffoli gate.

Examples

```
>>> toffoli()
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = [8, 8], type = oper, isHerm = True
Qobj data =
             0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [[ 1.+0.j
                    0.+0.j 0.+0.j 0.+0.j
    [ 0.+0.j 1.+0.j
                                           0.+0.j
                                                   0.+0.j
                                                           0.+0.j]
    [ 0.+0.j 0.+0.j
                     1.+0.j 0.+0.j 0.+0.j
                                           0.+0.j
                                                   0.+0.j
                                                           0.+0.j]
                     0.+0.j 1.+0.j 0.+0.j
    [ 0.+0.j 0.+0.j
                                                   0.+0.j
                                           0.+0.j
                                                           0.+0.j]
     [0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
    [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
```

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]

rotation (op, phi, N=None, target=0)

Single-qubit rotation for operator op with angle phi.

Returns result : qobj

Quantum object for operator describing the rotation.

controlled_gate (*U*, *N*=2, *control*=0, *target*=1, *control_value*=1)

Create an N-qubit controlled gate from a single-qubit gate U with the given control and target qubits.

Parameters U : Qobj

Arbitrary single-qubit gate.

N : integer

The number of qubits in the target space.

control : integer

The index of the first control qubit.

target : integer

Returns result : gobj

The index of the target qubit.

control_value : integer (1)

The state of the control qubit that activates the gate U.

Quantum object representing the controlled-U gate.

globalphase (*theta*, *N*=1) Returns quantum object representing the global phase shift gate.

Parameters theta : float

Phase rotation angle.

Returns phase_gate : qobj

Quantum object representation of global phase shift gate.

Examples

$hadamard_transform(N=1)$

Quantum object representing the N-qubit Hadamard gate.

Returns q : qobj

Quantum object representation of the N-qubit Hadamard gate.

gate_sequence_product (U_list, left_to_right=True) Calculate the overall unitary matrix for a given list of unitary operations

Parameters U_list : list

List of gates implementing the quantum circuit.

left_to_right: Boolean

Check if multiplication is to be done from left to right.

Returns U_overall: qobj

Overall unitary matrix of a given quantum circuit.

gate_expand_ltoN(U, N, target)

Create a Qobj representing a one-qubit gate that act on a system with N qubits.

Parameters U: Qobj

The one-qubit gate

N : integer

The number of qubits in the target space.

target : integer

The index of the target qubit.

Returns gate : qobj

Quantum object representation of N-qubit gate.

gate_expand_2toN(U, N, control=None, target=None, targets=None)

Create a Qobj representing a two-qubit gate that act on a system with N qubits.

Parameters U: Qobj

The two-qubit gate

N : integer

The number of qubits in the target space.

control : integer

The index of the control qubit.

target : integer

The index of the target qubit.

targets : list

List of target qubits.

Returns gate : qobj

Quantum object representation of N-qubit gate.

gate_expand_3toN (U, N, controls=[0, 1], target=2)

Create a Qobj representing a three-qubit gate that act on a system with N qubits.

Parameters U: Qobj

The three-qubit gate

N : integer

The number of qubits in the target space.

controls : list

The list of the control qubits.

target : integer

The index of the target qubit.

Returns gate : qobj

Quantum object representation of N-qubit gate.

Qubits

qubit_states (N=1, states=[0])
Function to define initial state of the qubits.

Parameters N: Integer Number of qubits in the register. states: List Initial state of each qubit. Returns qstates: Qobj List of qubits.

Algorithms

qft (N=1)

Quantum Fourier Transform operator on N qubits.

Parameters N : int

Number of qubits.

Returns QFT: qobj

Quantum Fourier transform operator.

qft_steps (N=1, swapping=True)

Quantum Fourier Transform operator on N qubits returning the individual steps as unitary matrices operating from left to right.

Parameters N: int

Number of qubits.

swap: boolean

Flag indicating sequence of swap gates to be applied at the end or not.

Returns U_step_list: list of qobj

List of Hadamard and controlled rotation gates implementing QFT.

qft_gate_sequence (N=1, swapping=True)

Quantum Fourier Transform operator on N qubits returning the gate sequence.

Parameters N: int

Number of qubits.

swap: boolean

Flag indicating sequence of swap gates to be applied at the end or not.

Returns qc: instance of QubitCircuit

Gate sequence of Hadamard and controlled rotation gates implementing QFT.

Optimal control

This module contains functions that implement the GRAPE algorithm for calculating pulse sequences for quantum systems.

Parameters times : array

Time coordinate array.

u : array

Control pulse matrix.

labels : list

List of labels for each control pulse sequence in the control pulse matrix.

uniform_axes : bool

Whether or not to plot all pulse sequences using the same y-axis scale.

Calculate control pulses for the Hamiltonian operators in H_ops so that the unitary U is realized.

Experimental: Work in progress.

Parameters U : Qobj

Target unitary evolution operator.

H0: Qobj

Static Hamiltonian (that cannot be tuned by the control fields).

H_ops: list of Qobj

A list of operators that can be tuned in the Hamiltonian via the control fields.

 \mathbf{R} : int

Number of GRAPE iterations.

time : array / list

Array of time coordinates for control pulse evalutation.

u_start : array

Optional array with initial control pulse values.

Returns Instance of GRAPEResult, which contains the control pulses calculated

with GRAPE, a time-dependent Hamiltonian that is defined by the control pulses, as well as the resulting propagator.

Calculate control pulses for the Hamiltonian operators in H_ops so that the unitary U is realized.

Experimental: Work in progress.

Parameters U: Qobj

Target unitary evolution operator.

H0: Qobj

Static Hamiltonian (that cannot be tuned by the control fields).

H_ops: list of Qobj

A list of operators that can be tuned in the Hamiltonian via the control fields.

\mathbf{R} : int

Number of GRAPE iterations.

time : array / list

Array of time coordinates for control pulse evalutation.

u_start : array

Optional array with initial control pulse values.

Returns Instance of GRAPEResult, which contains the control pulses calculated

with GRAPE, a time-dependent Hamiltonian that is defined by the control pulses, as well as the resulting propagator.

Wrapper functions that will manage the creation of the objects, build the configuration, and execute the algorithm required to optimise a set of ctrl pulses for a given (quantum) system. The fidelity error is some measure of distance of the system evolution from the given target evolution in the time allowed for the evolution. The functions minimise this fidelity error wrt the piecewise control amplitudes in the timeslots

Optimise a control pulse to minimise the fidelity error. The dynamics of the system in any given timeslot are governed by the combined dynamics generator, i.e. the sum of the drift+ctrl_amp[j]*ctrls[j] The control pulse is an [n_ts, len(ctrls)] array of piecewise amplitudes Starting from an initial (typically random) pulse, a multivariable optimisation algorithm attempts to determines the optimal values for the control pulse to minimise the fidelity error The fidelity error is some measure of distance of the system evolution from the given target evolution in the time allowed for the evolution.

Parameters drift : Qobj

the underlying dynamics generator of the system

ctrls : List of Qobj

a list of control dynamics generators. These are scaled by the amplitudes to alter the overall dynamics

initial : Qobj

starting point for the evolution. Typically the identity matrix

target : Qobj

target transformation, e.g. gate or state, for the time evolution

num_tslots : integer or None

number of timeslots. None implies that timeslots will be given in the tau array

evo_time : float or None

total time for the evolution None implies that timeslots will be given in the tau array

tau : array[num_tslots] of floats or None

durations for the timeslots. if this is given then num_tslots and evo_time are dervived from it None implies that timeslot durations will be equal and calculated as evo_time/num_tslots

amp_lbound : float or list of floats

lower boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

amp_ubound : float or list of floats

upper boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

fid_err_targ : float

Fidelity error target. Pulse optimisation will terminate when the fidelity error falls below this value

mim_grad : float

Minimum gradient. When the sum of the squares of the gradients wrt to the control amplitudes falls below this value, the optimisation terminates, assuming local minima

max_iter : integer

Maximum number of iterations of the optimisation algorithm

max_wall_time : float

Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string

Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer classes for details)

max_metric_corr : integer

The maximum number of variable metric corrections used to define the limited memory matrix. That is the number of previous gradient values that are used to approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for description of m argument (used only in L-BFGS-B)

accuracy_factor : float

Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

dyn_type : string

Dynamics type, i.e. the type of matrix used to describe the dynamics. Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

prop_type : string

Propagator type i.e. the method used to calculate the propagtors and propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET, AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer classes for details)

fid_type : string

Fidelity error (and fidelity error gradient) computation method Options are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific dyn_type (See FideliyComputer classes for details)

phase_option : string

determines how global phase is treated in fidelity calculations (fid_type='UNIT' only). Options:

PSU - global phase ignored SU - global phase included

fid_err_scale_factor : float

(used in TRACEDIFF FidelityComputer and subclasses only) The fidelity error calculated is of some arbitary scale. This factor can be used to scale the fidelity error such that it may represent some physical measure If None is given then it is caculated as 1/2N, where N is the dimension of the drift.

amp_update_mode : string

determines whether propagators are calculated Options: DEF, ALL, DYNAMIC (needs work) DEF will use the default for the specific dyn_type (See Timeslot-Computer classes for details)

init_pulse_type : string

type / shape of pulse(s) used to initialise the the control amplitudes. Options include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW

(see PulseGen classes for details)

pulse_scaling : float

Linear scale factor for generated pulses By default initial pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float

Line offset for the pulse. That is this value will be added to any initial pulses generated.

log_level : integer

level of messaging output from the logger. Options are attributes of qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effectively 'quiet' execution, assuming everything runs as expected. The default NOT-SET implies that the level will be taken from the QuTiP settings file, which by default is WARN

out_file_ext : string or None

files containing the initial and final control pulse amplitudes are saved to the current directory. The default name will be postfixed with this extension Setting this to None will suppress the output of files

gen_stats : boolean

if set to True then statistics for the optimisation run will be generated - accessible through attributes of the stats object

Returns Returns instance of OptimResult, which has attributes giving the

reason for termination, final fidelity error, final evolution final amplitudes, statistics etc

optimize_pulse_unitary (H_d, H_c, U_0, U_targ, num_tslots=None, evo_time=None, tau=None, amp_lbound=-inf, amp_ubound=inf, fid_err_targ=1e $min_grad = 1e-10$, $max_iter=500$, max_wall_time=180, 10. optim alg='LBFGSB', max metric corr=10, ac*curacy factor=1000000.0*, phase_option='PSU', amp_update_mode='ALL', init_pulse_type='RND', pulse_scaling=1.0, pulse offset=0.0, log level=0, out file ext='.txt', gen stats=False)

Optimise a control pulse to minimise the fidelity error, assuming that the dynamics of the system are generated by unitary operators. This function is simply a wrapper for optimize_pulse, where the appropriate options for unitary dynamics are chosen and the parameter names are in the format familiar to unitary dynamics The dynamics of the system in any given timeslot are governed by the combined Hamiltonian, i.e. the sum of the $H_d + ctrl_amp[j]*H_c[j]$ The control pulse is an $[n_ts, len(ctrls)]$ array of piecewise amplitudes Starting from an initial (typically random) pulse, a multivariable optimisation algorithm attempts to determines the optimal values for the control pulse to minimise the fidelity error The maximum fidelity for a unitary system is 1, i.e. when the time evolution resulting from the pulse is equivalent to the target. And therefore the fidelity error is 1 - fidelity

Parameters H_d : Qobj

Drift (aka system) the underlying Hamiltonian of the system

H_c : Qobj

a list of control Hamiltonians. These are scaled by the amplitudes to alter the overall dynamics

 $U_0:\mathsf{Qobj}$

starting point for the evolution. Typically the identity matrix

U_targ : Qobj

target transformation, e.g. gate or state, for the time evolution

num_tslots : integer or None

number of timeslots. None implies that timeslots will be given in the tau array

evo_time : float or None

total time for the evolution None implies that timeslots will be given in the tau array **tau** : array[num tslots] of floats or None

durations for the timeslots. if this is given then num_tslots and evo_time are dervived from it None implies that timeslot durations will be equal and calculated as evo_time/num_tslots

amp_lbound : float or list of floats

lower boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

amp_ubound : float or list of floats

upper boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

fid_err_targ : float

Fidelity error target. Pulse optimisation will terminate when the fidelity error falls below this value

mim_grad : float

Minimum gradient. When the sum of the squares of the gradients wrt to the control amplitudes falls below this value, the optimisation terminates, assuming local minima

max_iter : integer

Maximum number of iterations of the optimisation algorithm

max_wall_time : float

Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string

Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer classes for details)

max_metric_corr : integer

The maximum number of variable metric corrections used to define the limited memory matrix. That is the number of previous gradient values that are used to approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for description of m argument (used only in L-BFGS-B)

accuracy_factor : float

Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

phase_option : string

determines how global phase is treated in fidelity calculations (fid_type='UNIT' only). Options:

PSU - global phase ignored SU - global phase included

amp_update_mode : string

determines whether propagators are calculated Options: DEF, ALL, DYNAMIC (needs work) DEF will use the default for the specific dyn_type (See Timeslot-Computer classes for details)

init_pulse_type : string

type / shape of pulse(s) used to initialise the the control amplitudes. Options include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW

(see PulseGen classes for details)

pulse_scaling : float

Linear scale factor for generated pulses By default initial pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float

Line offset for the pulse. That is this value will be added to any initial pulses generated.

log_level : integer

level of messaging output from the logger. Options are attributes of qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effectively 'quiet' execution, assuming everything runs as expected. The default NOT-SET implies that the level will be taken from the QuTiP settings file, which by default is WARN

out_file_ext : string or None

files containing the initial and final control pulse amplitudes are saved to the current directory. The default name will be postfixed with this extension Setting this to None will suppress the output of files

gen_stats : boolean

if set to True then statistics for the optimisation run will be generated - accessible through attributes of the stats object

Returns Returns instance of OptimResult, which has attributes giving the

reason for termination, final fidelity error, final evolution final amplitudes, statistics etc

create_pulse_optimizer (drift, ctrls, initial, target, num_tslots=None, evo_time=None, tau=None, amp_lbound=-inf, amp_ubound=inf, fid_err_targ=1e- 10, min_grad=1e-10, max_iter=500, max_wall_time=180, optim_alg='LBFGSB', max_metric_corr=10, accu- racy_factor=10000000.0, dyn_type='GEN_MAT', prop_type='DEF', fid_type='DEF', phase_option=None, fid_err_scale_factor=None, amp_update_mode='ALL', init_pulse_type='RND', pulse_scaling=1.0, pulse_offset=0.0, log_level=0, gen_stats=False)

Generate the objects of the appropriate subclasses required for the pulse optmisation based on the parameters given Note this method may be preferable to calling optimize_pulse if more detailed configuration is required before running the optmisation algorithm, or the algorithm will be run many times, for instances when trying to finding global the optimum or minimum time optimisation

Parameters drift : Qobj

the underlying dynamics generator of the system

ctrls : List of Qobj

a list of control dynamics generators. These are scaled by the amplitudes to alter the overall dynamics

initial : Qobj

starting point for the evolution. Typically the identity matrix

target : Qobj

target transformation, e.g. gate or state, for the time evolution

num_tslots : integer or None

number of timeslots. None implies that timeslots will be given in the tau array

evo_time : float or None

total time for the evolution None implies that timeslots will be given in the tau array

tau : array[num_tslots] of floats or None

durations for the timeslots. if this is given then num_tslots and evo_time are dervived from it None implies that timeslot durations will be equal and calculated as evo_time/num_tslots

amp_lbound : float or list of floats

lower boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

amp_ubound : float or list of floats

upper boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control

fid_err_targ : float

Fidelity error target. Pulse optimisation will terminate when the fidelity error falls below this value

mim_grad : float

Minimum gradient. When the sum of the squares of the gradients wrt to the control amplitudes falls below this value, the optimisation terminates, assuming local minima

max_iter : integer

Maximum number of iterations of the optimisation algorithm

max_wall_time : float

Maximum allowed elapsed time for the optimisation algorithm

optim_alg : string

Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer classes for details)

max_metric_corr : integer

The maximum number of variable metric corrections used to define the limited memory matrix. That is the number of previous gradient values that are used to approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for description of m argument (used only in L-BFGS-B)

accuracy_factor : float

Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B)

dyn_type : string

Dynamics type, i.e. the type of matrix used to describe the dynamics. Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details)

prop_type : string

Propagator type i.e. the method used to calculate the propagtors and propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET, AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer classes for details)

fid_type : string

Fidelity error (and fidelity error gradient) computation method Options are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific dyn_type (See FideliyComputer classes for details)

phase_option : string

determines how global phase is treated in fidelity calculations (fid_type='UNIT' only). Options:

PSU - global phase ignored SU - global phase included

$fid_err_scale_factor: float$

(used in TRACEDIFF FidelityComputer and subclasses only) The fidelity error calculated is of some arbitary scale. This factor can be used to scale the fidelity error such that it may represent some physical measure If None is given then it is caculated as 1/2N, where N is the dimension of the drift.

amp_update_mode : string

determines whether propagators are calculated Options: DEF, ALL, DYNAMIC (needs work) DEF will use the default for the specific dyn_type (See Timeslot-Computer classes for details)

init_pulse_type : string

type / shape of pulse(s) used to initialise the the control amplitudes. Options include:

RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW

(see PulseGen classes for details)

pulse_scaling : float

Linear scale factor for generated pulses By default initial pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter

pulse_offset : float

Line offset for the pulse. That is this value will be added to any initial pulses generated.

log_level : integer

level of messaging output from the logger. Options are attributes of qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effectively 'quiet' execution, assuming everything runs as expected. The default NOT-SET implies that the level will be taken from the QuTiP settings file, which by default is WARN Note value should be set using set_log_level

gen_stats : boolean

if set to True then statistics for the optimisation run will be generated - accessible through attributes of the stats object

Returns Instance of an Optimizer, through which the

Config, Dynamics, PulseGen, and TerminationConditions objects can be accessed as attributes. The PropagatorComputer, FidelityComputer and TimeslotComputer objects can be accessed as attributes of the Dynamics object, e.g.

optimizer.dynamics.fid_computer

The optimisation can be run through the optimizer.run_optimization

Pulse generator - Generate pulses for the timeslots Each class defines a gen_pulse function that produces a float array of size num_tslots. Each class produces a differ type of pulse. See the class and gen_pulse function descriptions for details

create_pulse_gen (pulse_type='RND', dyn=None)

Create and return a pulse generator object matching the given type. The pulse generators each produce a different type of pulse, see the gen_pulse function description for details. These are the random pulse options:

RND - Independent random value in each timeslot RNDFOURIER - Fourier series with random coefficients RNDWAVES - Summation of random waves RNDWALK1 - Random change in amplitude each timeslot RNDWALK2 - Random change in amp gradient each timeslot

- **These are the other non-periodic options:** LIN Linear, i.e. contant gradient over the time ZERO special case of the LIN pulse, where the gradient is 0
- **These are the periodic options** SINE Sine wave SQUARE Square wave SAW Saw tooth wave TRI-ANGLE Triangular wave

If a Dynamics object is passed in then this is used in instantiate the PulseGen, meaning that some timeslot and amplitude properties are copied over.

Pulse generator - Generate pulses for the timeslots Each class defines a gen_pulse function that produces a float array of size num_tslots. Each class produces a differ type of pulse. See the class and gen_pulse function descriptions for details

Utilitiy Functions

Graph Theory Routines

This module contains a collection of graph theory routines used mainly to reorder matrices for iterative steady state solvers.

breadth_first_search(A, start)

Breadth-First-Search (BFS) of a graph in CSR or CSC matrix format starting from a given node (row). Takes Qobjs and CSR or CSC matrices as inputs.

This function requires a matrix with symmetric structure. Use A+trans(A) if original matrix is not symmetric or not sure.

Parameters A : csc_matrix, csr_matrix

Input graph in CSC or CSR matrix format

start : int

Staring node for BFS traversal.

Returns order : array

Order in which nodes are traversed from starting node.

levels : array

Level of the nodes in the order that they are traversed.

$graph_degree(A)$

Returns the degree for the nodes (rows) of a symmetric graph in sparse CSR or CSC format, or a qobj.

Parameters A : qobj, csr_matrix, csc_matrix

Input quantum object or csr_matrix.

Returns degree : array

Array of integers giving the degree for each node (row).

reverse_cuthill_mckee(A, sym=False)

Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering. Since the input matrix must be symmetric, this routine works on the matrix A+Trans(A) if the sym flag is set to False (Default).

It is assumed by default (sym=False) that the input matrix is not symmetric. This is because it is faster to do A+Trans(A) than it is to check for symmetry for a generic matrix. If you are guaranteed that the matrix is symmetric in structure (values of matrix element do not matter) then set sym=True

Parameters A : csc_matrix, csr_matrix

Input sparse CSC or CSR sparse matrix format.

sym : bool {False, True}

Flag to set whether input matrix is symmetric.

Returns perm : array

Array of permuted row and column indices.

Notes

This routine is used primarily for internal reordering of Lindblad superoperators for use in iterative solver routines.

References

E. Cuthill and J. McKee, "Reducing the Bandwidth of Sparse Symmetric Matrices", ACM '69 Proceedings of the 1969 24th national conference, (1969).

maximum_bipartite_matching(A, perm_type='row')

Returns an array of row or column permutations that removes nonzero elements from the diagonal of a nonsingular square CSC sparse matrix. Such a permutation is always possible provided that the matrix is nonsingular. This function looks at the structure of the matrix only.

The input matrix will be converted to CSC matrix format if necessary.

```
Parameters A : sparse matrix
Input matrix
perm_type : str { 'row', 'column' }
Type of permutation to generate.
Returns perm : array
```

Array of row or column permutations.

Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search (BFS) of the underlying graph[R3]_.

References

Analysis of Maximum Transversal Algorithms", ACM Trans. Math. Softw. 38, no. 2, (2011).

[R3]

weighted_bipartite_matching(A, perm_type='row')

Returns an array of row permutations that attempts to maximize the product of the ABS values of the diagonal elements in a nonsingular square CSC sparse matrix. Such a permutation is always possible provided that the matrix is nonsingular.

This function looks at both the structure and ABS values of the underlying matrix.

```
Parameters A : csc_matrix
Input matrix
perm_type : str { 'row', 'column' }
Type of permutation to generate.
Returns perm : array
```

Array of row or column permutations.

Notes

This function uses a weighted maximum cardinality bipartite matching algorithm based on breadth-first search (BFS). The columns are weighted according to the element of max ABS value in the associated rows and are traversed in descending order by weight. When performing the BFS traversal, the row associated to a given column is the one with maximum weight. Unlike other techniques[R4]_, this algorithm does not guarantee the product of the diagonal is maximized. However, this limitation is offset by the substantially faster runtime of this method.

References

permuting large entries to the diagonal of sparse matrices", SIAM J. Matrix Anal. and Applics. 20, no. 4, 889 (1997).

[R4]

Utility Functions

This module contains utility functions that are commonly needed in other qutip modules.

n_thermal(w, w_th)

Return the number of photons in thermal equilibrium for an harmonic oscillator mode with frequency 'w', at the temperature described by 'w_th' where $\omega_{th} = k_B T / \hbar$.

Parameters w : *float* or *array*

Frequency of the oscillator.

w_th : float

The temperature in units of frequency (or the same units as *w*).

Returns n_avg : float or array

Return the number of average photons in thermal equilibrium for a an oscillator with the given frequency and temperature.

linspace_with (start, stop, num=50, elems=[])

Return an array of numbers sampled over specified interval with additional elements added.

Returns num spaced array with elements from elems inserted if not already included in set.

Returned sample array is not evenly spaced if additional elements are added.

Parameters start : int

The starting value of the sequence.

stop : int

The stoping values of the sequence.

num : int, optional

Number of samples to generate.

elems : list/ndarray, optional

Requested elements to include in array

Returns samples : ndadrray

Original equally spaced sample array with additional elements added.

clebsch (*j*1, *j*2, *j*3, *m*1, *m*2, *m*3)

Calculates the Clebsch-Gordon coefficient for coupling (j1,m1) and (j2,m2) to give (j3,m3).

Parameters j1 : float

Total angular momentum 1.

j2 : float

Total angular momentum 2.

j3: float

Total angular momentum 3.

m1 : float

z-component of angular momentum 1.

m2: float

z-component of angular momentum 2.

m3 : float

z-component of angular momentum 3.

Returns cg_coeff : float

Requested Clebsch-Gordan coefficient.

convert_unit (*value*, *orig='meV'*, *to='GHz'*) Convert an energy from unit *orig* to unit *to*.

6

Parameters value : float / array

The energy in the old unit.

orig : string

The name of the original unit ("J", "eV", "meV", "GHz", "mK")

to : string

The name of the new unit ("J", "eV", "meV", "GHz", "mK")

Returns value_new_unit : float / array

The energy in the new unit.

File I/O Functions

file_data_read (filename, sep=None)

Retrieves an array of data from the requested file.

Parameters filename : str

Name of file containing reqested data.

sep : str

Seperator used to store data.

Returns data : array_like

Data from selected file.

file_data_store (filename, data, numtype='complex', numformat='decimal', sep=', ')
Stores a matrix of data to a file to be read by an external program.

Parameters filename : str

Name of data file to be stored, including extension.

data: array_like

Data to be written to file.

numtype : str { 'complex, 'real' }

Type of numerical data.

numformat : str { 'decimal', 'exp' }

Format for written data.

sep : str

Single-character field seperator. Usually a tab, space, comma, or semicolon.

qload(name)

Loads data file from file named 'filename.qu' in current directory.

Parameters name : str

Name of data file to be loaded.

Returns qobject : instance / array_like

Object retrieved from requested file.

qsave (data, name='qutip_data')

Saves given data to file named 'filename.qu' in current directory.

Parameters data : instance/array_like

Input Python object to be stored.

filename : str

Name of output data file.

Parallelization

This function provides functions for parallel execution of loops and function mappings, using the builtin Python module multiprocessing.

parfor (func, *args, **kwargs)

Executes a multi-variable function in parallel on the local machine.

Parallel execution of a for-loop over function *func* for multiple input arguments and keyword arguments.

Note: From QuTiP 3.1.0, we recommend to use qutip.parallel_map instead of this function.

Parameters func : function_type

A function to run in parallel on the local machine. The function 'func' accepts a series of arguments that are passed to the function as variables. In general, the function can have multiple input variables, and these arguments must be passed in the same order as they are defined in the function definition. In addition, the user can pass multiple keyword arguments to the function.

The following keyword argument is reserved:

num_cpus : int

Number of CPU's to use. Default uses maximum number of CPU's. Performance degrades if num_cpus is larger than the physical CPU count of your machine.

Returns result : list

A list with length equal to number of input parameters containing the output from *func*.

parallel_map (task, values, task_args=(), task_kwargs={}, **kwargs)

Parallel execution of a mapping of *values* to the function *task*. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

Parameters task: a Python function

The function that is to be called for each value in task_vec.

values: array / list

The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary

The optional additional argument to the task function.

task_kwargs: list / dictionary

The optional additional keyword argument to the task function.

progress_bar: ProgressBar

Progress bar class instance for showing progress.

Returns result : list

The result list contains the value of task(value, *task_args, **task_kwargs) for each value in values.

serial_map (task, values, task_args=(), task_kwargs={}, **kwargs)

Serial mapping function with the same call signature as parallel_map, for easy switching between serial and parallel execution. This is functionally equivalent to:

result = [task(value, *task_args, **task_kwargs) for value in values]

This function work as a drop-in replacement of qutip.parallel_map.

Parameters task: a Python function

The function that is to be called for each value in task_vec.

values: array / list

The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary

The optional additional argument to the task function.

task_kwargs: list / dictionary

The optional additional keyword argument to the task function.

progress_bar: ProgressBar

Progress bar class instance for showing progress.

Returns result : list

The result list contains the value of task(value, *task_args, **task_kwargs) for each value in values.
IPython Notebook Tools

parfor (*task*,

This module contains utility functions for using QuTiP with IPython notebooks. args=None,

view=None, show scheduling=False,

task vec, *show_progressbar=False*)

Call the function tast for each value in task_vec using a cluster of IPython engines. The function task should have the signature task (value, args) or task (value) if args=None.

client=None,

The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor execution. If these are None, new instances will be created.

Parameters task: a Python function

The function that is to be called for each value in task vec.

task vec: array / list

The list or array of values for which the task function is to be evaluated.

args: list / dictionary

The optional additional argument to the task function. For example a dictionary with parameter values.

client: IPython.parallel.Client

The IPython.parallel Client instance that will be used in the parfor execution.

view: a IPvthon.parallel.Client view

The view that is to be used in scheduling the tasks on the IPython cluster. Preferably a load-balanced view, which is obtained from the IPython.parallel.Client instance client by calling, view = client.load_balanced_view().

show_scheduling: bool {False, True}, default False

Display a graph showing how the tasks (the evaluation of task for for the value in task_vec1) was scheduled on the IPython engine cluster.

show_progressbar: bool {False, True}, default False

Display a HTML-based progress bar duing the execution of the parfor loop.

Returns result : list

The result list contains the value of task (value, args) for each value in task_vec, that is, it should be equivalent to [task(v, args) for v in task_vec].

parallel_map(task, values, task_args=None, task_kwargs=None, client=None, view=None, progress_bar=None, show_scheduling=False, **kwargs)

Call the function task for each value in values using a cluster of IPython engines. The function task should have the signature task (value, *args, **kwargs).

The client and view are the IPython.parallel client and load-balanced view that will be used in the parfor execution. If these are None, new instances will be created.

Parameters task: a Python function

The function that is to be called for each value in task vec.

values: array / list

The list or array of values for which the task function is to be evaluated.

task_args: list / dictionary

The optional additional argument to the task function.

task_kwargs: list / dictionary

The optional additional keyword argument to the task function.

client: IPython.parallel.Client

The IPython.parallel Client instance that will be used in the parfor execution.

view: a IPython.parallel.Client view

The view that is to be used in scheduling the tasks on the IPython cluster. Preferably a load-balanced view, which is obtained from the IPython.parallel.Client instance client by calling, view = client.load balanced view().

show scheduling: bool {False, True}, default False

Display a graph showing how the tasks (the evaluation of task for for the value in task_vec1) was scheduled on the IPython engine cluster.

show_progressbar: bool {False, True}, default False

Display a HTML-based progress bar during the execution of the parfor loop.

Returns result : list

The result list contains the value of task(value, task_args, task_kwargs) for each value in values.

version_table (verbose=False)

Print an HTML-formatted table with version numbers for QuTiP and its dependencies. Use it in a IPython notebook to show which versions of different packages that were used to run the notebook. This should make it possible to reproduce the environment and the calculation later on.

Returns version_table: string

Return an HTML-formatted string containing version information for QuTiP dependencies.

Miscellaneous

about ()

About box for qutip. Gives version numbers for QuTiP, NumPy, SciPy, Cython, and MatPlotLib. **simdiag** (*ops*, *evals=True*)

Simulateous diagonalization of communting Hermitian matrices..

Parameters ops : list/array

list or array of qobjs representing commuting Hermitian operators.

Returns eigs : tuple

Tuple of arrays representing eigvecs and eigvals of quantum objects corresponding to simultaneous eigenvectors and eigenvalues for each operator.

CHANGE LOG

5.1 Version 3.1.0 (January 1, 2015):

New Features

- MAJOR FEATURE: New module for quantum control (qutip.control).
- NAMESPACE CHANGE: QuTiP no longer exports symbols from NumPy and matplotlib, so those modules must now be explicitly imported when required.
- New module for counting statistics.
- Stochastic solvers now run trajectories in parallel.
- New superoperator and tensor manipulation functions (super_tensor, composite, tensor_contract).
- New logging module for debugging (qutip.logging).
- New user-available API for parallelization (parallel_map).
- New enhanced (optional) text-based progressbar (qutip.ui.EnhancedTextProgressBar)
- Faster Python based monte carlo solver (mcsolve).
- Support for progress bars in propagator function.
- Time-dependent Cython code now calls complex cmath functions.
- Random numbers seeds can now be reused for successive calls to mcsolve.
- The Bloch-Redfield master equation solver now supports optional Lindblad type collapse operators.
- Improved handling of ODE integration errors in mesolve.
- Improved correlation function module (for example, improved support for time-dependent problems).
- Improved parallelization of mcsolve (can now be interrupted easily, support for IPython.parallel, etc.)
- Many performance improvements, and much internal code restructuring.

Bug Fixes

- Cython build files for time-dependent string format now removed automatically.
- Fixed incorrect solution time from inverse-power method steady state solver.
- mcsolve now supports *Options(store_states=True)*
- Fixed bug in *hadamard* gate function.
- Fixed compatibility issues with NumPy 1.9.0.
- Progressbar in mcsolve can now be suppressed.
- Fixed bug in *gate_expand_3toN*.
- Fixed bug for time-dependent problem (list string format) with multiple terms in coefficient to an operator.

5.2 Version 3.0.1 (Aug 5, 2014):

Bug Fixes

- Fix bug in create(), which returned a Qobj with CSC data instead of CSR.
- Fix several bugs in mcsolve: Incorrect storing of collapse times and collapse operator records. Incorrect averaging of expectation values for different trajectories when using only 1 CPU.
- Fix bug in parsing of time-dependent Hamiltonian/collapse operator arguments that occurred when the args argument is not a dictionary.
- Fix bug in internal _version2int function that cause a failure when parsing the version number of the Cython package.

5.3 Version 3.0.0 (July 17, 2014):

New Features

- New module *qutip.stochastic* with stochastic master equation and stochastic Schrödinger equation solvers.
- Expanded steady state solvers. The function steady has been deprecated in favor of steadystate. The steadystate solver no longer use umfpack by default. New pre-processing methods for reordering and balancing the linear equation system used in direct solution of the steady state.
- New module *qutip.qip* with utilities for quantum information processing, including pre-defined quantum gates along with functions for expanding arbitrary 1, 2, and 3 qubit gates to N qubit registers, circuit representations, library of quantum algorithms, and basic physical models for some common QIP architectures.
- New module *qutip.distributions* with unified API for working with distribution functions.
- New format for defining time-dependent Hamiltonians and collapse operators, using a pre-calculated numpy array that specifies the values of the Qobj-coefficients for each time step.
- New functions for working with different superoperator representations, including Kraus and Chi representation.
- New functions for visualizing quantum states using Qubism and Schimdt plots: plot_qubism and plot_schmidt.
- Dynamics solver now support taking argument e_ops (expectation value operators) in dictionary form.
- Public plotting functions from the qutip.visualization module are now prefixed with plot_(e.g., plot_fock_distribution). The plot_wigner and plot_wigner_fock_distribution now supports 3D views in addition to contour views.
- New API and new functions for working with spin operators and states, including for example spin_Jx, spin_Jy, spin_Jz and spin_state, spin_coherent.
- The expect function now supports a list of operators, in addition to the previously supported list of states.
- Simplified creation of qubit states using ket function.
- The module qutip.cyQ has been renamed to qutip.cy and the sparse matrix-vector functions spmv and spmvld has been combined into one function spmv. New functions for operating directly on the underlaying sparse CSR data have been added (e.g., spmv_csr). Performance improvements. New and improved Cython functions for calculating expectation values for state vectors, density matrices in matrix and vector form.
- The concurrence function now supports both pure and mixed states. Added function for calculating the entangling power of a two-qubit gate.
- Added function for generating (generalized) Lindblad dissipator superoperators.
- New functions for generating Bell states, and singlet and triplet states.

- QuTiP no longer contains the demos GUI. The examples are now available on the QuTiP web site. The qutip.gui module has been renamed to qutip.ui and does no longer contain graphical UI elements. New text-based and HTML-based progressbar classes.
- Support for harmonic oscillator operators/states in a Fock state basis that does not start from zero (e.g., in the range [M,N+1]). Support for eliminating and extracting states from Qobj instances (e.g., removing one state from a two-qubit system to obtain a three-level system).
- Support for time-dependent Hamiltonian and Liouvillian callback functions that depend on the instantaneous state, which for example can be used for solving master equations with mean field terms.

Improvements

- Restructured and optimized implementation of Qobj, which now has significantly lower memory footprint due to avoiding excessive copying of internal matrix data.
- The classes OdeData, Odeoptions, Odeconfig are now called Result, Options, and Config, respectively, and are available in the module *qutip.solver*.
- The squeez function has been renamed to squeeze.
- Better support for sparse matrices when calculating propagators using the propagator function.
- Improved Bloch sphere.
- Restructured and improved the module qutip.sparse, which now only operates directly on sparse matrices (not on Qobj instances).
- Improved and simplified implement of the tensor function.
- Improved performance, major code cleanup (including namespace changes), and numerous bug fixes.
- Benchmark scripts improved and restructured.
- QuTiP is now using continuous integration tests (TravisCI).

5.4 Version 2.2.0 (March 01, 2013):

New Features

- Added Support for Windows
- New Bloch3d class for plotting 3D Bloch spheres using Mayavi.
- Bloch sphere vectors now look like arrows.
- Partial transpose function.
- Continuos variable functions for calculating correlation and covariance matrices, the Wigner covariance matrix and the logarithmic negativity for for multimode fields in Fock basis.
- The master-equation solver (mesolve) now accepts pre-constructed Liouvillian terms, which makes it possible to solve master equations that are not on the standard Lindblad form.
- Optional Fortran Monte Carlo solver (mcsolve_f90) by Arne Grimsmo.
- A module of tools for using QuTiP in IPython notebooks.
- Increased performance of the steady state solver.
- New Wigner colormap for highlighting negative values.
- More graph styles to the visualization module.

Bug Fixes:

- Function based time-dependent Hamiltonians now keep the correct phase.
- mcsolve no longer prints to the command line if ntraj=1.

5.5 Version 2.1.0 (October 05, 2012):

New Features

- New method for generating Wigner functions based on Laguerre polynomials.
- coherent(), coherent_dm(), and thermal_dm() can now be expressed using analytic values.
- Unittests now use nose and can be run after installation.
- Added iswap and sqrt-iswap gates.
- · Functions for quantum process tomography.
- Window icons are now set for Ubuntu application launcher.
- The propagator function can now take a list of times as argument, and returns a list of corresponding propagators.

Bug Fixes:

- mesolver now correctly uses the user defined rhs_filename in Odeoptions().
- rhs_generate() now handles user defined filenames properly.
- Density matrix returned by propagator_steadystate is now Hermitian.
- eseries_value returns real list if all imag parts are zero.
- mcsolver now gives correct results for strong damping rates.
- Odeoptions now prints mc_avg correctly.
- Do not check for PyObj in mcsolve when gui=False.
- Eseries now correctly handles purely complex rates.
- thermal_dm() function now uses truncated operator method.
- Cython based time-dependence now Python 3 compatible.
- Removed call to NSAutoPool on mac systems.
- Progress bar now displays the correct number of CPU's used.
- Qobj.diag() returns reals if operator is Hermitian.
- Text for progress bar on Linux systems is no longer cutoff.

5.6 Version 2.0.0 (June 01, 2012):

The second version of QuTiP has seen many improvements in the performance of the original code base, as well as the addition of several new routines supporting a wide range of functionality. Some of the highlights of this release include:

New Features

- QuTiP now includes solvers for both Floquet and Bloch-Redfield master equations.
- The Lindblad master equation and Monte Carlo solvers allow for time-dependent collapse operators.
- It is possible to automatically compile time-dependent problems into c-code using Cython (if installed).
- Python functions can be used to create arbitrary time-dependent Hamiltonians and collapse operators.
- Solvers now return Odedata objects containing all simulation results and parameters, simplifying the saving of simulation results.

Important: This breaks compatibility with QuTiP version 1.x.

- mesolve and mcsolve can reuse Hamiltonian data when only the initial state, or time-dependent arguments, need to be changed.
- QuTiP includes functions for creating random quantum states and operators.
- The generation and manipulation of quantum objects is now more efficient.
- Quantum objects have basis transformation and matrix element calculations as built-in methods.
- The quantum object eigensolver can use sparse solvers.
- The partial-trace (ptrace) function is up to 20x faster.
- The Bloch sphere can now be used with the Matplotlib animation function, and embedded as a subplot in a figure.
- QuTiP has built-in functions for saving quantum objects and data arrays.
- The steady-state solver has been further optimized for sparse matrices, and can handle much larger system Hamiltonians.
- The steady-state solver can use the iterative bi-conjugate gradient method instead of a direct solver.
- There are three new entropy functions for concurrence, mutual information, and conditional entropy.
- Correlation functions have been combined under a single function.
- The operator norm can now be set to trace, Frobius, one, or max norm.
- Global QuTiP settings can now be modified.
- QuTiP includes a collection of unit tests for verifying the installation.
- Demos window now lets you copy and paste code from each example.

5.7 Version 1.1.4 (May 28, 2012):

Bug Fixes:

- Fixed bug pointed out by Brendan Abolins.
- Qobj.tr() returns zero-dim ndarray instead of float or complex.
- Updated factorial import for scipy version 0.10+

5.8 Version 1.1.3 (November 21, 2011):

New Functions:

• Allow custom naming of Bloch sphere.

Bug Fixes:

- Fixed text alignment issues in AboutBox.
- Added fix for SciPy V>0.10 where factorial was moved to scipy.misc module.
- Added tidyup function to tensor function output.
- Removed openmp flags from setup.py as new Mac Xcode compiler does not recognize them.
- Qobj diag method now returns real array if all imaginary parts are zero.
- Examples GUI now links to new documentation.
- Fixed zero-dimensional array output from metrics module.

5.9 Version 1.1.2 (October 27, 2011)

Bug Fixes

• Fixed issue where Monte Carlo states were not output properly.

5.10 Version 1.1.1 (October 25, 2011)

THIS POINT-RELEASE INCLUDES VASTLY IMPROVED TIME-INDEPENDENT MCSOLVE AND ODESOLVE PERFORMANCE

New Functions

- Added linear entropy function.
- Number of CPU's can now be changed.

Bug Fixes

- Metrics no longer use dense matrices.
- Fixed Bloch sphere grid issue with matplotlib 1.1.
- Qobj trace operation uses only sparse matrices.
- Fixed issue where GUI windows do not raise to front.

5.11 Version 1.1.0 (October 04, 2011)

THIS RELEASE NOW REQUIRES THE GCC COMPILER TO BE INSTALLED

New Functions

- tidyup function to remove small elements from a Qobj.
- Added concurrence function.
- Added simdiag for simultaneous diagonalization of operators.
- Added eigenstates method returning eigenstates and eigenvalues to Qobj class.
- Added fileio for saving and loading data sets and/or Qobj's.
- Added hinton function for visualizing density matrices.

Bug Fixes

- Switched Examples to new Signals method used in PySide 1.0.6+.
- Switched ProgressBar to new Signals method.
- Fixed memory issue in expm functions.
- Fixed memory bug in isherm.
- Made all Qobj data complex by default.
- Reduced ODE tolerance levels in Odeoptions.
- Fixed bug in ptrace where dense matrix was used instead of sparse.
- Fixed issue where PyQt4 version would not be displayed in about box.
- Fixed issue in Wigner where xvec was used twice (in place of yvec).

5.12 Version 1.0.0 (July 29, 2011)

• Initial release.

DEVELOPERS

6.1 Lead Developers

Robert Johansson (RIKEN) Paul Nation (Korea University)

6.2 Contributors

Note: Anyone is welcome to contribute to QuTiP. If you are interested in helping, please let us know!

alexbrc (github user) - Code contributor Alexander Pitchford (Aberystwyth University) - Code contributor Amit Jamadagni - Bug fix Anders Lund (Technical University of Denmark) - Bug hunting for the Monte-Carlo solver Andre Carvalho - Bug hunter André Xuereb (University of Hannover) - Bug hunter Anubhav Vardhan (IIT, Kanpur) - Bug hunter, Code contributor, Documentation Arne Grimsmo (University of Auckland) - Bug hunter, Code contributor Ben Criger (Waterloo IQC) - Code contributor Bredan Abolins (Berkeley) - Bug hunter Chris Granade - Code contributor Claudia Degrandi (Yale University) - Documentation Dawid Crivelli - Bug hunter Denis Vasilyev (St. Petersburg State University) - Code contributor Dong Zhou (Yale University) - Bug hunter Florian Ong (Institute for Quantum Computation) - Bug hunter Frank Schima - Macports packaging Henri Nielsen (Technical University of Denmark) - Bug hunter Hwajung Kang (Systems Biology Institute, Tokyo) - Suggestions for improving Bloch class James Clemens (Miami University - Ohio) - Bug hunter Johannes Feist - Code contributor Jonas Hörsch - Code contributor Jonas Neergaard-Nielsen (Technical University of Denmark) - Code contributor, Windows support JP Hadden (University of Bristol) - Code contributor, improved Bloch sphere visualization Kevin Fischer (Stanford) - Code contributor Laurence Stant - Documentation Markus Baden (Centre for Quantum Technologies, Singapore) - Code contributor, Documentation Myung-Joong Hwang (Pohang University of Science and Technology) - Bug hunter Neill Lambert (RIKEN) - Code contributor, Windows support Nikolas Tezak (Stanford) - Code contributor Per Nielsen (Technical University of Denmark) - Bug hunter, Code contributor Piotr Migdał (ICFO) - Code contributor Reinier Heeres (Yale University) - Code contributor Robert Jördens (NIST) - Linux packaging Simon Whalen - Code contributor W.M. Witzel - Bug hunter

CHAPTER SEVEN

BIBLIOGRAPHY

CHAPTER EIGHT

INDICES AND TABLES

- genindex
- modindex
- search

- [R1] Shore, B. W., "The Theory of Coherent Atomic Excitation", Wiley, 1990.
- [R2] http://en.wikipedia.org/wiki/Concurrence_(quantum_computing)
- [R3] 1. a) Duff, K. Kaya, and B. Ucar, "Design, Implementation, and
- [R4] 1. a) Duff and J. Koster, "The design and use of algorithms for
- [Hav03] Havel, T. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. Journal of Mathematical Physics 44 2, 534 (2003). doi:10.1063/1.1518555.
- [Wat13] Watrous, J. Theory of Quantum Information, lecture notes.
- [Moh08] 13. Mohseni, A. T. Rezakhani, D. A. Lidar, Quantum-process tomography: Resource analysis of different strategies, Phys. Rev. A 77, 032322 (2008). doi:10.1103/PhysRevA.77.032322.
- [Gri98] 13. Grifoni, P. Hänggi, *Driven quantum tunneling*, Physics Reports **304**, 299 (1998). doi:10.1016/S0370-1573(98)00022-2.
- [Cre03] 3. a) Creffield, Location of crossings in the Floquet spectrum of a driven two-level system, Phys. Rev. B 67, 165301 (2003). doi:10.1103/PhysRevB.67.165301.
- [Gar03] Gardineer and Zoller, Quantum Noise (Springer, 2004).
- [Bre02] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, 2002).
- [Coh92] 3. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, (Wiley, 1992).
- [WBC11] C. Wood, J. Biamonte, D. G. Cory, *Tensor networks and graphical calculus for open quantum systems*. arXiv:1111.6950

PYTHON MODULE INDEX

q

qutip, 218 qutip.bloch_redfield, 172 qutip.continuous_variables,166 qutip.control.grape, 204 qutip.control.pulsegen, 212 qutip.control.pulseoptim, 205 qutip.correlation, 179 qutip.entropy, 163 qutip.essolve, 171 qutip.expect, 162 qutip.fileio,215 qutip.floquet, 173 qutip.fortran.mcsolve_f90,171 qutip.graph, 212 qutip.ipynbtools, 217 qutip.mcsolve, 170 qutip.mesolve, 168 qutip.metrics, 164 qutip.operators, 152 qutip.parallel, 215 qutip.partial_transpose, 163 qutip.propagator,189 qutip.gip.algorithms.gft, 204 qutip.qip.gates, 198 qutip.qip.qubits, 203 qutip.random_objects, 158 qutip.sesolve, 168 qutip.states, 146 qutip.steadystate, 186 qutip.stochastic, 177 qutip.superop_reps, 161 qutip.superoperator, 160 qutip.tensor, 161 qutip.three_level_atom, 159 qutip.tomography, 197 qutip.utilities, 214 qutip.visualization, 191 qutip.wigner, 190

А

about() (in module qutip), 218 add_1q_gate() (QubitCircuit method), 133 add_annotation() (Bloch method), 123 add_circuit() (QubitCircuit method), 133 add_gate() (QubitCircuit method), 133 add_points() (Bloch method), 123 add_points() (Bloch3d method), 125 add_states() (Bloch method), 123 add_states() (Bloch3d method), 125 add_vectors() (Bloch method), 123 add_vectors() (Bloch3d method), 125 adjacent gates() (CircuitProcessor method), 134 adjacent gates() (QubitCircuit method), 133 adjacent_gates() (SpinChain method), 135 average_gate_fidelity() (in module qutip.metrics), 166

В

basis() (in module qutip.states), 146 berkeley() (in module qutip.qip.gates), 199 Bloch (class in qutip.bloch), 122 Bloch3d (class in qutip.bloch3d), 124 bloch_redfield_solve() module (in qutip.bloch_redfield), 173 bloch_redfield_tensor() (in module qutip.bloch_redfield), 173 breadth_first_search() (in module qutip.graph), 212 brmesolve() (in module qutip.bloch_redfield), 172 build_preconditioner() (in module qutip.steadystate), 188 bures_angle() (in module qutip.metrics), 165 bures_dist() (in module qutip.metrics), 165

С

checkherm() (Qobj method), 116 CircuitProcessor (class in qutip.qip.models), 134 CircularSpinChain (class in qutip.qip.models.spinchain), 136 clear() (Bloch method), 123 clear() (Bloch3d method), 126 clebsch() (in module qutip.utilities), 214 cnot() (in module qutip.qip.gates), 199 coherence_function_g1() (in module qutip.correlation), 185 coherence_function_g2() module (in qutip.correlation), 186 coherent() (in module qutip.states), 147 coherent_dm() (in module qutip.states), 147 combine dyn gen() (Dynamics method), 140 composite() (in module qutip.tensor), 162 compute_evolution() (Dynamics method), 140 concurrence() (in module qutip.entropy), 163 conj() (Qobj method), 116 controlled_gate() (in module qutip.qip.gates), 202 convert_unit() (in module qutip.utilities), 214 correlation() (in module qutip.correlation), 179 correlation_2op_1t() (in module qutip.correlation), 180 correlation_2op_2t() (in module qutip.correlation), 180 correlation 3op 1t() (in module qutip.correlation), 181 correlation_3op_2t() (in module qutip.correlation), 182 correlation 4op 1t() (in module qutip.correlation), 182 correlation_4op_2t() (in module qutip.correlation), 183 correlation_matrix() (in module qutip.continuous_variables), 166 correlation_matrix_field() (in module qutip.continuous_variables), 166 correlation_matrix_quadrature() module (in qutip.continuous_variables), 167 correlation_ss() (in module qutip.correlation), 179 covariance_matrix() (in module qutip.continuous_variables), 166 cphase() (in module qutip.qip.gates), 199 create() (in module qutip.operators), 152 create_pulse_gen() module (in qutip.control.pulsegen), 211 create_pulse_optimizer() (in module qutip.control.pulseoptim), 209 csign() (in module qutip.qip.gates), 199

D

dag() (Qobj method), 116 destroy() (in module qutip.operators), 153 diag() (Qobj method), 116 dispersive_gate_correction() (DispersivecQED method), 137 DispersivecQED (class in qutip.qip.models.cqed), 136 displace() (in module qutip.operators), 153 Distribution (class in qutip.distributions), 129 Dynamics (class in qutip.control.dynamics), 137 DynamicsSymplectic (class in qutip.control.dynamics), 142 DynamicsUnitary (class in qutip.control.dynamics), 141

Е

eigenenergies() (Qobj method), 116 eigenstates() (Qobj method), 117 eliminate_states() (Qobj method), 117 enr_destroy() (in module qutip.operators), 157 enr_fock() (in module qutip.states), 152 enr identity() (in module qutip.operators), 157 enr_state_dictionaries() (in module qutip.states), 152 enr_thermal_dm() (in module qutip.states), 152 ensure_decomp_curr() (Dynamics method), 140 entropy_conditional() (in module qutip.entropy), 163 entropy linear() (in module qutip.entropy), 163 entropy mutual() (in module qutip.entropy), 164 entropy vn() (in module qutip.entropy), 164 eseries (class in qutip), 121 essolve() (in module qutip.essolve), 171 evaluate() (Qobj static method), 117 expect() (in module qutip.expect), 162 expm() (Qobj method), 118 extract_states() (Qobj method), 118

F

fidelity() (in module gutip.metrics), 164 file_data_read() (in module qutip.fileio), 215 file_data_store() (in module qutip.fileio), 215 flag_system_changed() (Dynamics method), 140 floquet_modes() (in module qutip.floquet), 174 floquet_modes_t() (in module qutip.floquet), 174 floquet_modes_t_lookup() (in module qutip.floquet), 175 floquet_modes_table() (in module qutip.floquet), 175 floquet_state_decomposition() (in module qutip.floquet), 176 floquet states t() (in module qutip.floquet), 175 floquet_wavefunction_t() (in module qutip.floquet), 176 fmmesolve() (in module gutip.floquet), 173 fock() (in module qutip.states), 148 fock_dm() (in module qutip.states), 148 fredkin() (in module qutip.qip.gates), 201 fsesolve() (in module qutip.floquet), 176 full() (Qobj method), 118

G

Gate (class in qutip.qip.circuit), 132 gate expand 1toN() (in module qutip.qip.gates), 202 gate expand 2toN() (in module qutip.qip.gates), 203 gate_expand_3toN() (in module qutip.qip.gates), 203 gate_sequence_product() (in module qutip.qip.gates), 202 gen_pulse() (PulseGen method), 143 gen_pulse() (PulseGenLinear method), 144 gen_pulse() (PulseGenRandom method), 143 gen_pulse() (PulseGenSaw method), 146 gen pulse() (PulseGenSine method), 145 gen pulse() (PulseGenSquare method), 146 gen pulse() (PulseGenTriangle method), 146 gen_pulse() (PulseGenZero method), 144 get_ctrl_dyn_gen() (Dynamics method), 140 get ctrl dyn gen() (DynamicsSymplectic method), 142 get_ctrl_dyn_gen() (DynamicsUnitary method), 142 get_drift_dim() (Dynamics method), 140 get_dyn_gen() (Dynamics method), 140 get dyn gen() (DynamicsSymplectic method), 142 get dyn gen() (DynamicsUnitary method), 142 get_num_ctrls() (Dynamics method), 140 get_ops_and_u() (CircuitProcessor method), 134 get_ops_labels() (CircuitProcessor method), 134 get_owd_evo_target() (Dynamics method), 140 globalphase() (in module qutip.qip.gates), 202 grape_unitary() (in module qutip.control.grape), 204 grape_unitary_adaptive() (in module qutip.control.grape), 205 GRAPEResult (class in gutip.control.grape), 137 graph_degree() (in module qutip.graph), 212 groundstate() (Qobj method), 118

Н

hadamard_transform() (in module qutip.qip.gates), 202 HarmonicOscillatorProbabilityFunction (class in qutip.distributions), 132 HarmonicOscillatorWaveFunction (class in qutip.distributions), 131 hilbert_dist() (in module qutip.metrics), 165

hinton() (in module qutip.visualization), 191

I

identity() (in module qutip.operators), 155 init_pulse() (PulseGen method), 143 init_pulse() (PulseGenLinear method), 144, 145 init_pulse() (PulseGenPeriodic method), 145 init_time_slots() (Dynamics method), 140 initialize_controls() (Dynamics method), 140 iswap() (in module qutip.qip.gates), 200

J

jmat() (in module qutip.operators), 154

Κ

ket2dm() (in module qutip.states), 149

L

lindblad_dissipator() (in module qutip.superoperator), 160 LinearSpinChain (class in qutip.qip.models.spinchain), 136 linspace_with() (in module qutip.utilities), 214 liouvillian() (in module qutip.superoperator), 160 load_circuit() (CircuitProcessor method), 134 logarithmic_negativity() (in module qutip.continuous_variables), 167

Μ

make_sphere() (Bloch method), 123 make_sphere() (Bloch3d method), 126 marginal() (Distribution method), 130 matrix_element() (Qobj method), 119 matrix_histogram() (in module qutip.visualization), 191 matrix_histogram_complex() (in module qutip.visualization), 192 maximum_bipartite_matching() (in module qutip.graph), 213 mcsolve() (in module qutip.mcsolve), 170 mcsolve_f90() (in module qutip.fortran.mcsolve_f90), 171 mesolve() (in module qutip.mesolve), 168

Ν

n_thermal() (in module qutip.utilities), 214 norm() (Qobj method), 119 num() (in module qutip.operators), 154

0

ode2es() (in module qutip.essolve), 172 operator_to_vector() module (in qutip.superoperator), 160 optimize circuit() (CircuitProcessor method), 134 optimize pulse() module (in qutip.control.pulseoptim), 205 optimize pulse unitary() module (in qutip.control.pulseoptim), 207 Options (class in qutip.solver), 126 orbital() (in module qutip), 196 overlap() (Qobj method), 119

Ρ

parallel_map() (in module qutip.ipynbtools), 217 parallel_map() (in module qutip.parallel), 216 parfor() (in module qutip.ipynbtools), 217 parfor() (in module qutip.parallel), 215 partial_transpose() (in module qutip.partial_transpose), 163

permute() (Oobj method), 120 phase() (in module qutip.operators), 157 phase_basis() (in module qutip.states), 150 phasegate() (in module qutip.qip.gates), 198 plot_energy_levels() module (in qutip.visualization), 192 plot_expectation_values() module (in qutip.visualization), 195 plot fock distribution() module (in qutip.visualization), 192 plot_grape_control_fields() module (in qutip.control.grape), 204 plot_points() (Bloch3d method), 126 plot_pulses() (CircuitProcessor method), 135 plot_qubism() (in module qutip.visualization), 195 plot_schmidt() (in module qutip.visualization), 194 plot_spin_distribution_2d() (in module qutip.visualization), 196 plot_spin_distribution_3d() (in module qutip.visualization), 196 plot_vectors() (Bloch3d method), 126 plot_wigner() (in module qutip.visualization), 193 plot_wigner_fock_distribution() (in module qutip.visualization), 193 process_fidelity() (in module qutip.metrics), 166 project() (Distribution method), 130 propagator() (in module qutip.propagator), 189 propagator_steadystate() module (in qutip.propagator), 189 propagators() (QubitCircuit method), 133 ptrace() (Qobj method), 120 pulse_matrix() (CircuitProcessor method), 135 PulseGen (class in qutip.control.pulsegen), 142 PulseGenLinear (class in qutip.control.pulsegen), 144 PulseGenPeriodic (class in qutip.control.pulsegen), 145 PulseGenRandom (class in qutip.control.pulsegen), 143 PulseGenSaw (class in qutip.control.pulsegen), 146 PulseGenSine (class in qutip.control.pulsegen), 145 PulseGenSquare (class in qutip.control.pulsegen), 145 PulseGenTriangle (class in qutip.control.pulsegen), 146 PulseGenZero (class in qutip.control.pulsegen), 143 C QDistribution (class in gutip.distributions), 131 qeye() (in module qutip.operators), 155 qft() (in module qutip.qip.algorithms.qft), 204 qft_gate_sequence() module (in

qutip.qip.algorithms.qft), 204 qft_steps() (in module qutip.qip.algorithms.qft), 204 qfunc() (in module qutip.wigner), 190 qload() (in module qutip.fileio), 215

Qobj (class in qutip), 115

qpt() (in module qutip.tomography), 197

qpt_plot() (in module qutip.tomography), 197 qpt_plot_combined() (in module qutip.tomography), 197 qsave() (in module qutip.fileio), 215 qubit states() (in module qutip.qip.qubits), 203 QubitCircuit (class in qutip.qip.circuit), 132 qutip (module), 189, 196, 218 qutip.bloch redfield (module), 172 qutip.continuous variables (module), 166 qutip.control.grape (module), 204 qutip.control.pulsegen (module), 211, 212 qutip.control.pulseoptim (module), 205 qutip.correlation (module), 179 qutip.entropy (module), 163 qutip.essolve (module), 171 qutip.expect (module), 162 qutip.fileio (module), 215 qutip.floquet (module), 173 qutip.fortran.mcsolve_f90 (module), 171 qutip.graph (module), 212 qutip.ipynbtools (module), 217 qutip.mcsolve (module), 170 qutip.mesolve (module), 168 qutip.metrics (module), 164 qutip.operators (module), 152 qutip.parallel (module), 215 qutip.partial transpose (module), 163 qutip.propagator (module), 189 qutip.qip.algorithms.qft (module), 204 qutip.gip.gates (module), 198 qutip.qip.qubits (module), 203 qutip.random_objects (module), 158 qutip.sesolve (module), 168 qutip.states (module), 146 qutip.steadystate (module), 186 qutip.stochastic (module), 177 qutip.superop_reps (module), 161 qutip.superoperator (module), 160 qutip.tensor (module), 161 qutip.three_level_atom (module), 159 qutip.tomography (module), 197 qutip.utilities (module), 214 qutip.visualization (module), 191 qutip.wigner (module), 190 qutrit_basis() (in module qutip.states), 149 qutrit_ops() (in module qutip.operators), 155

R

rand_dm() (in module qutip.random_objects), 158 rand_herm() (in module qutip.random_objects), 158 rand_ket() (in module qutip.random_objects), 158 rand_unitary() (in module qutip.random_objects), 159 remove_gate() (QubitCircuit method), 133 render() (Bloch method), 123 reset() (PulseGen method), 143 reset() (PulseGenLinear method), 144, 145 reset() (PulseGenPeriodic method), 145 resolve_gates() (QubitCircuit method), 134 Result (class in qutip.solver), 127 reverse_circuit() (QubitCircuit method), 134 reverse_cuthill_mckee() (in module qutip.graph), 212 rhs_clear() (in module qutip), 190 rhs_generate() (in module qutip), 189 rotation() (in module qutip.qip.gates), 202 run() (CircuitProcessor method), 135 run_state() (CircuitProcessor method), 135 rx() (in module qutip.qip.gates), 198 ry() (in module qutip.qip.gates), 198 rz() (in module qutip.qip.gates), 198

S

save() (Bloch method), 123 save() (Bloch3d method), 126 save_amps() (Dynamics method), 140 serial map() (in module qutip.parallel), 216 sesolve() (in module qutip.sesolve), 168 set_label_convention() (Bloch method), 124 set_log_level() (Dynamics method), 141 show() (Bloch method), 124 show() (Bloch3d method), 126 sigmam() (in module qutip.operators), 155 sigmap() (in module qutip.operators), 155 sigmax() (in module qutip.operators), 156 sigmay() (in module qutip.operators), 156 sigmaz() (in module qutip.operators), 156 simdiag() (in module qutip), 218 smepdpsolve() (in module qutip.stochastic), 178 smesolve() (in module qutip.stochastic), 177 snot() (in module qutip.qip.gates), 198 spec() (eseries method), 121 spectral_decomp() (Dynamics method), 141 spectral_decomp() (DynamicsUnitary method), 142 spectrum() (in module qutip.correlation), 184 spectrum correlation fft() module (in qutip.correlation), 185 spectrum_pi() (in module qutip.correlation), 184 spectrum_ss() (in module qutip.correlation), 184 sphereplot() (in module qutip.visualization), 194 SpinChain (class in qutip.qip.models.spinchain), 135 spost() (in module qutip.superoperator), 160 spre() (in module qutip.superoperator), 160 sprepost() (in module qutip.superoperator), 160 sqrtiswap() (in module qutip.qip.gates), 201 sqrtm() (Qobj method), 120 sqrtnot() (in module qutip.qip.gates), 198 sqrtswap() (in module qutip.qip.gates), 200 squeeze() (in module qutip.operators), 156 squeezing() (in module qutip.operators), 157 ssepdpsolve() (in module qutip.stochastic), 178 ssesolve() (in module qutip.stochastic), 177 state_index_number() (in module qutip.states), 151 state_number_enumerate() (in module qutip.states), 150

state_number_index() (in module qutip.states), 151 state_number_qobj() (in module qutip.states), 151 steadystate() (in module qutip.steadystate), 186 StochasticSolverOptions (class in qutip.stochastic), 127

super_tensor() (in module qutip.tensor), 162
swap() (in module qutip.qip.gates), 200
swapalpha() (in module qutip.qip.gates), 200

Т

tensor() (in module qutip.tensor), 161 tensor_contract() (in module qutip.tensor), 162 thermal_dm() (in module qutip.states), 149 three_level_basis() (in module qutip.three_level_atom), 159 three_level_ops() (in module qutip.three_level_atom), 159 tidyup() (eseries method), 121 tidyup() (Qobj method), 120 to_choi() (in module qutip.superop_reps), 161 to_kraus() (in module qutip.superop_reps), 161 to_super() (in module qutip.superop_reps), 161 toffoli() (in module qutip.qip.gates), 201 tr() (Qobj method), 120 tracedist() (in module qutip.metrics), 165 trans() (Qobj method), 120 transform() (Qobj method), 121 TwoModeQuadratureCorrelation (class in qutip.distributions), 131

U

- unit() (Qobj method), 121
- update() (HarmonicOscillatorProbabilityFunction method), 132
- update() (HarmonicOscillatorWaveFunction method), 132
- update() (TwoModeQuadratureCorrelation method), 131
- update_ctrl_amps() (Dynamics method), 141
- update_psi() (TwoModeQuadratureCorrelation method), 131

update_rho() (TwoModeQuadratureCorrelation method), 131

۷

W

weighted_bipartite_matching() (in module qutip.graph), 213 wigner() (in module qutip.wigner), 190

- wigner_covariance_matrix() (in module qutip.continuous_variables), 167
- WignerDistribution (class in qutip.distributions), 130